
Ontological Profiles in Enterprise Search

Geir Solskinnsbakk and Jon Atle Gulla

Department of Computer and Information Science
Norwegian University of Science and Technology

Trondheim, Norway
{geirsols, jag}@idi.ntnu.no

Abstract. Ontology-driven search applications use ontological concepts
either to index documents or to guide and understand the users. Since on-
tologies by nature are domain-dependent and application-independent,
though, there is no guarantee that their concepts are efficient in cat-
egorizing and retrieving information from a specific document index.
This paper explains the idea of ontological profiles, which is an ontology
adapted to the actual language used in a document collection or among
the users. A method for constructing ontological profiles from petroleum
documents is presented, as well as a search application that makes use
of profiles to interpret users queries. Testing on real documents with a
20,000 concepts petroleum ontology reveals that the approach is useful
in situations where recall is more critical than precision.

Keywords: ontological profiles, feature vectors, information retrieval,
query expansion

1 Introduction

Normal search or information retrieval applications use statistics to calculate
similarities between documents and queries and to rank documents with respect
to given queries. Documents are viewed as vectors of normalized term frequen-
cies, without paying much attention to what these terms really mean. The ap-
proach is often referred to as syntactic search, or morpho-syntactic search if
stemming or lemmatization is used on the documents before indexing.

In ontology-driven search applications we attempt to use ontological concepts
or structures to address the content -the semantics- of documents and queries.
An ontology defines the vocabulary that is later used both in document descrip-
tions and queries. As a consistent and well-defined set of terms is used both
to index and retrieve documents, and these terms are semantically related in
the ontology, we may better match the users information needs with the real
content of the documents. Reasoning with ontological structures may also be
applied in cases where there is no direct match between the query and the doc-
uments. In practice, ontology-driven or semantic search can be achieved with
semantic indices, semantic annotations, query interpretation, or a combination
of the above.



2

Current ontology-driven search applications have however been only mod-
erately successful. Many applications use ontological structures to reformulate
queries with more generalized or specialized terms, producing results that are
comparable to thesaurus- or dictionary-supported search solutions. Others have
tried to encourage users to add semantic annotations to documents, which has
led to substantially more manual work and only limited improvement of precision
and recall. Even more problematicis the fact that ontology-driven search seems
to perform better with tailored ontologies, while ontologies in principle should
be application-independent. Application-dependent ontologies is unfortunately
also problematic, since they both complicate the idea of application integration
and necessitates additional structures or bodies for maintenance and updating.

In this paper we propose an enriched ontology -an ontological profile- that
provides an understanding of the ontology in terms of the language used in the
document collection. We can generate ontological profiles automatically with text
mining techniques, though we may imagine that this profile is gradually adapted
to the application with machine learning and user modeling. The profile helps
us relate both the document content and the query to the ontological concepts
defined, giving us a way to search semantically even if the authors and searchers
have no knowledge of the ontology. We argue that the proposed ontological
profile is generic to the search process, in the sense that either the ontology or
the document collection can be exchanged so that the search platform is usable
for other domains. Following this argument, the search platform does not rely
on a specific ontology or document collection. Both the indexing process and the
search process are unchanged from traditional syntactic search, but a mapping
to semantic concepts is done in the background with the ontological profile.

The structure of the paper is as follows: Section 2 gives a brief overview
of related work, while Section 3 explains the concept of ontological profiles. In
Section 4 we present our method for automatic construction of such profiles,
followed by Section 5 which shows how the approach has been used to interpret
queries semantically in the petroleum domain. A discussion of results is given in
Section 6. Finally, Section 7 concludes the paper.

2 Related Work

The related work for this paper comes from several areas, such as ontology align-
ment (mapping) and semantic information retrieval. Su [4] describes an approach
to ontology mapping that uses feature vectors. However, we will concentrate on
work that is directed at semantic search applications.

Rocha et al. [6] present an approach to semantic search based on a combi-
nation of text search and spread activation. In the first step the users query
terms are used as a query into the KB (consisting of metadata for concept in-
stances) and returns a set of concepts, denoted as start nodes for the spread
activation step. Next spread activation is applied to a graph where the concepts
are represented as nodes and the relations are represented as edges. The search
result returned to the user contains nodes (instances) of the ontology that have



3

a semantic similarity to the query, although the similarity may not explicitly be
provided through the users query terms.

In [7] Pinheiro et al. present an approach to semantic search based on con-
textualizing the user query by adding terms that disambiguate the query. An
ontology is used, and concepts from the ontology are added to the query based
on the relationships with the concepts of the original query terms. The query is
executed by the Google1 search API and the results displayed to the user.

Lei et al. [8] present a system that lets the user specify queries as keywords,
and hides the actual semantics from the user. The keyword query is first disam-
biguated by trying to find the semantic meaning of the query terms. This is done
by performing a text search on the semantic entities (concepts, relations etc.),
returning all matching entities. These are next used to construct formal (SeRQL
2) queries which are queried against the semantic repository. Finally the results
are ranked and presented to the user.

Guha et al. [9] describe a system that augments traditional search results with
semantic data. The traditional search results are provided through the Google
API. The additional information displayed to the user is based on matching the
query terms to one or more semantic entities (anchor nodes) in the semantic
repository. Next, a sub graph around the anchor nodes is generated, and the
information found is displayed to the user. When searching for a musician, the
augmented data may contain cd’s recorded, concert schedules, etc.

Sieg et al. [10] describes an approach that is in essence quite similar to our
approach for constructing feature vectors (see Section 4). The system uses an
ontology and builds term vectors for each of the concepts in the ontology based on
pre-assigned documents. During search, the query is expanded by using positive
evidence (selected concepts) and negative evidence (deselected concepts). One
other system that is similar to ours is the one described by Tommassen et al.
[11]. The system builds feature vectors for each concept in the ontology, and uses
these for subsequent query expansion. The main difference between our system
and the one described in [11] is in how the feature vectors are constructed and
used during search.

3 Ontological Profiles

An ontology is informally often referred to as a set of concepts and their re-
lationships. According to Gruber “an ontology is an explicit specification of a
conceptualization”[12]. The ontology describes the important concepts of the do-
main, their properties, relationships and constraints. A fundamental assumption
is that these concepts describe the domain as a whole, independently of how
they might be used by people or applications. It provides a standardized vocab-
ulary that may be used to bridge applications and help humans and computers
to exchange information and services.

1 http://www.google.com
2 http://www.openrdf.org



4

However, ontologies are of little use unless humans and applications con-
sistently refer to the concepts defined in the ontologies. This may be done by
adopting the ontological structures for internal information management, or by
providing mappings between internal structures and ontological structures.

For search applications we will usually not be in a position to enforce a
standardized vocabulary in documents or users queries. Both documents and
queries may deviate from the standards defined, as they reflect the users own
personalized vocabulary and preferences. The documents language and struc-
ture express the authors line of thinking rather than some abstract conceptual
model. One option would be to ask the authors explicitly to annotate all docu-
ments with ontological concepts, but this requires additional manual work and
intimate knowledge of the ontology at hand. Since ontologies can easily exceed
tens of thousands of concepts, it is not realistic to assume that authors will cor-
rectly and consistently annotate their documents themselves. Another problem
is that the ontology is not necessarily structured according to the needs of search
applications. As shown in several research projects (cf. Brasethvik [1]), the gran-
ularity of the ontology must be carefully adjusted to the nature of the document
collection. Whereas a very detailed ontology may be both bad for performance
and recall, a coarse-grained ontology may either be of no use or even lower the
precision of search.

Take for example the christmas tree in Figure 1. According to the ISO 15926
standard used in the petroleum industry, a christmas tree is “an artefact that is
an assembly of pipes and piping parts, with valves and associated control equip-
ment that is connected to the top of a wellhead and is intended for control of
fluid from a well.” The concept is together with around 50,000 other petroleum-
related concepts defined in an ontology that is now under completion and is
already used in government production reports from the Norwegian Continental
Shelf. The introduction of this ontology is supposed to simplify collaboration
across disciplines, phases and companies in the Norwegian petroleum industry,
and it is part of an integrated operations initiative for streamlining the subsea
petroleum production processes.

However, the term christmas tree may not be used consistently throughout
the domain. There are of course synonyms like x-tree in use, but also more indi-
rect references like wellhead top, tree or wellhead control. Texts about boreholes
and wellhead housings may not mention christmas trees at all, even though it
most likely will deal with topics relevant to christmas trees. Looking at the on-
tological hierarchy in Figure 1, it is also clear that many ontological concepts
will never be used in natural language texts. A christmas tree is a specialization of
artefact, which is again a specialization of ISO-IS 15926 inanimate physical object,
but these terms are not likely to appear in texts about christmas trees although
they are likely to be related in an ontological sense. Many concepts are needed
to provide unambiguous and exhaustive domain definitions and are not normally
used in documents from the domain.

The aforementioned problems makes it problematic to use ontological con-
cepts to index documents or reformulate user queries in search applications.



5

Fig. 1. (Top/left) Schematic view of a Wellhead w/Christmas Tree. (Bottom/right)
Part of the IIP ontology focused around the christmas tree. Adapted from [2]

Having clearly defined concepts in a domain is useful, but only if we can relate
these concepts to the everyday language used in documents and queries.

An ontological profile is an extension of an ontology, in which every concept
is given a semantic vector definition. This vector provides a weighted list of terms
that are semantically related to the concept itself. The term weights are given
in the range 0 to 1. The higher the weight, the more central is the term with
respect to the concept.

Fundamental to ontological profiles is the fact that they only reflect the
language used in a particular application or the texts available from a particular
information source. The profile is a semantic characterization of the application
or information source in terms of well-defined domain concepts. Similarly, the
profile is an interpretation of ontological concepts with respect to a particular
application or information source.

4 Constructing Ontological Profiles

The ontological profiles are constructed on the basis of a document collection
reflecting the vocabulary of the domain, thus linking the concepts with the actual
language used in the domain.



6

The approach we have used to construct the ontological profiles is found
in [3], based on a method described by Su [4]. In Figure 2 an overview of the
approach to the construction of the ontological profiles is shown as the indexing
phase part of the figure.

Fig. 2. Overview of the approach.

The documents used during the construction of the ontological profiles are
first indexed using a standard Lucene 3 implementation based on the vector
space model [5]. During this process, stop words are removed, and the terms are
stemmed lightly, using the conversion s→ ∅ for all terms not ending with ss. We
have chosen to build three separate indexes based on the document collection
to reflect three views of the documents. The first view reflects the bag of words
approach, in which all the words are in some manner related since they appear
in the same document. In the second view, we partition the document into para-
graphs (or paragraph documents) based on two or more consecutive line breaks.
This view considers each paragraph as a semantic entity, in which the words are
relatively tightly linked semantically. Our third and last view partitions each
document into sentences (or sentence documents), based on the punctuations
“.”, “!”, and “?”. The sentence represents a group of words that are very tightly
linked semantically. During the indexing procedure, we thus construct one index
for each of the three views, and each document in the document collection is
indexed based on the whole document, based on paragraphs, and based on the
sentences in the document. The reason for partitioning the documents according

3 http://lucene.apache.org/



7

to this schema is that we hypothesize that relations between concepts and terms
are stronger when the two are found closer together.

When the appropriate index structures are created, the next step of the pro-
cess is to do the actual construction of the ontological profile. In this step we
use the ontology together with the indexes just created as input, and get the
ontological profile as output. For each of the concepts in the ontology, we use the
name of the concept as a query into the three different indexes. As many of the
ontology concepts consist of multiple words, we use the concept name as a phrase
query into the indexes. Since many of the concepts are rather long phrases, or
even artificial in the construction (cf. ISO-IS 15926 inanimate physical object),
this imposes a challenge when searching for the concepts. The artificial con-
cepts may not be found at all, and longer phrases may be broken up in the text
making it hard to locate them, resulting in many of the concepts not being as-
sociated with a concept vector. Each concept is assigned to it the set of relevant
documents (documents, paragraph documents, and sentence documents) found
during search. We now construct the feature vector for each of the concepts by
differentiating the weight given to terms found in documents, paragraph docu-
ments, and sentence documents. Equation 1 shows how this is done, where vfi,j

is the term frequency for term i in concept vector j, fi,k is the term frequency for
term i in document vector k, D,P, S is the (possibly empty) set of documents,
paragraph documents, and sentence documents assigned to j, respectively, and
α, β, γ are the constant modifiers for weighting each document type. The weight
is differentiated to reflect the fact that words found in the same document as the
concept name is likely to by semantically related to the concept. Terms found
in the same paragraph as the concept name is likely to be more semantically
related to the concept, and finally terms found in the same sentence as the con-
cept name are likely to be most semantically related to the concept name. The
weight given to terms found in the same document, paragraph, and sentence is
α = 0.1, β = 1.0, and γ10.0, respectively. These feature vectors are now what we
refer to as raw feature vectors.

vfi,j = α ·
∑
d∈D

fi,d + β ·
∑
p∈P

fi,p + γ ·
∑
s∈S

fi,s (1)

The raw feature vectors are transformed using the tfidf [5] score. The idf
factor is calculated by letting the raw feature vectors act as documents. The
calculation of the tfidf score is shown in Equation 2, where tfidfi,j is the tfidf
score for term i in feature vector j, vfi,j is the raw term frequency for term i
in feature vector j, max(vfl,j) is the frequency of the most frequent occurring
term l in feature vector j, N is the total number of feature vectors, and ni is the
number of feature vectors containing term i. After the tfidf score is calculated
for each of the concept vectors, each vector is normalized to unit length in order
to let search reflect the prominence of each term within the vector. The last part
of the construction process is to index the feature vectors so that the contents
of the feature vectors are searchable.



8

tfidfi,j =
vfi,j

max(vfl,j)
· log

N

ni
(2)

Next we introduce the concept of negative feature vectors. For each concept
that we successfully built a feature vector, we also attempt to create a negative
feature vector. The same principles as above have been applied, with exception
to three important details. The first is that the documents used as a basis are
not relevant for the domain of the ontology. This means that we build a nega-
tive feature vector containing terms that are not normally associated with the
domain. Take for instance the concept christmas tree which has been explained
earlier. Typical terms contained in the negative feature vector for christmas tree
would be pine, decoration, turkey etc. The second difference is that the query
used in the construction process is not directly based on the concept name, but
rather on the top 5 terms for each feature vector. We have chosen to use this ap-
proach as using the concept name as a query into the index would not get many
hits, as quite many of the concepts are domain specific phrases. In addition we
have chosen to filter the terms used in the negative feature vector by removing
all terms that are found in the “parent” feature vector, and all terms that are
found in more than 5% of the concept feature vectors. Third, the top 15 terms
for each of the negative feature vectors are indexed in a separate negative feature
vector index. The main purpose of the negative feature vector is to help filter
results that are not at all relevant to the domain, even though they may contain
terms found in the concept feature vectors. The weights are not included in the
index, and the reason for this will be explained in the next section.

5 Interpreting Queries with Ontological Profiles

Before we go into more detail about the query interpretation, we will give a
brief overview of how the process is done. The interpretation and expansion of
the user entered query is implemented as a module that is placed between the
user interface and the search core based on Lucene. The purpose of this module
is to map the user query to one or more concepts from the ontology using the
ontological profile. The user entered query is subsequently expanded using the
semantic representation of the concept given by the ontological profile. Figure 3
shows a conceptual view of the process. The user enters the query horizontal tree
and the semantic layer, represented in the module by the query interpretation
process, interprets the query semantically.

The query terms are used as a query into the feature vector index, returning
a ranked list of concepts based on the weight of the term with respect to the
concepts. This mapping reflects the vocabulary used in the document collection
used to construct the ontological profile. The next step is to reformulate the
original query by the terms found in the feature vector for the concept(s) chosen
for expansion.

We have implemented four different approaches for query interpretation de-
scribed in the following.



9

Fig. 3. Conceptual view of the query interpretation and expansion process.

Simple query interpretation This approach is what we consider the naive
approach, as it maps each of the query terms to a single concept. Each of the user
entered query terms is used as a query into the feature vector index, returning
the concept with the highest tfidf score for the term. This concept is picked
as a semantic representation of the query term and subsequently used in the
expansion process.

Best match query interpretation The simple approach is naive in the sense
that it does not recognize the relation between the query terms entered by the
user. Concepts are chosen for expansion solely based on the fact that a concept
is the best semantic representation for the specific query term. This approach is
an attempt at improving the mapping between the query terms and the concepts
by assuming that the query terms entered by the user are related. We thus try
to map the query terms to a single concept that has a good representation for
the query terms collectively. This is done by requiring the candidate concepts
to contain all the query terms. Equation 3, where ti,c is the weight of query
term i in concept c, shows the metrics for query term to concept mapping. The
mapping with the highest score, scorec, is chosen as a semantic representation
for the user entered query.

scorec = t0,c + t1,c + . . .+ tn−1,c (3)

Cosine similarity query interpretation The following two approaches are
attempts at disambiguating the query. The simple approach naively maps the
terms to the best corresponding concepts, not recognizing that there may exist a
relation between the best concept for queryterm1 and the second best concept for
queryterm2. This approach is an attempt at recognizing such relations by taking
the cosine similarity between the concept feature vectors into account during the
query to concept mapping phase. Due to computational complexity this approach
(together with the ontology structure interpretation) is only implemented for
user queries consisting of two terms. For each of the two terms a ranked list (top
15) of concepts based on the tfidf score is used as a basis for the calculation.
For each pair of concepts a score is calculated and the pair of concepts resulting
in the highest score is chosen as a semantic representation of the original query.
Equation 4 shows the calculation, where ckl represents the concept ranked as l
with respect to query term k, tk,l represents the weight of the query term, k,
in the concept ranked as l with respect to k and cos sim is the function that



10

calculates the cosine similarity between two concepts. Note that the approach
may result in a single concept being chosen in the case where both query terms
are present with a high score within a single feature vector.

scorecin,cjm = ti,n ∗ tj,m ∗ cos sim(cin, cjm) (4)

Ontology structure query interpretation The last approach, ontology struc-
ture query interpretation, is just as the cosine based approach an attempt at
finding the pair of concepts with largest semantic coherence with respect to the
original query. Just as with the cosine based approach, the first step is to gen-
erate a ranked list of the top 15 concept feature vectors based on the tfidf score
for each of the terms in the original query. In this approach the structure of the
ontology itself is used as a basis for the interpretation of the original query. A
graph representation of the ontology is built, in which the concepts are nodes
and the edges represent the child/parent relations in the ontology. For each pair
of concepts related to the query terms a score is calculated based on Equation 5,
where ckl, and tk,l are identical to ckl and tk,l in Equation 4 and path(i, j) is a
function that calculates the length of the path between two concepts of the on-
tology. The score is based on the distance between the concepts in the ontology,
using the assumption that concepts that are close within the ontology have a
stronger semantic relation than concepts that are far apart in the ontology. The
pair of concepts with the highest score is chosen as the semantic representation
of the original query. Also in this approach we note that a single concept may be
chosen as the semantic representation due to high score for both terms within a
single concept.

scorecin,cjm = ti,n ∗ tj,m ∗
1

path(cin, cjm)
(5)

Query Expansion Once the query interpretation phase is done, the original
query is expanded by the concepts chosen as a semantic representation for the
original query. For each of the concept(s) chosen for expansion the top 15 terms
are used as a semantically reformulated query. The weight of the terms within the
feature vectors are included so that the relative importance of each term within
the concept representation is conserved. Original query terms are boosted to
reflect the importance of them as they were selected by the user. In case a term
is not found in the feature vector index, the term itself is used for querying
(no semantic representation of the term other than itself). In addition the top
15 terms in each of the corresponding negative feature vector(s) (if they exist)
are added as a NOT query, prohibiting any of the obtained search results from
containing any terms from the negative feature vectors. The new query consists
of two parts, the conceptual weighted representation of the terms, and the NOT
query based on atypical terms for the domain.



11

6 Experiment

The domain in which the approach was evaluated was subsea petroleum equip-
ment and installations. We used the IIP [2] core ontology containing 18,675
concepts. During the construction of the ontological profile, 2195 concept fea-
ture vectors were built together with 2006 negative feature vectors. The reason
for this low number may be that many of the concepts were not mentioned in
the text, that they are not commonly used in “daily” speak, or the phrases
may have been broken up in the text. The document collection used to build
the feature vectors is the Schlumberger Oilfield Glossary 4, consisting of 4132
files totaling 2.2 MB of text. The document collection used to build the neg-
ative feature vectors consisted of 82 files found using the Google Search API.
The search index contained the Schlumberger Oilfield Glossary together with
130 documents (4 MB), assumed to be relevant, found using the Google Search
API and 99 documents (0.5 MB) that were assumed to be non-relevant for the
domain.

The prototype was evaluated using 7 queries, and 5 test subjects. The search
using the reformulated query is applied to an index based on paragraphs of min-
imum length 1200 characters rather than the full documents. The reformulated
query was evaluated against standard keyword search (the original query) based
on both paragraph indexing and document indexing. Each of the test subjects
were asked to score the top 10 hits for each of the queries and search strategy
with a score from 0 to 2, where 0 designates the hit as being totally irrelevant,
1 related to the domain, and 2 relevant for the query.

Figure 4 shows the average score for each of the search strategies over all 7
queries and all test subjects. From the figure we can note that our four refor-
mulation strategies seem to perform quite equally. It is hard to point out one
of them as being superior to any of the others. The reason for the equality in
performance may be that the parameters used for query expansion do not dif-
ferentiate that much between the different strategies, leading to many of them
expanding similar concepts. We also see that compared to the standard keyword
based search based on paragraph indexing (Lucene par) and documents (Lucene
doc) our reformulated queries perform significantly better.

We will now show the results of three of the seven queries tested. First we
look at Figure 5, which shows the results for the query chrstmas tree. From Table
1, which shows the concepts expanded by each of the reformulation strategies
for the three chosen queries, we see that all the queries expand the concept
“Christmas Tree”, and that two of them in addition expand the concept “Tree”.
The equality in expanded concepts explains why the results for the reformulated
queries perform equal. What is the reason for the poor performance for the
keyword search? Recall that the document collection searched includes some
christmas holiday type documents. Although there are not many of them in
the collection, these are ranked high in the keyword based approach, due to
a relatively high concentration of the terms christmas and tree. In addition

4 http://www.glossary.oilfield.slb.com



12

Fig. 4. The average score for each of the search strategies calculated over all 7 queries
and 5 test subjects.

we note that the reformulated queries in general retain a quite high score of
approximately 1.7 showing that the results are quite precise for the petroleum
domain. We explain this by a combination of the added semantics to the query
together with the negative feature vectors which filter the irrelevant documents.

Table 1. The concept expansions made by different reformulation strategies.

Strategy\Query christmas tree valve control tree pipe

Simple “christmas tree” “on off valve” “tree”
“tree” “on off control” “pipe”

Best match “christmas tree” “on off valve” “pipe”

Ontology “christmas tree” “valve control” “christmas tree”
“pipe”

Cosine “christmas tree” “on off valve” “tree”
“tree” “on off control” “pipe”

Figure 6 shows the score given by the test subjects for the query valve control.
The figure shows that the reformulated queries for the strategies Simple, Best
Match, and Cosine perform quite equally. Looking at the concept expansions
in Table 1, we see that these strategies expand a combination of two different
concepts. This helps explain why the strategies perform so similarly. The last
strategy, Ontology, expands to a different concept, Valve control, and is perceived
by the test subjects to give the best score. We also note that in this particular



13

Fig. 5. Average score for the top 3 and top 10 hits for each of the search strategies for
query christmas tree.

query the reformulated queries perform approximately equal to or slightly poorer
than the keyword based approaches. One reason for this may be that the initial
query is precise.

Figure 7 shows the results for the query tree pipe, and we note that our re-
formulated queries perform significantly better than the keyword based queries
with exception to the top 3 hits for the Lucene document based search. The
strategies that seem to perform best are the Simple, and the Cosine based refor-
mulated queries, which both actually expand the concepts “Tree” and “Pipe”,
correctly identifying the concepts of the query.

Table 2 shows the total overlap for the paragraphs retrieved and does obvi-
ously not include the Lucene doc. The table is read as follows; the search strategy
labeled by the columns found X% of the paragraphs found by the row labeled
strategies. From the table we note that the four reformulation strategies have
quite high overlap, which may explain to some degree why their performance
does not vary so much. We note that we have no measure for where in the
ranked list the overlap occurs. On the other hand we note that the reformulated
queries only locate in the range of 56% - 64% of the paragraphs found by the
keyword search. This result may in our opinion be caused by the negative feature
vectors filtering certain hits.

Table 3 shows the total hits made by the four reformulation strategies and
the Lucene paragraph based search. This shows that the number of hits for the
reformulated queries is significantly higher than for the keyword based search.
Of course, this is expected as the reformulated queries expand the original query
resulting in more hits.



14

Fig. 6. Average score for the top 3 and top 10 hits for each of the search strategies for
query valve control.

Table 2. Total overlap for the paragraphs retrieved.

Simple Best match Ontology Cosine Lucene par

Simple 100,00% 76,69% 75,25% 90,15% 23,53%

Best match 91,64% 100,00% 84,32% 95,07% 32,10%

Ontology 92,31% 86,56% 100,00% 95,84% 30,80%

Cosine 96,91% 85,53% 83,98% 100,00% 25,55%

Lucene par 56,48% 64,48% 60,26% 57,06% 100,00%

The experimentation has shown that there is not that much difference in the
results among the four strategies that we have proposed, and it is certainly not
possible to point out one of the as the best both generally and for certain types
of queries. We will in the future examine further the mapping of query terms
to concepts, to try to find an approach that does achieve more differentiation
between the strategies. Further, the approach relies on quite many different
variables which have not been researched yet, so we will do more research to
find out how these variables will influence the search results. The number of
terms from the concept feature vector to use in the expansion of the query has
been set to 15, but has not been researched to find the optimal number. This
number may rely on the quality of the vectors and the type of query. Regarding
the handling of the negative feature vectors, our opinion is that the terms found
in them are handled too strict, removing any document from the result set if it
contains terms from the negative feature vector. We propose to use less strict



15

Fig. 7. Average score for the top 3 and top 10 hits for each of the search strategies for
query tree pipe.

Table 3. Total number of hits for each search strategy.

Simple Best match Ontology Cosine Lucene par

Total paragraph hits: 16616 13905 13545 15457 6923

Total document hits: 11385 8714 8509 10419 2574

Average paragraphs 1.46 1.60 1.59 1.48 2.69
per document:

handling, in which documents are penalized for containing such terms, rather
than removing them from the result set altogether.

Lastly we must point out that the evaluation of the prototype has not been
a full blown evaluation with statistical significant results. However, we deem the
evaluation results good enough to give an indication that the search approach
based on ontological profiles has strengths that are worth pursuing further.

7 Conclusions

This paper has explored an approach for constructing a semantic search appli-
cation based on ontological profiles. We have seen that the general approach is
promising, giving results that are better than for basic keyword search. One sur-
prising result is that the four strategies we suggested perform on average quite
equally. We had an initial thought that the different strategies might be strong
for certain types of queries and weaker for others, but we did not see any such



16

trends. We will continue to work on the approach to find if there are any pa-
rameter settings that may give certain strategies benefits for certain queries. We
also plan to look into how reasoning in the ontology may be used to improve the
search, as well as find answers to queries that are found directly in the ontology.

Acknowledgment. This research was carried out as part of the IS A project,
project no. 176755, funded by the Norwegian Research Council under the VERDIKT
program.

References

1. T. Brasethvik. Conceptual modeling for domain specific document description and
retrieval. PhD Thesis, Norwegian University of Science and Technology, 2004.

2. J.A. Gulla, S.L. Tomassen, D. Strasunskas. Semantic interoperability in the norwe-
gian petroleum industry. In D. Karagiannis, H.C. Mayer, (Eds.), 5th International
Conference on Information Systems Technology and its Applications (ISTA 2006),
volume P-84 of Lecture Notes in Informatics (LNI), pages 81-94. Köllen Druck Ver-
lag GmbH, Bonn, Klagenfurt Austria, 2006.

3. G. Solskinnsbakk. Extending Ontologies with Search-Relevant Weights. Technical
report, Norwegian University of Science and Technology, Trondheim, Norway, 2006.

4. X. Su. Semantic Enrichment for Ontology Mapping. PhD thesis, Norwegian Univer-
sity of Science and Technology, 2004.

5. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, ACM Press, New
York, 1999.

6. C. Rocha, D. Schwabe, M.P.d. Arago. A Hybrid Approach for Searching in the
Semantic Web. In Proceedings of the Thirteenth International Conference on World
Wide Web (WWW’04). New York, NY, USA. p. 374-383. 2004.

7. W. A. Pinheiro, A. M. d. C. Moura. An Ontology Based-Approach for Semantic
Search in Portals. In Proceedings of the 15th International Workshop on Database
and Expert Systems Applications (DEXA’04) , IEEE Computer Society. 2004.

8. Y. Lei, V. Uren, E. Motta. SemSearch: A Search Engine for the Semantic Web. 15th
International Conference on Knowledge Engineering and Knowledge Management
Managing Knowledge in a World of Networks (EKAW 2006). Podebrady, Czech
Republic.

9. R. Guha, R. McCool, E. Miller. Semantic Search. WWW 03: Proceedings of the
Twelfth International Conference on World Wide Web. Budapest, Hungary. 2003.

10. A. Sieg, B. Mobasher, R. Burke, G. Prabu, S. Lytinen. Representing User Informa-
tion Context with Ontologies. In Proceedings of the 3rd International Conference
on Universal Access in Human-Computer Interaction, HCI International 2005, Las
Vegas, NV, July 2005.

11. Tomassen, S.L., Gulla, J.A., Strasunskas, D.: Document Space Adapted Ontology:
Application in Query Enrichment. In: 11th International Conference on Applications
of Natural Language to Information Systems (NLDB 2006), Vol. 3999. Springer-
Verlag, Klagenfurt, Austria (2006) 46-57

12. Thomas R. Gruber. A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2):199-220, 1993.


