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Abstract. Counterfactual explanations are an important solution to the
Explainable AI (XAI) problem, but good, “native” counterfactuals can
be hard to come by. Hence, the popular methods generate synthetic coun-
terfactuals using “blind” perturbation, by manipulating feature values to
elicit a class change. However, this strategy has other problems, notably
a tendency to generate invalid data points that are out-of-distribution
or that involve feature-values that do not naturally occur in a given
domain. Instance-guided and case-based methods address these problems
by grounding counterfactual generation in the dataset or case base, pro-
ducing synthetic counterfactuals from naturally-occurring features, and
guaranteeing the reuse of valid feature values. Several instance-guided
methods have been proposed, but they too have their shortcomings. Some
only approximate grounding in the dataset, or do not readily generalise
to multi-class settings, or are limited in their ability to generate alter-
native counterfactuals. This paper extends recent case-based approaches
by presenting a novel, general-purpose, case-based solution for counter-
factual generation to address these shortcomings. We report a series of
experiments to systematically explore parametric variations on common
datasets, to establish the conditions for optimal performance, beyond the
state-of-the-art in instance-guided methods for counterfactual XAI.

1 Introduction

Imagine your research paper has been reviewed by an AI that provides post-hoc
explanations for its decisions. It might explain a rejection using a counterfac-
tual statement: “if the paper was written more clearly and the evaluation used
more datasets, then it would have been accepted”. This proposes an alterna-
tive outcome (acceptance) if two aspects of the paper had been different (clearer
writing and a stronger evaluation). This explanation is just one of many possible
counterfactuals for explaining the rejection. For example, another might empha-
sise different aspects of the paper (perhaps related work and technical detail,
for example): “if the paper had included a better treatment of related work and
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provided a clearer technical account of the main algorithm, then it would have
been accepted”. While we hope that neither of these options will be applied to
the present work, they show how useful counterfactuals can be in providing a
causal focus for how an alternative outcome could be achieved [3,29], rather than
merely explaining why a particular outcomewas achieved [10,22,23]. Accordingly,
in recent years, there has been an explosion of research on how counterfactuals can
be used in Explainable AI (XAI [1,20,36]) and algorithmic recourse [19].

From a machine learning perspective, every dataset will have some existing
counterfactuals (what we call native counterfactuals), typically the nearest unlike
neighbours (NUNs) of a target query to be explained [6,10,28]. However, not
every NUN makes for a good counterfactual; for instance, it is generally agreed
that sparse NUNs make better counterfactuals, because good native counterfac-
tuals have few feature-differences between the query-instance and its explanatory
counter-instance. However, [21] showed that 95% of datasets examined had <1%
of natives with ≤2 differences (a common sparsity threshold). Hence, the most
popular solutions to counterfactual generation have opted to generate synthetic
counterfactuals, by perturbing query-instances using a loss function that bal-
ances proximity to the query against proximity to the decision boundary for the
counterfactual class, using a scaled L1-norm distance-metric [37]. However, these
proximity-driven, optimisation approaches have a tendency to generate invalid
data-points, synthetic counterfactual-instances that may be out-of-distribution
and/or involve feature-values that do not naturally occur [8,9,26,37].

For these reasons, many researchers have argued that counterfactual gen-
eration needs to be, somehow, grounded in the dataset of known instances
[8,21,26,32]. Such instance-guided methods attempt to generate synthetic coun-
terfactuals to handle a wide-range of target queries while being faithful to charac-
teristics of the dataset [21,32]. However, current methods are incomplete, because
they fail to identify good valid counterfactuals, and inefficient, because the coun-
terfactuals they can generate are not guaranteed to be the best that could be
generated, as determined by quality metrics (see below). The present paper
advances a novel case-based method, using an elegant algorithm, that generates
synthetic counterfactuals by directly adapting instances (native counterfactuals)
in the dataset, using actual feature-values, to provide diverse, high-quality coun-
terfactual explanations for a wide variety of target queries. In the remainder of
this paper, we first set the scene for the current work by defining the properties
of good counterfactual explanations and situate it relative to prior work. Then,
we go on to present the details of the current novel algorithm and report several
extensive experiments to test it against the current state-of-the-art.

2 Related Work

As AI systems become more widespread, the need for fairness [35], transparency
[25], and explainability is increasingly important [1,17,24,31]; indeed, some gov-
ernmental regulations (such as GDPR) now call for mandatory explanations for
AI-based decisions [16]. At the same time, machine learning approaches that
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have proven to be so effective in real-world tasks (e.g. deep neural networks),
appear to be among the most difficult to explain [18]. One approach to this
problem is to cast such black-box models as white-box ones and then to use the
latter to explain the former; for example, using post-hoc feature-based (e.g., as in
LIME [34]) or example-based explanations (e.g., as in twin-systems [15,22,23]).
Counterfacutal explanations are another post-hoc explanation strategy, one that
is arguably better than example-based explanations [29], as they inform the user
about the features that need to change in order to alter an automated deci-
sion (hence, their use in algorithmic recourse [19]). Furthermore, psychologically,
people readily understand counterfactuals [2,3] and, importantly, they are impli-
cated in causal understanding [2,14]. Finally, from a legal perspective, [37] have
argued that counterfactual explanations are GDPR compliant.

In this section we consider the task of counterfactual generation. We begin
by asking what makes a good counterfactual – one that is likely to be use-
ful in practice – and we then review recent efforts to generate counterfactuals,
paying particular attention to the difference between so-called “blind” pertur-
bation approaches [5,26,27,30,37] and more recent instance-based approaches
[21,26,32]. Because instance-based methods generate counterfactuals using fea-
ture values that naturally exist (rather than perturbed values that may not
exist naturally), they enjoy certain plausibility benefits; although, state-of-the-
art instance-based methods have a number of shortcomings too. We identify and
discuss these deficits to motivate the new approach presented in this work.

2.1 What Are Good Counterfactual Explanations?

Intuitively, good counterfactual explanations should be easily understood by
users – they should involve fewer, more plausible feature differences – and they
should be available for most queries that arise. For example, a counterfactual
that says “if the paper was written more clearly, then the paper would have been
accepted” might be considered better than a more complex one saying “if the
paper was written more clearly, the evaluation more extensive and the review
of the literature more comprehensive then the paper would have been accepted”.
There is a general consensus in the XAI literature that good counterfactuals
should be:

– Similar: maximally similar to the target query, to be understandable to users.
– Sparse: differ in as few features as possible from the target, to be easily
interpreted.

– Plausible: modify features/values that make sense to users (e.g., preferably
from known instances).

– Available: for a majority of targets, to give a high degree of explanation
coverage.
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– Diverse: use a variety of features to offer counterfactuals that highlight dif-
ferent perspectives, either when multiple alternatives are required, or when it
is useful to choose a single explanation from a set of alternatives that involve
various feature differences.

The counterfactual literature has many methods that try to meet these proper-
ties, but with varying degrees of success.

2.2 Perturbation-Based Approaches

A recent review of the XAI literature has identified >100 distinct methods for
computing counterfactuals [20]. Many are designed to meet the various properties
of good counterfactuals by perturbing the feature-values of existing instances.
For instance, Wachter et al.’s [37] seminal work generates a new counterfactual
p′, for a target problem p, by perturbing the features of p until a class change
occurs, and in a manner that minimises the distance between p and p′, d(p, p′).

While the approach of [37] can generate a counterfactual p′ that is very
similar to p, its “blind” perturbation approach can generate counterfactuals that
lack sparsity [27] and diversity [30]. It can also generate counterfactuals with
(potentially invalid) out-of-distribution feature values; Laugel et al. [26] showed
that for some datasets this could occur in 30% of generated instances. Hence,
Dandle et al. [5] have proposed modifications to the loss function to minimise the
number of different features between p and p′ (diffs(p,p’)). And, Mothila et al.
[30] have extended the optimisation function to deal with diversity, so that for a
given p, the set of counterfactuals produced minimises the distance and feature
differences within the set, while maximising the range of features changed across
the set. However, the out-of-distribution problem remains an issue, even for these
more advanced perturbation-based solutions.

2.3 Instance-Based Approaches

In response to these out-of-distribution problems, other researchers have argued
that counterfactual explanations need to be more grounded in the feature space
of the dataset. This has given rise to a family of instance-guided techniques
that exploit known instances more directly [21,26,32,33]. FACE (Feasible and
Actionable Counterfactual Explantions) is one such method that selects can-
didate counterfactuals that are situated in high-density regions of the dataset,
where there is also a feasible path between the query and the generated counter-
factual [32]. However, FACE really just approximates to the use of the dataset,
as the density analysis merely informs the choice of one generated counterfactual
over another.

Keane and Smyth (henceforth, KS20) [21] adopted a more direct instance-
guided method, using known, good (native) counterfactuals in the dataset (and
their feature values) to generate novel synthetic counterfactuals. KS20 define a
good counterfactual to be one with ≤2 feature differences with respect to a target
query, p (based on psychological considerations, see e.g. [11,12]). If a p′ exists with
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class(p) "= class(p′), and if p and p′ differ by no more than 2 features, then p′ is a
good counterfactual for p. However, often no such p′ exists, hence KS20 generates
a novel counterfactual by locating a nearest like neighbour (NLN) q (class(p) =
class(q)) such that there exists another instance q′ with class(q) "= class(q′), and
where q and q′ differ by no more than 2 features. The pair q−q′ is a counterfactual-
pair (an explanation case in KS20) and we refer to q′ as its counterfactual instance
and to class(q′) as its counterfactual class. KS20 generates a synthetic counterfac-
tual, p′ for p, by using the q−q′ pair as a template. The differences between q and
q′ are used to identify the feature values in p that need to be changed to produce
p′; the values of the other (matching) features are transferred directly from p to
p′. KS20 describe two variations (direct and indirect) to determine which features
values to use in p′ for these so-called difference features. In the direct approach
they come from q′ itself. In the indirect approach they come from the (like) neigh-
bours of q′.

Thus, even though good counterfactual-pairs are rare in practice, any that
do exist can be adapted in different ways, to construct many new good coun-
terfactuals. The approach is not guaranteed to produce a valid good counter-
factual for p, because the p′ may not end up with a (predicted) class that is
different from p, but KS20 showed that it regularly generated valid counterfac-
tuals that were very similar to target queries, while remaining sparse (i.e., ≤2
feature differences). And because these counterfactuals were always built from
existing feature-values they claimed plausibility benefits compared to perturba-
tion methods. As this method works directly from known instances and their
feature-values, by design the generated counterfactuals are within distribution
(at least with respect to the values of individual features). In tests, KS20 showed
that the generated counterfactuals were more similar to target queries than the
native counterfactual-pairs in the dataset, thereby further supporting the within-
distribution claim. However, KS20’s reliance on a single nearest counterfactual-
pair as the basis for synthetic counterfactual generation ultimately limits their
method’s performance in a number of important respects, especially in multi-
class settings.

2.4 Instance-Based Shortcomings

Firstly, relying on a single counterfactual-pair means that KS20’s generated
counterfactuals are, by definition, based on feature values that come from a
fixed set of difference features. For a given p, KS20 can only generate one type
of counterfactual, because the nearest counterfactual-pair specifies one set of dif-
ference features. This limits counterfactual diversity. In a multi-class setting it
may be desirable to consider counterfactuals from counterfactual-pairs that are
associated with several available counterfactual classes, to generate more diverse
counterfactuals, which use a variety of difference features.

If a good counterfactual cannot be generated, directly or indirectly, from
the nearest counterfactual-pair, then KS20 fails, thereby limiting the availabil-
ity of good counterfactuals. This problem may be especially acute in multi-class
domains, where it may be feasible to generate good counterfactuals from a variety
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of different counterfactual classes. However, if only a single counterfactual-pair
can be used then all but one of these counterfactual classes will be ignored: in
other words KS20 cannot produce a valid counterfactual unless it can be gen-
erated from the nearest counterfactual-pair, even though a valid counterfactual
may be available by reusing features from a different counterfactual-pair.

Even when KS20 successfully uses a nearest counterfactual-pair (q − q′) to
construct a good counterfactual, it may not be the best available. It may be pos-
sible to generate a counterfactual that is more similar to p by starting with a less
similar counterfactual-pair. In other words, there may exist another counterfac-
tual pair, q2−q′

2, such that it is possible to generate a good counterfactual from q′
2

that is even more similar to p than the one generated from the nearest pair, q−q′.
Even though this ‘better’ counterfactual can be generated, it is not available to
KS20, because of its reliance of the single, most similar counterfactual-pair.

Similarly, KS20 may suffer from a plausibility deficit too. Even if an alterna-
tive counterfactual from q′

2 offers no similarity advantage, it may be preferable
if it is based on a contrasting set of difference features that are more plausible
or more “actionable”. All good counterfactuals are not creating equally. Some
may involve feature differences that are not within the control of the user and
don’t serve as an actionable explanation. Even if an alternative counterfactual
could be produced, from a different counterfactual-pair, using more actionable
difference features, KS20 will be blind to it.

In summary then, while KS20 enjoys the plausibility benefits of instance-
based approaches, and has been shown to perform well in practice, it’s reliance
on a single counterfactual-pair can lead to sub-optimal performance in terms of
availability, similarity, plausibility, and diversity. This criticism motivates a new
approach that is tested here in a systematic set of experiments to parametrically
explore its performance, using several key evaluation metrics. As KS20 is cur-
rently the state-of-the-art in instance-based counterfactual methods, it is used
as the baseline in these tests. The present method simplifies the KS20 algorithm
in an elegant way. Stated simply, KS20 proposed a 1NN approach to counter-
factual generation, as a single nearest native-counterfactual pair is used as a
template for the counterfactual. The new method considers an intuitive kNN
extension, where k > 1 nearest-neighbour counterfactual pairs are reused, each
providing a different set of counterfactual candidates (see Algorithm 1) using
potentially contrasting difference features. As we shall see, this modification
at once unifies the two variations presented in KS20 (direct and indirect) for
generating difference-feature values, while at the same time providing a more
general-purpose counterfactual generation approach that is well suited to binary
and multi-class domains.

3 Good Counterfactuals in Multi-class Domains

Most counterfactual methods assume that an underlying decision model (M ; e.g.
a deep learner) is making predictions to be explained using a generated counter-
factual; that is, M is also used to determine predicted classes for the generated



24 B. Smyth and M. T. Keane

counterfactuals. Here, the present method aims to generate good counterfactuals
(≤2 feature differences) to explain the prediction of a target query, p. Given a
set of training cases/instances, I, the approach relies on the reuse of an existing
good (native) counterfactual-pair, represented as a so-called explanation case
(XC) as in KS20. An individual explanation case, xcd, contains a target query
instance, x, and a nearby counterfactual instance x′ – that is, x′ is a unlike neigh-
bour (UN ) of x′, meaning class(x) "= class(x′) – with no more than d feature
differences between x and x′ as in Eqs. 1–5.

UN(x, x′) ⇐⇒ class(x) "= class(x′) (1)

matches(x, x′) = {f ε x | x.f ≈ x′.f} (2)

diffs(x, x′) = {f ε x | x.f "≈ x′.f} (3)

xcd(x, x′) ⇐⇒ UN(x, x′) ∧ |diffs(x, x′)| ≤ d (4)

XCd =
{
xcd(x, x′) ∀ x, x′ε I

}
(5)

Each explanation case, xcd, is associated with a set of match features, whose
values are equivalent – within some tolerance – in x and x′, and a set of ≤ d
difference features, with differing values. Here we assume d = 2 and an xc1 acts
as a template for generating new counterfactuals, by identifying features that
can be changed (difference features) and those that cannot (match features).

3.1 Reusing the kNN Explanation Cases

To generate a good counterfactual for some target problem/query, p, the method
first identifies the k ≥ 1 nearest xcs with ≤ d differences, based on the similar-
ity between p and each xc.x; see line 2 and lines 5–8 in Algorithm 1. It then
constructs new counterfactuals, cfs, from the feature values of p and xc.x′ (the
good counterfactual for xc.x), for each xc; line 3 in Algorithm 1. Importantly,
this method is not limited by the specific values of the difference features in
xc.x′, because it also considers the feature values available from other nearby
instances with the same class as xc.x′ (line 11 in Algorithm 1). Thus, each gen-
erated counterfactual, cf, is made up of the match feature values (ms) from p
and the difference feature values (ds) from xc.x′ or its like-neighbours, as shown
in lines 15–19 in Algorithm 1.

3.2 Validating Candidate Counterfactuals

Each generated cf is associated with a predicted class, M(cf), based on the
underlying classification model, M , and this predicted class must be checked to
validate the counterfactual. In a multi-class (n > 2) setting there are at least two
ways to validate a candidate counterfactual. One can look for any class change,
so cf is considered valid if and only if its predicted class (M(cf)) differs from
p’s class; this is used by KS20.
1 For now, we drop the d without loss of generality.
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A stronger test is to confirm that cf has the same class as the counterfac-
tual instance used to produce it; i.e. M(cf) = class(xc.x′). This is stronger in a
multi-class setting, because it accepts only a single, specific class change, com-
pared with the n − 1 valid classes of the weaker method. The weaker method
also feels less appropriate because starting from class(xc.x′), but ending with
a different class, seems questionable. Thus, the stronger approach (lines 20–21
in Algorithm 1) constrains the cf to remain within the vicinity of the original
explanation class used to produce it, thereby ensuring greater plausibility.

Given : p, target problem;
I, training instances;
d, the number of features differences allowed for a good cf;
XCd, explanation cases for d;
k, number of XCs to be reused;
M , underlying (classification) model.

Output: cfs, valid, good counterfactuals for p.

1 def gen-kNN-CFs(p, I, d, XCd, k, M ):

2 xcs ← getXCs(p, XCd, k)
3 cfs ←

{
genCFs(p, xc, I,M) | xc ε xcs

}

4 return cfs

5 def getXCs(p, XC, k):

6 XC′ ←
{
xc ∈ XC | class(xc.x) = class(p)

}

7 xcs ← sort
(
XC′, key = sim(xc.x, p)

)

8 return xcs[: k]

9 def genCFs(p, xc, I, d, M ):

10 nun ←
{
xc.x′ }

11 nuns ← nun ∪
{
i ε I | class(i) = class(xc.x′)

}

12 cfs ←
{
genCF (p, n, d) | n ε nuns

}

13 cfs ←
{
cf | cf ε cfs ∧ validateCF (cf, xc,M)

}

14 return sort
(
cfs, key = sim(cf, p)

)

15 def genCF(p, nun, d):

16 ms ← {f | f ε matches(p, nun)}
17 ds ← {f | f ε diffs(p, nun)}
18 cf ← ms ∪ ds
19 return cf if (cf %= p) ∧ (|ds| ≤ d)

20 def validateCF(cf, xc, M ):

21 return M(cf) = class(xc.x′)

Algorithm 1: Generating multiple, good (for a given d) counterfactuals
by reusing the k nearest explanation cases to p.
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3.3 Discussion

This new method unifies an important class of instance-based approaches to
counterfactual generation. It subsumes and extends KS20 to generate a set of up
to k×m counterfactual candidates for a given p: there are up to m distinct can-
didates for each of the m unique combinations of difference feature values among
the k explanation cases used. The new method also promises better coverage,
plausibility and diversity. On coverage, generating more counterfactual candi-
dates improves the chances of producing valid counterfactuals and, therefore,
should increase the fraction of target problems that can be explained. On plau-
sibility, the approach has the potential to generate counterfactuals that are even
more similar to the target problem than those associated with a single nearest
explanation case. Finally, on diversity, since different explanation cases may rely
on different combinations of match/difference features, arising from the reuse of
different explanation cases, then the resulting counterfactuals should draw from
a more diverse set of difference-features.

4 Evaluation

We evaluate the quality of counterfactuals produced by the knn approach using
10 common ML datasets, with varying numbers of classes, features, and training
instances, in comparison to two (KS20) baselines, using three key evaluation met-
rics. We generate counterfactuals with, at most, two feature differences (d = 2),
using KS20’s definition of a good counterfactual. Some have argued against the
strictness of this 2-difference constraint, often pointing to image and time-series
data, but, for such data, the count would be based on higher-level latent features
(rather than pixels or time-points). Here, for comparison, the experiments also
report d = 3 results, to accept slightly more complex good counterfactuals.

4.1 Methodology

A form of 10-fold cross-validation is used to evaluate the newly generated coun-
terfactuals, by selecting 10% of the training instances at random to use as target
problems. Then, the XC (explanation case) case-base is built from a subset of
the XCs that are available from the remaining instances; we use at most 2x
as many XCs as there are test instances/target problems. Finally, any remain-
ing instances, which are not part of any selected XCs, are used to train the
underlying classifier; in this case we use a gradient boosted classifier [13]2, which
was found to be capable of generating sufficiently accurate classification perfor-
mance across the test datasets, although, in principle, any sufficiently accurate
ML model could be used.

We use Algorithm 1, to generate good counterfactuals, by varying k, the
number of nearest-neighbour explanation cases, and d, the maximum number
of difference features permitted in a good counterfactual. Two variants of the
KS20 technique are used as baselines: (i) the direct 1NN variant, which gener-
ates a counterfactual from a single XC only (a limited, special-case of our kNN

2 SciKitLearn, with deviance loss, a learning rate of 0.1, and 100 boosting stages.
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approach that does not look beyond the counterfactual instance, xc.x′, of the
nearest explanation case), and (ii) the indirect variant (1NN* ) which also con-
siders nearby like-neighbours of xc.x′ as a source of extra difference features.
This 1NN* variant is actually equivalent to our kNN approach with k = 1;
note, KS20 found 1NN* to be superior to 1NN.

Generated counterfactuals are evaluated using 3 different metrics, averaging
across the test cases and folds:

– Test Coverage: the fraction of test queries/target problems that can be asso-
ciated with a good counterfactual, to assess explanatory coverage

– Relative Distance: the ratio of the distance between the closest counterfactual
(cf ) produced and its target problem p, and the distance between the target
problem xc.x and the (original) counterfactual from the XC used to generate
cf ; thus, a relative distance <1 means the new cf is closer to p than xc.x
was to xc.x′. This is our proxy measure for reflecting plausibility3.

– Feature Diversity: the fraction of unique difference features that appear in
the counterfactuals produced. Note, 1NN has the same diversity as 1NN*,
since a single XC is reused and thus the same difference features appear.

4.2 Results

Figures 1 and 2 show the results for 1 ≤ k ≤ 100 with d = 2, 3. Performance per
dataset is shown as a separate line graph with statistical significance encoded
as follows. If the difference between two successive values of k is significant
(p < 0.05), then the corresponding points are connected by a solid line, otherwise
they are connected by a dashed line; for coverage we use a z-test and for relative
distance and diversity we use a t-test. Further, if a marker is filled, it means that
the difference between its value and the KS20 baseline is significant (p < 0.05).
Notice that the x-axis is non-linear, to provide greater detail for k ≤ 10.

In Fig. 1(a) we see how the ability to produce good counterfactuals increases
with k, up to a point, depending on the number of available XCs for each dataset.
In all datasets, for k > 1, coverage is significantly greater than the baseline, and
coverage increases to more than 80% of target problems for a large enough k.
On average, the current kNN approach is able to increase coverage by almost a
factor of 2, compared to the KS20 1NN* method, as indicated by the relative
improvement values for coverage in Fig. 1(d); the approximate values for k shown
indicate when this maximum coverage is achieved.

Likewise in Fig. 1(b) we see that these improvements in coverage also offer sta-
tistically significant reductions (improvements) in relative distance, for increas-
ing k, this time compared with 1NN because it offers better relative distance
values than 1NN* on average. Thus, by considering additional explanation cases,
even those that are further away from the target problem, we can generate good

3 As this is an instance-based technique the out-of-distribution metrics sometimes used
in evaluating perturbation-based techniques are not germane.
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Fig. 1. Counterfactual evaluation results for d ≤ 2 feature differences: (a) counterfac-
tual coverage, (b) mean relative distance, and (c) counterfactual diversity along with
the relative improvements (d) compared to the 1NN/1NN* baseline as appropriate.

counterfactuals that are closer to the target. Incidentally, the increase in rela-
tive distance for 1NN*, compared with 1NN, is due to the significant increase in
coverage offered by 1NN*, which means more valid counterfactuals participate
in the relative distance calculations. Once again, in Fig. 1(d) we show a relative
improvement (decrease) in these distances (compared with 1NN ): on average
there is a 3x decrease in relative distance. This is usually achieved for a larger
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Fig. 2. Counterfactual evaluation results for d ≤ 3 feature differences: (a) counterfac-
tual coverage, (b) mean relative distance, and (c) counterfactual diversity along with
the relative improvements (d) compared to the 1NN/1NN* baseline as appropriate.

value of k than the best coverage, which emphasises the benefits of continuing
the search even after an initial good counterfactual has been located.

Finally, the results for feature diversity are shown in Fig. 1(c), once more
with significant improvements for increasing values of k, although not every
dataset produces counterfactuals with high levels of diversity. For example, in
Fig. 1(c) the counterfactuals produced for Credit only include up to 25–30% of
the available features as difference features. On the other hand, the counter-
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factuals produced for Abalone include over 80% of features as their difference
features, while datasets such as Auto-MPG, Cleveland, and Glass achieve mod-
erate levels of diversity with 45% to 50% feature participation. Nevertheless,
these are considerable improvements (3x on average) compared to the diversity
of the baseline (1NN* ) approach, as per Fig. 1(d).

The best value for k varies by dataset, but in practice values of k in the range
10 ≤ k ≤ 20 perform well, in terms of coverage, relative distance, and diversity,
for all datasets. The d = 3 results in Fig. 2, though not discussed in detail, also
show similar results and trends, which suggests that the improvements found are
not limited to d = 2 good counterfactuals; the best results for kNN demonstrate
significant improvements over both KS20-baselines.

5 Conclusions

Counterfactuals play an important role in Explainable AI because they can be
more causally informative than factual forms of explanation. However, useful
native counterfactuals – those similar to a target problem but which differ in
only a few (e.g. 1–2) features – can be rare in practice, leading some to propose
techniques for generating synthetic counterfactuals [5,30,37]. However, such syn-
thetic counterfactuals often rely on features which may not occur naturally, lim-
iting their explanatory-utility. In response, others have advanced instance-based
techniques to generate counterfactuals from naturally occurring feature values.
The main contribution of this work is a unifying approach for instance-based
counterfactual generation. A second contribution stems from its systematic eval-
uation of instance-based techniques to demonstrate the optimal parameters for
current and previous methods, across a wide range of benchmark datasets.

There are limitations that invite future research. We focused on classifica-
tion tasks, but the approach should be equally applicable to prediction tasks.
The current evaluation focuses on a like-for-like comparison with instance-based
counterfactual generation methods, but does not include a direct comparison
with perturbation-based methods, mostly because the latter cannot guarantee
counterfactuals with naturally occurring feature values. Nevertheless, a direct
comparison between instance-based and other perturbation-based approaches is
warranted and planned. It will also be worthwhile to consider additional metrics
to evaluate counterfactuals such as those considered by [4,7].

Though we have provided an offline analysis of counterfactual quality, we have
not yet evaluated the counterfactuals produced in situ, as part of a real live-user
explanation setting. This will also be an important part of future research, as the
utility of any counterfactual generation technique will depend critically on the
nature of the counterfactuals produced and their informativeness as explanations
to “real” end-users. The current tests identify optimal versions of instance-based
methods that need to be considered in such future user studies.
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11. Förster, M., Hühn, P., Klier, M., Kluge, K.: Capturing users’ reality: a novel app-
roach to generate coherent counterfactual explanations. In: Proceedings of the 54th
Hawaii International Conference on System Sciences, p. 1274 (2021)

12. Förster, M., Klier, M., Kluge, K., Sigler, I.: Fostering human agency: a process
for the design of user-centric XAI systems. In: Proceedings of the International
Conference on Information Systems (ICIS) (2020)

13. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4),
367–378 (2002)

14. Gerstenberg, T., Goodman, N.D., Lagnado, D.A., Tenenbaum, J.B.: A counter-
factual simulation model of causal judgments for physical events. Psychol. Rev.
(2021)

15. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining
explanations. In: Proceedings of the IEEE 5th International Conference on Data
Science and Advanced Analytics, pp. 80–89. IEEE (2018)

16. Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-
making and a “right to explanation”. AI Mag. 38(3), 50–57 (2017)

17. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM Comput. Surv. 51(5),
1–42 (2018)

http://arxiv.org/abs/2004.11165
http://arxiv.org/abs/2205.10232
https://doi.org/10.1007/978-3-030-86957-1_3
https://doi.org/10.1007/978-3-030-86957-1_3
https://doi.org/10.1007/978-3-540-28631-8_13
https://doi.org/10.1007/978-3-540-28631-8_13


32 B. Smyth and M. T. Keane

18. Gunning, D.: Explainable Artificial Intelligence (XAI). DARPA, Web 2(2) (2017)
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