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Abstract. Although similarity measures play a crucial role in CBR ap-
plications, clear methodologies for defining them have not been devel-
oped yet. One approach to simplify the definition of similarity measures
involves the use of machine learning techniques. In this paper we inves-
tigate important aspects of these approaches in order to support a more
goal-directed choice and application of existing approaches and to initi-
ate the development of new techniques. This investigation is based on a
novel formal generalization of the classic CBR cycle, which allows a more
suitable analysis of the requirements, goals, assumptions and restrictions
that are relevant for learning similarity measures.

1 Introduction

The concept of similarity is certainly one of the most important and charac-
teristic aspects of Case-Based Reasoning (CBR). In spite of the importance of
similarity measures, clear methodologies for defining them efficiently and accu-
rately are still missing. Instead, similarity measures are often defined in an ad
hoc manner or one simply applies quite general distance metrics. When defining
more complex measures that take account of domain knowledge, this is often
done in an unstructured and not in a goal-directed fashion and often only expe-
rienced and skilled knowledge engineers are able to produce satisfactory results.
Therefore, different machine learning approaches have been developed in order
to facilitate the definition of similarity measures. However, the choice and ap-
plication of an accurate learning approach is also a difficult task since one often
is not aware of the actual requirements, goals, assumptions and restrictions of
the application domain, the employed CBR system and the available learning
techniques. Hence, learning is often performed in a trial-and-error fashion. Ba-
sically, when considering the application of learning techniques, some important
questions have to be answered first, for example:

– What is the desired semantics of the similarity measure?
– What kind of training data is suitable and how can it be acquired?
– Which learning techniques are suitable to achieve best results?
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Until now little or no work to clarify these questions and to provide a cate-
gorization of current learning approaches has been done. Only for learning fea-
ture weights in classification tasks such a categorization has been provided [19].
One problem when trying to answer the questions above is, that this requires
a deeper understanding of the relationships between CBR functionality, appli-
cation requirements, training data and available learning algorithms. In order
to be able to analyze these relationships, a unified terminology and a certain
degree of formality is mandatory. Unfortunately, the common CBR model [2]
seems not to be suited to represent a good foundation because it is described
rather informally and does not accurately model all important aspects.

Therefore, the goal of this paper is to provide a formal foundation and ter-
minology for analyzing and categorizing approaches to learning similarity mea-
sures. Therefore, first a generalization and formalization of the classic CBR cycle
is introduced in Section 2. An overview and first categorization of existing learn-
ing techniques is presented in Section 3. Finally, in Section 4 we examine some
important issues for future research towards improved approaches for learning
similarity measures.

2 A Formal Generalized Model for CBR

The classical CBR cycle introduced by Aamodt and Plaza [2], consisting of the
four basic steps retrieve, reuse, revise and retain, is certainly the most established
and accepted model for CBR. The success of this model may be explained by
its simplicity and clarity, in particular for CBR novices. However, for describing
and analyzing certain current research issues and popular application scenarios
we argue, this classical model has some crucial limitations.

2.1 Limitations of the Classical CBR Cycle

In the following, we want to discuss some of the deficiencies of the classical
CBR cycle in order to motivate the introduction of a more generalized model
capturing also some of the current developments in CBR research.

CBR-Scenarios: Problem-Solving vs. Utility-Oriented Matching. One
motivation of CBR was to imitate problem solving strategies of humans in order
to enable computers to solve problems more efficiently. Hence, the traditional
CBR cycle assumes a typical problem solving situation, i.e. the input—also called
query—is expected to describe a problem and the output is expected to describe
a corresponding solution suggestion. Typical application tasks that fit this as-
sumption are classic problems of artificial intelligence such as classification, di-
agnosis, configuration or planning.

This assumption was the decisive factor for the structure of today’s CBR sys-
tems, the underlying concepts, and the central paradigm of CBR: “Similar prob-
lems have similar solutions”. One quite important consequence of the problem
solving scenario is the traditionally used structure to described case knowledge.
Here, a case is supposed to consist of the following two distinct parts:
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Problem part: The problem part describes a particular problem situation of
the past, e.g. in a diagnosis situation a set of symptoms and other relevant
information about the entity under consideration.

Solution part: The solution part describes a corresponding solution success-
fully applied to solve the past problem, e.g. a correct diagnosis and a cor-
responding therapy. Although cases are usually supposed to contain only
‘good’ solutions, the solution part may contain any further information that
might be useful when trying to reuse the solution, e.g information about the
quality of the solution, justifications, explanations, etc.

In classical CBR applications, one is often interested only in the information
contained in the solution part, whereas the problem part is used as an index
to find useful solution information. However, in recent years CBR techniques
have been applied very successfully to other application tasks that actually do
not match this problem solving scenario. One important characteristic of such
scenarios is a different case structure, where a clear distinction between a problem
and a solution part is impossible. A typical example of such applications is
product recommendation[8]. Here, queries represent requirements and wishes
of customers with respect to desired products. Cases contain descriptions of
available products and the task of the CBR system is to identify particular
products that are most suitable to fulfill the given customer demands.

In principle this task could be solved in the traditional case-based manner.
Therefore, one would have to store customer queries of the past—representing
the problems—together with the description of successfully sold products—
representing the solutions. Here, it would be sufficient to store only a product-ID
to describe products uniquely. New customer queries then could be compared
with customer queries of the past using similarity measures in order to select
products that probably will also be bought by current customers.

However, most case-based product recommendation systems follow a different
approach. Here, a case typically consists of a detailed description of an available
product solely. In order to select suitable products, a customer query is compared
with these product descriptions by applying an accurate similarity measure.

The product description can be interpreted as the solution part of traditional
cases but the traditional problem part (here this would be a past customer
query) is missing completely. Hence, such systems compare problems, namely
current customer queries, directly with solutions, namely product descriptions.
This procedure does not really comply with the traditional idea of CBR. Instead,
it may be characterized as utility-oriented matching [3] because one tries to
estimate the utility of a solution for a given problem more or less directly. Similar
situations also occur in other applications scenarios, for example, in the area of
Knowledge Management. Most of those scenarios have in common that they may
be seen more as intelligent information retrieval than actual problem solving.

Advanced CBR Techniques. Another limitation of the traditional CBR cycle
is that it does not consider some crucial aspects and issues of current CBR
systems sufficiently which have come into the focus of research just recently.
Some quite important of those issues are for example:
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Dialog Strategies: The traditional CBR cycle assumes a formalized query
given as input prior to the actual reasoning process without considering how
this query can be obtained. However, the efficient acquisition of an accurate
query is a crucial issue in diagnosis tasks and has also come into focus of
research in the area of product recommendation systems recently [14].

Explanation: A popular topic of current CBR research is explanation [1]. How-
ever, the traditional CBR cycle does not explicitly consider the generation of
explanations about presented solutions or the underlying reasoning process.

Feedback: An important characteristic of the traditional CBR cycle is the pos-
sibility to learn new cases during the retain phase. Although Aamodt and
Plaza have mentioned the possibility to learn not only cases but also general
knowledge (e.g. refining indexes), the traditional CBR cycle does not explic-
itly introduce a feedback loop which is required to realize advanced learning
approaches.

2.2 A Formal Generalization of the Classical CBR Cycle

In this section we introduce a more general and more formal model for CBR. This
model aims to avoid some of the deficiencies of the classical CBR cycle. Although
it does not capture all aspects of current CBR research, at least it represents
a foundation for analyzing certain CBR functionality in more detail. Our main
goal is to introduce a formalism that can be used to examine important aspects
to be considered when developing approaches for learning similarity measures.
In the future the model may be extended to describe other, still disregarded
CBR aspects. An illustration of the model is shown in Fig. 1.

The starting point is a given informal situation s in the application environ-
ment which triggers some more or less abstract information need. The task of a
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CBR system is to provide the necessary information by generating a correspond-
ing output o. For example, in the traditional problem solving scenario, s is an
unsolved problem for which a solution is required and o may be the description
of suitable solution or a solution method, respectively. In a first step the situ-
ation s has to be described formally in order to obtain a query q that can be
processed by the CBR system:

Definition 1 (Situation-Characterization, Query). A situation character-
ization sc : S → Q where S is the situations space and Q is the query space,
characterizes the informal situation s formally through query q = sc(s). The set
of all situation characterizations is denoted by SC.

In practice, sc implements certain transactions between the application envi-
ronment and the CBR system. In the simplest case it might import query data
from some data source but usually the query will be acquired from the user, for
example, by providing a query form or by performing an elaborate dialog [14].

In the next step, q has to be compared with cases in the case base in order to
select cases that are expected to contain information that is useful for satisfying
the information need of s.

Definition 2 (Case, Case Characterization, Case Lesson, Case Space).
A case c is a tuple (d, l) ∈ D × (L ∪ ∅) where d is called a case characterization
and l is called a case lesson. D and L are the corresponding spaces of case
characterizations and case lessons. C = D × L is called the case space and the
set of available cases CB = {c1, . . . , cm | ci ∈ C} is called the case base.

In our model we explicitly allow empty lesson parts, i.e. a case may consist
of a characterization only. It is important to note, that case characterizations
have not necessarily to represent problem descriptions but any information that
is useful to estimate the utility of cases. This means, that cases may also be
characterized by using solution information.

Definition 3 (Similarity Measure). A similarity measure is a function sim :
Q×D → [0, 1]. To simplify the notation we write sim(q, c) instead of sim(q, d)
for representing the similarity between a query q and a case c = (d, l). The set
of all similarity measures is denoted by SIM.

Definition 4 (Retrieval Function). A retrieval function r : Q × SIM ×
P(CB) → P(CB) returns a subset of the case-base CB for a given query q
according to a given similarity measure sim ∈ SIM. The returned cases cr ∈
r(q, sim, CB) are assumed to be ordered w.r.t. to their corresponding similarity
values sim(q, cr).

We do not make any assumptions about the realization of r, e.g. it might sim-
ply return the most similar case, i.e. r(q, sim, CB) = argmaxci∈CB sim(q, ci).
After having retrieved a set of cases, the information contained in the retrieved
cases may be adapted in order to construct a new, more accurate case:

Definition 5 (Adaptation Function). An adaptation function a : Q×P(CB)
→ Ck generates a set of new cases {ca1 , . . . , cak

} given a set of input cases
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{c1, . . . , cn} with ci ∈ CB, n, k ≥ 1 and a query q. The set of all adaptation
functions is denoted by A.

Typically it holds k ≤ n. If a single adapted case cai is constructed from
several input cases, this is called compositional adaptation. A simple example are
voting policies like those applied in k-nearest-neighbor classification. In systems
without adaptation, a is considered to be the identity function with respect to the
input cases. The result of the adaptation process is used as source information
for generating the final output of the CBR system:

Definition 6 (Output Function, Output Space). Given a query q and set
of cases {c1, . . . , cn}, the output function of : Q×P(C) → O generates an output
o = of (q, c1, . . . , cn) where O is the space of outputs. OF denotes the set of all
output functions.

In principle one might put a lot of ‘intelligence’ into the output function, but
in practice the output function typically is used

– to select appropriate cases to be returned to the application environment,
e.g. to ensure the right degree of diversity,

– to extract the required information from the given cases, e.g. class labels,
– to generate additional explanations in order to explain the result of the CBR

system to the users.

The resulting output then is returned to the application environment in order
to satisfy the information need of the initial situation s:

Definition 7 (Output Processing Function). The output processing func-
tion op : S × O → S generates a new situation s′ = op(s, o) by applying the
output o to situation s within the application environment.

In practice, the output processing function typically is an informal process
which is executed within the application environment with little or no support
from the CBR system. For example, a suggested therapy in a medical diagnosis
situation will be applied by a doctor where the new situation s′ will be a mod-
ified state of health of the patient. If s′ is still associated with an unsatisfied
information need, it might be used as a new initial situation for executing the
cycle again.

For enabling a CBR system to improve its performance by applying learning
strategies it must receive feedback from the application domain about the actual
usefulness of its output:

Definition 8 (Feedback Function). The feedback function f : S × O → F
evaluates the usefulness of output o for situation s and returns some feedback
fb = f(s, o), where F is called the feedback space.

Here, we do not assume a particular form of feedback but in Section 3.2
we will discuss this issue with respect to learning similarity measures in more
detail. Feedback may be used by the CBR system to improve its functionality
by modifying one or several of its knowledge containers [13]:
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Definition 9 (Learning Functions). The following functions allow to modify
the case base CB, the similarity measure sim, and the adaptation function a
w.r.t. given feedback:

lCB : Q×O ×F × P(C) → P(C)

lsim : F × SIM → SIM
la : F ×A → A

The function lCB realizes the traditional idea of learning in CBR systems,
namely a modification of the case base, e.g. by storing new or deleting obsolete
cases. While lsim and la allow to learn general knowledge already considered in
the classical CBR cycle, one might also introduce similar learning functions, e.g.
lsc for improving dialog strategies [14] or lof for improving the generation of
explanations.

2.3 Advantages of the Generalized CBR Model

In principle, our general model can be divided into the same phases as the
classical CBR cycle: The functions sc and r implement the retrieval phase, the
functions a and of implement the reuse phase, the functions op and f represent
the revise phase and the learning functions lx implement the retain phase.

However, by abstracting from the traditional problem solving scenario, the
model is more suitable to describe popular ‘modern’ application scenarios such
as product recommendation. For example, we do not assume that a case con-
sists of a problem and a solution part. Instead, cases may only consist of case
characterizations that may describe arbitrary information. This also means that
queries and case characterizations do not necessarily have the same semantics,
for example, they do not both represent problem descriptions. We will discuss
this issue again in Section 4.

By introducing additional processes in the form of the situation character-
ization and the output function, our model can also be used to describe new
research directions such as dialog strategies and explanations more accurately
than possible with the classical CBR cycle. Moreover, by introducing the feed-
back function and a set of learning functions, it enables a better description of
advanced learning approaches beyond storing of new cases.

However, the model in its current version is not intended to capture all as-
pects of any CBR application. For example, more complex dialog strategies that
involve case retrieval cannot be described exclusively with sc but require a re-
peated execution of the entire cycle. Nevertheless, the model may represent
a good foundation to be extended for explaining other functionality of CBR
systems.

2.4 The Goal of a CBR System

Before we use the introduced model to analyze the task of learning similarity
measures, first we will discuss some important general consequences of it.
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A CBR system’s goal is to generate an output o that is maximally useful for
satisfying the information need of a given situation s, i.e. it should help to reach
a new, improved situation s′ by exploiting the information contained in o. In a
formal view, an optimal CBR system should realize the following goal function:

Definition 10 (Goal Function, Utility Function). The goal function g :
S → O generates an output o that is maximally useful for a given situation s,
i.e. g(s) := arg maxo∈O u(s, o), where u : S × O → R is the domain specific
utility function.

In practice u is usually only implicitly and informally defined within the
application environment. However, during the lifetime of a CBR system certain
information about u may be provided by the feedback function f . Depending on
the application scenario, u may be influenced in many ways, e.g., by

– the correctness of suggested solutions,
– the outputs’ degree of applicability or reusability,
– the satisfaction of the user (e.g. a customer) or
– the output’s information gain for the user.

The basic idea of a CBR system is to acquire and encode knowledge about
u by using different knowledge containers [13], namely the vocabulary, the case
base, the similarity measure and the adaptation knowledge1. The vocabulary de-
fines the important aspects required to describe situations, cases, outputs and
feedback, i.e. it determines Q, C, O and F . Traditionally, the cases represent
known points of u corresponding to a maximal or at least high utility and adap-
tation knowledge defines knowledge about additional points or certain subspaces
of u. Finally, the similarity measure should encode knowledge about the rela-
tionships between different points of the input space of u. However, due to the
difficulty of acquiring this knowledge, the employed similarity measures often
only represent quite simple heuristics about the typically expected shape and
smoothness of u.

In order to facilitate the acquisition of similarity knowledge and the definition
of more accurate similarity measures, several learning approaches have been
developed, e.g. see [19,16]. In the following we investigate important general
issues of such learning approaches in more detail on the basis of the previously
introduced formal CBR model.

3 Learning Similarity Measures: A Formal Analysis

CBR systems often generate output that is composed of a set of independent
output alternatives. This functionality is typically desired when presenting the
output to human users, e.g. alternative products to customers. Here, we assume
that only single retrieved cases cr ∈ r(q, sim, CB) are adapted and used to
generate a single output alternative or. This means, first we do not consider
1 In our formal model represented through the adaptation function a.
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compositional adaptation. The entire output then is an ordered collection of
alternative outputs o = (o1, o2, . . . , ok), where the order is based on the computed
similarities, i.e. it holds ∀ 1 ≤ i < j ≤ k sim(q, ci) ≥ sim(q, cj). We assume that
the utility of o only depends on the sum of the or’s utilities and their ranking2.
According to our formal CBR model the utility of an output alternative or is
defined as

u(s, or) = u(s, of(q, a(q, cr))) = u(s, of(sc(s), a(sc(s), cr)))

Moreover, we assume that u(s, or) can be expressed by numbers of the interval
[0, 1], i.e. it holds u : S × O → [0, 1] where a value of 1 represents the maximal
possible and 0 represents the minimal possible utility. From now on, we assume
that a and of are static, i.e. that the adaptation and output function are not
modified during the lifetime of the CBR system.

3.1 Semantic of Similarity Measures

In general, the basic task of a similarity measure is to estimate the a-posteriori
utility of a given case cr, i.e. in the best case sim(q, cr) should approximate the
a-priori unknown utility u(s, of(q, a(q, cr))) as closely as possible. This would
obviously require that sim is completely informed about the remaining parts
of the CBR system, namely the functions a and of as well as about the exter-
nal utility function u. In practice this ideal property of sim usually cannot be
achieved, and hence sim represents a more or less well informed heuristic only.

Retrieval Requirements. Before defining a similarity measure for a particu-
lar CBR application one should be aware of the application specific requirements
on the expected output. Basically, a similarity measure should help to realize the
goal function g, i.e. to maximize the utility of the output u(s, o). According to
our assumptions on o we can deduce different criteria that an optimal similarity
measure simo should fulfill, namely:

Determining the Most Useful Case: In certain application scenarios, in
particular when processing the output within the application environment
automatically, only a single output alternative is of interest, i.e. o = {o1}.
Then it should hold:

argmax
cr∈CB

simo(q, cr) = arg max
cr∈CB

u(s, or)

Separating Useful and Useless Cases: Often the utility of output alterna-
tives is of a binary nature, i.e. an or may be useful or completely useless. In
some application scenarios binary output utility can be achieved by introduc-
ing artificial utility thresholds, e.g. in information retrieval, the retrieved doc-
uments are simply treated as ‘relevant’ or ‘irrelevant’. In such situations we

2 This assumption does not hold in some application scenarios, e.g. if a certain diversity
of the output alternatives is desired.
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may demand the following from simo: Let CB+ = {ci ∈ CB | u(s, oi) ≥ θ}
be the set of useful and CB− = {ci ∈ CB | u(s, oi) < θ} be the set of useless
cases, then

∀ci ∈ CB+, cj ∈ CB− : simo(q, ci) > simo(q, cj)

Ranking the Most Useful Cases: Let CBu = {ci ∈ CB | u(s, oi) ≥ σ} be
the set of most useful cases. One may demand that simo ranks these cases
correctly:

∀ci, cj ∈ CBu, ∀c ∈ CB \ CBu :
simo(q, ci) > simo(q, cj) ⇔ u(s, oi) > u(s, oj)
∧ simo(q, ci) > simo(q, c)

Approximating the Utility of the Most Useful Cases: Although in most
present CBR applications a good approximation of the cases’ absolute utility
is not the main goal when defining sim, such a requirement would help the
user to judge the reliability of each presented or:

∀cr ∈ CBu : simo(q, cr) 
 u(s, or)

The first three criteria only demand that the similarity measure partially
reproduces the preference relation induced by the utility function, i.e. one is
only interested in an estimate of the cases’ relative utility with respect to other
cases. The last requirement is stronger since it requires an approximation of the
cases’ absolute utility.

Probabilistic Similarity Measures. Up to now we have implicitly assumed,
that it is possible, at least in principle, to compute the utility u(s, or) given only
q and cr. However, in practice this often does not apply because one is confronted
with incomplete and/or noisy data or non-deterministic domains and hence with
uncertainty. For example, queries as well as case characterizations often do not
contain all information required to describe the underlying situations and cases
sufficiently. In such situations a probabilistic interpretation of similarity values
seems to be more accurate, i.e. the value sim(q, cr) then may be interpreted
as the probability that the resulting output or is maximally useful given q and
cr, i.e. sim(q, cr) := P (u(s, or) = 1 | q, cr). Nevertheless, this interpretation is
consistent with the previously discussed demands on simo as well.

3.2 Training Data

When thinking about developing or applying an approach for learning similar-
ity measures, one of the most crucial issues is the quality and the amount of
available training data. When being confronted with little and noisy training
data, many learning techniques tend to overfit the training data resulting in
poor generalization performance.

In principle, the training data must contain some implicit or explicit knowl-
edge about the a-posteriori utility of certain cases. This means for a case cr and
a given query q certain information about u(s, or) is required. According to our
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formal CBR model we assume that such information can be obtained via the
feedback function f either offline during a particular training phase or online
during the application of the CBR system. In the following we discuss different
types of such utility feedback.

Utility Feedback. Basically, information about the a-posteriori utility u(s, or)
of a case cr given a query q may be provided in different ways:

Absolute Case Utility Feedback (ACUF): One possibility is to provide in-
formation about the absolute value of u(s, or). Here, the feedback space F is
defined as (Q × C × [0, 1])n. This means feedback fb consists of a collection
of training examples fb = (te11, . . . , telk) where a single training example
teij = (qi, cj , u(s, oj)) represents utility feedback for a particular case cj

w.r.t. a given query qi.
Absolute Utility Feedback (AUF): When allowing compositional adapta-

tion, i.e. o = of(q, a(q, c1, . . . , cn)), a special kind of absolute utility feed-
back can be acquired. In this situation, the utility of o cannot simply be
traced back onto the utility of individual cases. Then F is defined as Q ×
O × [0, 1] where corresponding training examples te = (q, o, u(s, o)) repre-
sent information about the performance of the entire CBR system for a given
query q.

Relative Case Utility Feedback (RCUF): Another possibility is to provide
information about u(s, or) only in a relative manner with respect to other
output alternatives. By defining F as (Q×C×C×UR)n where UR represents
a set of relation symbols (e.g. UR = {<,≤, =,≥, >, �=}) a training example
can be represented as a tuple te = (q, ci, cj , R) where u(s, oi)Ru(s, oj) for
some R ∈ UR.

Absolute feedback (ACUF/AUF) is mandatory for learning similarity mea-
sures that are intended to approximate absolute utility values. When only fo-
cusing on a reproduction of the induced preference relation, RCUF feedback
is sufficient. However, depending on the desired semantic one should acquire
feedback for different cases.

Acquisition of Training Data. Now we describe how the introduced kinds of
feedback can be acquired in practice, i.e. how to implement the feedback function
f . Basically, two different approaches are possible.

The first approach is self-optimization. In traditional problem solving sce-
narios, i.e. if case characterizations di describe past (problem) situations si and
case lessons li represent corresponding outputs (typically solutions) with high
utility, a CBR system is able to extract training data from its case base CB. On
the one hand, cases themselves can be interpreted as ACUF where each case ci

represents a training example te = (di, ci, u(si, oi)). Information about u(si, oi)
may be contained in case lessons or u(si, oi) = 1 is assumed.

On the other hand, additional feedback can be obtained by performing a
leave-one-out-crossvalidation, i.e. single cases ci are temporarily removed from
CB and di is used as query qi. The resulting output o (or or) then has to be
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compared with an output li known to have high utility (mostly u(si, li) = 1 is
assumed). Depending on the implementation of a the corresponding feedback is
typically of the kind ACUF or AUF.

Self optimization is applied by most existing approaches for learning sim-
ilarity measures, typically for feature weight learning in classification scenar-
ios (see Section 3.3). Here, training examples are simply defined as teACUF =
(di, cr, u(si, or)) or teAUF = (di, o, u(si, o)), respectively, where u(si, o(r)) =
1 ⇔ o(r) = li (i.e. if the classification is correct) and u(si, o(r)) = 0 other-
wise. In [18] we have proposed a generalization of this approach where we set
u(si, o(r)) = simS(o(r), li), i.e. we employ a domain specific solution similarity
measure simS : O × L → [0, 1] in order to estimate the utility of the generated
output in non-classification domains or when misclassification costs [20] have to
be considered.

An approach to utilizing self optimization in the utility-oriented matching
scenario by generating RCUF is described in [17,16]. Here, the influence of the
adaptation function a on the target similarity measure simT is estimated by
evaluating the utility of adapted cases with a given utility measure represented
by an additional similarity measure simU that can be defined more easily than
simT .

The second approach for acquiring training data is to ask some similarity
teacher. In the utility-oriented matching scenario an extraction of training data
from the case base is usually impossible because here the cases do not contain in-
formation about u. For example, pure descriptions of technical products contain
no explicit knowledge about their suitability for particular customer demands3.
Therefore, utility feedback has to be provided by an external similarity teacher
who possesses certain knowledge about u. In principle, the previously mentioned
measures simS and simU as well as external simulation procedures might be in-
terpreted as artificial similarity teachers. However, often only human domain
experts or the system’s users are able to provide the required feedback, but only
a few learning approaches consider human similarity teachers [6,9,21].

3.3 Learning Techniques

In this section we give an overview on techniques that have been applied for
learning similarity measures in CBR. The following aspects may be used to
categorize the techniques:

– the desired semantic of the target similarity measure (cf. Section 3.1)
– the type of the training data and the corresponding approach to acquisition

(cf. Section 3.2)
– the representation of the similarity measure to be learned
– the applied learning algorithm
– whether background knowledge is used to improve the learning process

3 In current CBR applications this knowledge is often inferred by applying simple
distance metrics.
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Basically, the representations used to model similarity measures determine
the hypothesis space SIM. Here, we can distinguish the following commonly
applied approaches:

Feature Weights: Because in many CBR systems only simple weighted dis-
tance metrics are employed, modifying the weights assigned to features in
feature-value based case representations is often the only possibility to influ-
ence the similarity measure [19]. Here, one also distinguishes between global
and local (e.g. case specific) weighting methods.

Local Similarity Measures: Most commercial CBR tools allow us to define
local similarity measures for each feature in order to be able to incorporate
more domain specific knowledge. Suitable learning techniques must be able
to learn the particular parameters used to describe such local similarity
measures [16,17].

Probabilistic Similarity Models (PSM): Another possibility to represent
similarity measures are probabilistic models. Here, the similarity function
is encoded using probability distributions which have to be determined by
using appropriate techniques (e.g. frequency counts, kernel estimation tech-
niques, neural networks, etc.) [7,4].

For characterizing learning techniques, Wettschereck and Aha [19] have in-
troduced the following categorization:

Incremental Hill-climbers: Here, single training examples (typically based
on ACUF or AUF) trigger the modification of the similarity measure af-
ter each pass through the CBR cycle. Existing approaches [5] increase or
decrease feature weights in classification scenarios, where success driven
(te = (q, cr, 1)) and failure driven (te = (q, cr, 0)) policies can be distin-
guished.

Continuous Optimizers: The idea of continuous optimizers is to collect a
sufficiently large training data set first and to apply optimization approaches
afterwards in order to generate a similarity measure that shows optimal
results on this training data.
Typically, this is realized by minimizing a particular error function which
compares generated outputs with corresponding utility feedback contained in
the training data. For learning feature weights, gradient descent approaches
have shown good results [15,19,20]. While most existing approaches apply
ACUF or AUF, we have proposed an approach that utilizes RCUF in order
to enable learning in the utility-oriented matching scenario [16]. For more
complex local similarity measures we have developed a corresponding evolu-
tionary algorithm [17,16].
PSM are usually also learnt by applying continuous optimizers which either
optimize probabilistic error functions [12] or estimate underlying probability
distributions by applying statistical and Bayesian methods [7].

Ignorant Methods: These methods do not exploit explicit feedback, but only
perform a statistical analysis of the ACUF contained in CB, for example, to
determine accurate feature weights based on class distributions [4].
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Concerning the incorporation of background knowledge into the learning pro-
cess, few approaches have been developed so far. Approaches that use background
knowledge in order to improve the performance of an evolutionary algorithm have
been presented in [11,10].

4 Conclusions and Future Work

In the first part of this paper we have presented a novel formal generalization
of the classical CBR cycle. The advantages of this model are its generality,
allowing us to describe recent developments in CBR research more accurately,
and its formality, allowing more detailed analyses of important research issues.
In the second part we have used the novel model to analyze crucial questions
concerning the development of approaches for learning similarity measures. On
the one hand, this analysis allows us to categorize existing learning techniques
in order to simplify the choice of accurate techniques in particular applications.
On the other hand, it represent a good foundation for future research.

While traditional approaches towards learning similarity measures in CBR
mainly focus on learning of feature weights by employing ACUF/AUF, recently
developed approaches also allow to employ RCUF which can be acquired in
non-classification scenarios more easily than ACUF/AUF. Moreover, these ap-
proaches also enable learning of complex local similarity measures.

For future research we intend to develop new approaches towards the appli-
cation of PSM. In our view, PSM have some advantages compared with explicit
models (e.g. feature weights, local similarity measures). On the one hand, they
may allow to weaken the hard attribute independence assumptions underlying
common representations. Moreover, they would allow the definition of similarity
measures in utility-oriented matching scenarios where it might hold: Q �= D.
For example, this would allow to compute ‘similarities’ between abstract queries
(e.g. “I want a PC suited for video processing”) and precise product descriptions
(e.g. HD-Size = 200GB). However, existing learning approaches for PSM are only
applicable in classification scenarios. To employ PSM in other scenarios we plan
to develop techniques to learn PSM from RCUF. Moreover, we want to inves-
tigate how to incorporate background knowledge efficiently. Last but not least
we want to develop new techniques that aim to learn similarity measures that
approximate the absolute utility values as closely as possible. This would allow
to build more dependable CBR systems because the user would get information
about the reliability of the presented output.
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