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Abstract. Peer-to-peer systems constitute a promising solution for de-
ploying novel applications, such as distributed image retrieval. Efficient
search over widely distributed multimedia content requires techniques for
distributed retrieval based on generic metric distance functions. In this
paper, we propose a framework for distributed metric-based similarity
search, where each participating peer stores its own data autonomously.
In order to establish a scalable and efficient search mechanism, we adopt a
super-peer architecture, where super-peers are responsible for query rout-
ing. We propose the construction of metric routing indices suitable for
distributed similarity search in metric spaces. Furthermore, we present a
query routing algorithm that exploits pruning techniques to selectively
direct queries to super-peers and peers with relevant data. We study
the performance of the proposed framework using both synthetic and
real data demonstrate its scalability over a wide range of experimental
setups.

1 Introduction

Similarity search in metric spaces has received significant attention in central-
ized settings [7, 19], but also recently in decentralized environments [14, 17, 26].
A prominent application is distributed search for multimedia content, such as
images, video or plain text. For example, the SAPIR project3 aims at creating
an infrastructure for similarity search, by adopting a fully distributed architec-
ture based on peer-to-peer (P2P) technology [2]. In such a distributed search
engine, the objective is to find all objects that are similar to a given query ob-
ject, such as a digital image or a text document. Objects are represented in a
high-dimensional feature space and a metric distance function defines the simi-
larity of two objects. In order to provide effective search over multimedia content,
techniques for retrieval based on generic metric distance functions are required.

Existing approaches for P2P metric-based similarity search mainly rely on
a structured P2P overlay, which is used to intentionally store objects to peers

3 http://www.sapir.eu/



by means of a distributed hash table (DHT) implementation [17, 26]. The aim
is to achieve high parallelism and share the high processing cost over a set
of cooperative computers. In contrast, in this paper, we focus on the scenario
of autonomous peers that store multimedia content and collaborate in order to
process similarity queries over distributed data. The main differentiating factor is
that multimedia content remains stored on the peer that owns it, thus respecting
privacy requirements, instead of being stored at arbitrary peers as dictated by
the DHT of the underlying structured P2P system.

Our work is motivated by the design of a P2P architecture for image retrieval,
as proposed in [33]. In more details, content providers are simple peers that keep
multimedia content, which is usually user-generated at the peer. Each peer joins
the collaborative search engine, by connecting to one of the information brokers
that act as super-peers, using the basic bootstrapping protocol. Super-peers are
responsible for establishing the search mechanism. Any peer issues similarity
queries for multimedia content (images) and the execution of queries (query
routing) is performed at super-peer level, thus directing queries to peers with
relevant content.

In this paper, we propose a framework for distributed metric-based similarity
search that relies on a super-peer architecture, assuming that cooperative peers
store and index their data in an autonomous manner. Each peer must be able
to process efficiently similarity queries based on its locally stored data. Thus,
each peer indexes its local data by using the M-Tree [9]. The M-Tree consists of
a hierarchy of hyper-spheres and is one of the most commonly used centralized
indexing techniques for searching in metric spaces. When a peer connects to a
super-peer, it publishes the set of hyper-spheres stored at the root of its M-Tree
to its super-peer, as a summarization of the stored data. The super-peers store
the collected hyper-spheres using an M-Tree index, in order to direct queries
only to relevant peers efficiently, thus establishing a peer selection mechanism.
Capitalizing on their local metric index structures, super-peers exchange sum-
mary information to construct metric-based routing indices, which improve the
performance of query routing significantly. Then, given a range query, this super-

peer selection mechanism enables efficient query routing only to that subset of
super-peers that are responsible for peers with relevant query results.

The contributions of this paper are the following:

1. We propose a framework for distributed metric-based similarity search, under
the assumption that the basic indexing method available on peers and super-
peers is the M-Tree index.

2. Our framework relies on the construction of metric-based routing indices for
similarity queries in metric spaces, over a super-peer architecture.

3. We propose a routing mechanism that selectively routes similarity queries
only to those peers and super-peers that store relevant data.

4. We assess the feasibility of out framework, by means of an experimental
evaluation, employing both synthetic and real datasets.

In [32], we shortly described our framework for metric-based similarity search
in P2P systems. In this paper, we extend this work substantially by presenting



the proposed metric-based routing indices in detail. We also present our novel
algorithms for query routing that capitalize on pruning properties to achieve
efficiency. Moreover, we discuss maintenance issues, such as updates and peer
churn. Finally, we provide a more extensive experimental evaluation.

The rest of this paper is structured as follows: Section 2 provides an overview
of related work. In Section 3, the preliminaries are presented, while Section 4 de-
scribes the construction of the routing indices based on the exchanged summary
information. Then, in Section 5, we present our query routing mechanism. Sec-
tion 6 deals with maintenance issues. The experimental evaluation is presented
in Section 7 and we conclude the paper in Section 8.

2 Related Work

Similarity search in metric spaces has wide applicability in centralized domains.
For an overview of relevant algorithms and techniques, see [7, 19].

2.1 P2P Metric-based Similarity Search

Recently, metric similarity search has also attained increased interest in P2P
systems [14, 17, 26, 33]. There are two main approaches for facilitating metric
similarity search in distributed environments.

The first approach includes systems like MCAN [17] and M-Chord [26], rely-
ing on an underlying structured P2P network, namely CAN [28] and Chord [31]
respectively. Both techniques focus on parallelism for query execution, motivated
by the fact that in real-life applications, a complex distance function is typically
expensive to compute. MCAN uses a pivot-based technique that maps data ob-
jects to an N -dimensional vector space, while M-Chord uses the principle of
iDistance [20] to map objects into one-dimensional values. Data preprocessing –
clustering and mapping – is done in a centralized fashion, and only then data is
assigned to peers. Relevant to this work, Batko et al. [4] present a comparative
experimental evaluation of distributed similarity search techniques. VPT* and
GHT* [3] are two distributed metric index structures that are included in the
comparison together with MCAN and M-Chord. Later, bulk loading for struc-
tured P2P systems has been proposed [13], focusing on peer splits. Recently,
the Metric Index (M-Index) [25] has been proposed as a general approach for
metric-based data management.

In the second category, peers store data in an autonomous manner and an
architecture that supports efficient similarity search using a super-peer archi-
tecture was presented in [33]. In SIMPEER [14], P2P metric-based indexing
is supported using the iDistance [20] technique. An extension of SIMPEER for
recall-based range queries is presented in [15]. In contrast, this paper provides an
alternative technique for similarity search in metric spaces, based on a popular
metric index (M-Tree) for data access both on peers and super-peers. More im-
portantly, relying on M-trees as routing indices, we present pruning techniques
that enhance the performance of query routing.



2.2 Similarity Search in P2P Systems

Apart from the aforementioned research, there exist several approaches for P2P
similarity search that do not focus on metric spaces.

In unstructured P2P systems, a general solution for P2P similarity search
for vector data is proposed in [1], named SWAM. Peers autonomously store
their data, and efficient search is based on an overlay topology that brings
nodes with similar content together. However, SWAM is not designed for met-
ric spaces. Content-based similarity search using a hierarchical P2P network is
studied in [16]. A P2P framework for multi-dimensional indexing based on a tree-
structured overlay is proposed in [22]. LSH forest [5] stores documents in the over-
lay network using a locality-sensitive hash function to index high-dimensional
data for answering approximate similarity queries. Another approach that fo-
cuses of semantic content search over distributed document collections is de-
scribed in [29], where a hierarchical summary index is built over a super-peer
architecture. In [12], Datta et al. study range queries over trie-structured over-
lays.

Most approaches that address range query processing in P2P systems rely on
space partitioning and assignment of specific space regions to certain peers. A
P2P framework for multi-dimensional indexing based on a tree structured overlay
is proposed in [22]. A load-balancing system for range queries that extends Skip
Graphs is presented in [30]. The use of Skip Graphs for range query processing
has also been proposed in [18]. Several P2P range index structures have been
proposed, such as Mercury [6], P-tree [10], BATON [21]. A variant of structured
P2P for range queries that aims at exploiting peer heterogeneity is presented
in [27]. In [24], the authors propose NR-tree, a P2P adaptation of the R*-tree,
for querying spatial data. Routing indices stored at each peer are used for P2P
similarity search in [23]. Their approach relies on a freezing technique, i.e. some
queries are paused and can be answered by streaming results of other queries.
Recently, in [11], P-Ring is proposed as an indexing structure that enables range
query processing.

3 Preliminaries

In this section, we provide the necessary preliminaries for our framework. We
start with the system architecture, then we present the data model, the query
types and a short overview of the M-Tree index. An overview of the symbols
used can be found in Table 1.

3.1 System Overview

We assume an unstructured P2P network that consists of Np peers. Some peers
have special roles, due to their enhanced features, such as availability, stability,
storage capability and bandwidth capacity. These peers are called super-peers
SPi (i = 1..Nsp), and they constitute only a small fraction of the peers in the



Symbols Description

d Data dimensionality

n Dataset cardinality

Np Number of peers

Nsp Number of super-peers

DEGp Degree of peer

DEGsp Degree of super-peer

dist() Distance function

R(q, r) Range query

N Node of M-Tree

p Representative object of N

r(p) Covering radius of p

T Reference to child node of N

Table 1. Overview of symbols.

network, i.e. Nsp << Np. Peers that join the network directly connect to one of
the super-peers. Each super-peer maintains links to peers, based on the value of
its degree parameter DEGp, which is the number of peers that it is connected
to. In addition, a super-peer is connected to a limited set of at most DEGsp

other super-peers (DEGsp < DEGp).

3.2 Metric Spaces

In our system, peers that join the network autonomously store their own data.
Each peer maintains its own data objects, while the features extracted from the
objects are represented as d-dimensional points. Thus, each peer Pi holds ni d-
dimensional points, denoted as a set Si (1 ≤ i ≤ Np). Assuming horizontal data

distribution to the Np peers, the size of the complete set of points is n =
∑Np

i=1
ni

and the dataset S is the union of all peers’ datasets Si (S = ∪Si). Notice that
our techniques are applicable also in the case of peers storing overlapping data,
i.e., Si ∩ Sj 6= ∅.

Definitions and Query Types Similarity search in metric spaces focuses on
supporting queries that retrieve objects similar to a query point, when a metric
distance function dist measures the objects’ (dis)similarity. More formally, a
metric space is a pair M = (∆, dist), where ∆ is a domain of feature values and
dist is a distance function with the following properties:

1. dist(p, q) > 0, q 6= p and dist(p, p) = 0 (non negativity),
2. dist(p, q) = dist(q, p) (symmetry),
3. dist(p, q) ≤ dist(p, o) + dist(o, q) (triangle inequality).

The properties of the metric distance function express that a smaller distance
between two objects means higher similarity. Therefore, the distance between
identical objects should be zero, otherwise the distance has a positive value.



The similarity of two objects is symmetrical, and thus the distance function
must also be symmetrical. The triangle inequality guarantees that the distance
between two objects p and q is always smaller than the sum of the distances of
p and q to any other object o.

Similarity search in metric spaces involves two different types of queries,
namely range and nearest neighbor queries. Range queries are specified by a
query object q and a range value r, and the answer set is defined to contain all
the objects o from the dataset that have a distance to the query object q smaller
than or equal to r:

Range query R(q, r): Given a query object q and a radius r, a point p ∈ S
belongs to result set Rr

q of the range query, if dist(q, p) ≤ r.

A range query R(q, r) can be interpreted as ”retrieve all objects that are
within distance r to q”. The k-nearest neighbor (k-NN) query does not require a
user to provide a radius for the query and is therefore easier to express than the
similarity range query. The k-nearest neighbor query returns the k most similar
data points from the dataset and is defined as follows:

k-nearest neighbor query NNk(q): Given a query object q and a positive
integer k, the result set NNk

q of the k-nearest neighbor is a set, such that

NNk
q ⊆ S, |NNk

q | = k and ∀u, v : u ∈ NNk
q , v ∈ S − NNk

q it holds that
dist(q, u) ≤ dist(q, v).

An example of a k-nearest neighbor query is ”retrieve the k objects in S
which are closest in distance to a given object”. Given a query object q, a k-
nearest neighbor query is equivalent to a range query specified by query point q
and a radius equal to the distance of the k-th nearest neighbor. In this paper, we
focus on range queries since k-NN queries can be transformed to range queries, if
the distance of the k-th nearest neighbor is known. Radius estimation techniques
for distributed nearest neighbor search have been studied in [14].

M-Tree The M-Tree [9] is a distance-based indexing method, suitable for disk-
based implementation. An M-Tree can be seen as a hierarchy of metric regions,
also known as hyper-spheres or balls, as depicted in Fig. 1. More precisely, all the
objects being indexed are referenced in the leaf nodes, while an entry in a non-
leaf node stores a pointer to a node at the next lower level along with summary
information about the objects in the subtree being pointed at. The objects in
the internal nodes are database objects that are chosen (during the insertion)
as representative points. For a non-leaf node N , the entries are quad-tuples
{(p, r(p)),D, T}, where p is an representative object, r(p) is the corresponding
covering radius, D is a distance value, and T is a reference to a child node of
N . The basic property is that for all objects o in the subtree rooted at T , we
have dist(p, o) ≤ r(p). For each non-root node N , let object p′ be the parent
object, i.e. the object in the entry pointing to N . The distance value stored in D
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Fig. 1. Example of M-Tree.

is the distance dist(p, p′) between p and the parent object p′ of N . These parent
distances allow more efficient pruning during search than would otherwise be
possible. Similarly, for a leaf node N , the entries consist of pairs of the form
(o,D), where o is a data object and D is the distance between o and the parent
object of N .

The M-Tree is built in a bottom-up fashion and heuristics are presented
in [9] for choosing the child node to insert an object and for splitting overflowing
nodes. Bulk-loading strategies [8] have also been developed for use when an M-
Tree must be built for an existing set of data objects. Moreover, the M-Tree is
a dynamic index structure, therefore it can efficiently support updates. Range
queries R(q, r) for query object q and query radius r can be performed on the
M-Tree using a depth-first search algorithm, initiated at the root. Entries of
intermediate nodes N are pruned, when the query has no overlap with the ball
represented by the the representative object p and its covering radius r(p).

4 Routing Information for P2P Similarity Search

In this section, we first state the objectives that need to be attained by our frame-
work to enable efficient similarity search. Then, we present the routing indices
that are built at super-peer level. To elaborate on this, we first describe the local
indices maintained at super-peer level, and then we introduce the metric-based
routing indices.

4.1 Objectives for P2P Similarity Search

In applications like multimedia retrieval that require efficient similarity search,
a server stores a collection of data objects, such as images, which refer to a



high-dimensional metric space and a distance function provides a measure of
(dis)similarity. In order to support efficient similarity search over the stored
data objects, an indexing technique, such as the M-Tree, is required. In our
scenario, for distributed image similarity search, we assume that a set of servers,
also mentioned as peers, store their data by using an M-Tree. Thus, each server
is able to efficiently support similarity queries. The remaining challenge is to
support efficient similarity search over the data stored at all peers in a distributed
manner.

In this distributed architecture, the individual objectives that need to be
attained for efficient processing of similarity queries are: 1) minimizing the num-
ber of required messages to retrieve the result, 2) minimizing the number of
contacted peers (super-peers) that are involved in processing a similarity query,
and 3) minimizing the maximum hop count for a given query, thereby minimizing
the associated latency.

The first goal reflects the scalability of the system, in terms of consumed
network resources. Obviously, the number of required messages should be kept
small, in order to increase the number of queries that can be processed using the
available bandwidth. The second goal relates to queries being processed only by
peers and super-peers that actually store relevant results. Finally, the last goal
is to achieve low latency for queries and minimize the total response time.

In order to achieve the aforementioned objectives, queries have to be for-
warded during query processing only to peers and super-peers that may con-
tribute to the query result set, while avoiding to contact peers and super-peers
that store data that are not relevant to the query. Thus, instead of flooding
queries at super-peer level, we build routing indices that describe the data that
is available through each neighboring super-peer. Furthermore, each super-peer
maintains information that summarizes the data available at each connected
peer. Towards this goal, we use the hyper-spheres of the local M-Trees at each
peer.

In the following, we first describe the local indexing at each super-peer (Sec-
tion 4.2) which creates indices at each super-peers that can be used to determine
which peers store relevant data. Then, we proceed by presenting our novel rout-
ing indices at each super-peer (Section 4.3) that summarize the data available
through each neighboring super-peer.

4.2 Local Indexing

Each peer Pi that connects to a super-peer SPj publishes a summary of its
data, in order to make its content searchable by other peers. In our framework,
we take advantage of the existing M-Tree index and each peer Pi publishes to
its responsible super-peer SPj , the hyper-spheres contained in the root of its
M-Tree, as a summary of the stored data. This set of hyper-spheres covers all
data objects stored at Pi, thus SPj is able to determine if Pi stores data relevant
to a potential range query, by searching for hyper-spheres that overlap with the
query.



SPj needs to support efficient retrieval of peer hyper-spheres, and conse-
quently selection of the peers that store relevant data to a similarity query. For
this purpose, SPj inserts the collected hyper-spheres into a local M-Tree, also
mentioned as super-peer M-Tree. This enables efficient similarity search over all
data stored by peers associated to SPj by contacting only the peers that store
data that may appear in the query result set.

4.3 Routing Indices

The remaining challenge is to construct routing indices for processing similarity
queries over the entire super-peer network. For this purpose, each super-peer
maintains an M-Tree, also called routing M-Tree, to store hyper-spheres (col-
lected from other super-peers) that describe the data accessible through each
neighbor in the super-peer topology. The construction of routing indices at super-
peer level is achieved in the following way.

A super-peer SPi sends the descriptions of the hyper-spheres contained in
the root of the super-peer M-Tree to its neighbors. This message has the follow-
ing format: (msgId, {(pm, r(pm))}), where msgId is an identifier that is unique
for each SPi, and {(pm, r(pm))} represents the set of SPi’s hyper-spheres corre-
sponding to the root of SPi’s M-Tree. Each hyper-sphere is defined by a represen-
tative object pm and the corresponding covering radius r(pm). Each neighboring
super-peer SPj that receives a set of hyper-spheres for the first time performs two
operations. First, SPj stores locally the hyper-spheres in the routing M-Tree and
attaches to them the identifier of the neighboring super-peer SPi, from which
the hyper-spheres were received. Second, SPj propagates the hyper-spheres to
all its neighbors, except for the one it received them from (SPi). Any super-peer
SPk that is contacted by SPj performs the same operations. However, notice
that SPk stores in its routing M-Tree the identifier of its neighbor SPj together
with the hyper-spheres, and not the identifier of the owner super-peer SPi.

This construction protocol works also for network topologies that contain
cycles. Since hyper-spheres of any super-peer SPi are accompanied by a unique
msgId, each recipient super-peer SPk can perform duplicate elimination, in case
SPi’s hyper-spheres are also received from a different network path. Notice that
the granularity of the routing information stored at any super-peer is at the
level of its neighbors O(DEGsp) and not at the level of the network O(Nsp).
Therefore, the constructed routing indices are scalable with network size.

We now elaborate more on the internal structure of nodes in the routing
M-Tree. For internal nodes, the routing M-Tree entry is {(p, r(p)),D, T}, where
(p, r(p)) is the representative object p and its covering radius r(p), D is the
distance to the parent object and T is a reference to a subtree. For leaf nodes,
the routing M-Tree entry is {(p, r(p), SP (p)),D}, where (p, r(p), SP (p)) consists
of the representative object p, its covering radius r(p), and SP (p) is the neighbor
super-peer responsible for the hyper-sphere, whereas D is the distance to the
parent object.
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Fig. 2. Super-peer query processing.

5 Distributed Similarity Search

Our framework creates routing M-Trees on each super-peer and supports effi-
cient query processing, in terms of local computation costs, communication costs
and overall response time. In this section, we present our novel query routing
algorithm that exploits the proposed routing indices.

A query may be posed by any peer Pq and is propagated to the associated
super-peer SPq, which becomes responsible for local query processing and query
routing, and finally returns the result set to Pq. Each super-peer SPi that re-
ceives the query performs two tasks: 1) SPi routes the query to a subset of
its neighboring super-peers, and 2) SPi processes the query locally, in order to
retrieve results from its local peers.

Afterwards, the relevant data is collected at SPi and sent back to the neigh-
boring super-peer from which the query was received. Finally, SPq collects all
results of its neighboring super-peers and sends the result set back to the peer
Pq that posed the query. A high-level view of the query processing functionality
is depicted in Fig. 2. The query propagation is shown in Fig. 2(a), starting from
Pq and SPq (in the example SP2) to the rest of the super-peer network. Fig. 2(b)
depicts the collection of query results back to SP2.

We first elaborate on the details of local processing, and then the query
routing mechanism is presented.

5.1 Super-peer Local Query Processing

Given a range query R(q, r), query processing at SPi is performed by exploiting
the summary information stored in the super-peer M-Tree. The aim is to retrieve
the subset of local peers that need to be contacted. The peers that store data
enclosed in the range query R(q, r) have to be contacted, since these results are



necessary to be retrieved and reported back to SPq, in order to form the exact
and complete result set. Therefore, SPi uses its super-peer M-Tree to identify
hyper-spheres of peers that intersect with the query. Recall that the retrieved
hyper-spheres contain the peer identifier of the owner peer. Thus, the subset
of peers that can contribute to the query result is determined and the range
query is forwarded to the corresponding peers. This enables efficient similarity
search over all data stored by peers associated to SPi, since the query is posed
only to peers having data that may appear in the result set, essentially forming
an effective peer selection mechanism at super-peer SPi. Each recipient peer
processes the query using its local M-Tree, in the traditional way of processing
range queries in M-Trees. Consequently, each peer reports its results to SPi,
which in turn is responsible for returning the results to SPq.

5.2 Query Routing

After having described the local query processing on each super-peer, we proceed
to present the details on query routing at super-peer level. Henceforth, we assume
that each super-peer that receives the query also performs local query processing,
as described above, therefore we omit the details of local query processing from
the following discussion.

Given a range query R(q, r), the querying super-peer SPq needs to selec-
tively propagate the query to a fraction of its neighboring super-peers as will
be described shortly. Each intermediate super-peer SPi that receives the query
repeats the same process. The routing algorithm on any super-peer SPi is based
on its routing M-Tree. During query routing the summary information that is
stored at the routing M-Tree of each super-peer SPi is exploited. The aim of the
routing algorithm is to retrieve all hyper-spheres that intersect with the query
and the neighboring super-peers that should be contacted respectively. As a con-
sequence, when a super-peer SPr receives a range query R(q, r), SPr uses the
routing M-Tree to efficiently retrieve all hyper-spheres that have an overlap with
the query. Then, the set of neighbor super-peers is determined and the query
is forwarded to them only. This forms the super-peer selection mechanism that
enables routing of queries at super-peer level.

We now describe in more details how the set of relevant neighboring super-
peers are retrieved from the M-Tree. Given a range query R(q, r) defined by
query object q and radius r, query routing is performed on the routing M-Tree
by means of a depth-first traversal, initiated at the root. Let N be a node that
is being visited with entry {(p, r(p)),D, T}, and let p′ be its parent object. D
represents the distance of p to its parent p′, and T is a reference to a child
node. The following two observations can be used for discarding subtrees during
the M-Tree traversal. The first observation exploits the pre-computed distances
D=dist(p, p′) to parent objects, in order to avoid computing the actual distance
d(p, q).
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Observation 1: Given a range query R(q, r), if |dist(p′, q) − dist(p, p′)| >
r + r(p), then the subtree pointed by T can be safely pruned from the search.

The interpretation of the first observation is based on the fact that |dist(p′, q)−
dist(p, p′)| − r(p) is a lower bound of the distance of any object in the subtree
pointed at by T . Thus, if the lower bound is greater than r, then no object in
this subtree can be in the range (Fig. 3(a)). If the condition of Observation 1 is
not satisfied, the distance dist(p, q) must be computed. However, after having
computed dist(p, q), we can still avoid visiting the node pointed at by T , if the
lower bound on the distance from q to any object p in T is greater than r. This
is the case if dist(p, q) > r + r(p), since the lower bound is dist(p, q) − r(p)
(Fig. 3(b)).

Observation 2: Given a range query R(q, r), if dist(p, q) > r + r(p), then the
subtree pointed by T can be safely pruned from the search.

Capitalizing on these observations, Algorithm 1 describes the query routing
process at a super-peer, in terms of determining the neighbor super-peers that
need to be queried. It takes as input the range query R(q, r) and the current tree
node N . For each object p that belongs to node N (line 4), Observation 1 is used
to prune the subtree T pointed by p (line 5). If T cannot be pruned, the distance
dist(p, q) is computed (line 6) and then the condition of Observation 2 is checked
(line 7), in order to discard the subtree T pointed by p. If this condition does not
hold, then we distinguish between two cases (line 8). If N is not a leaf node, then
the algorithm is invoked on the subtree T (line 9). Otherwise, if N is a leaf node,
then SP (p) is added to the result (line 11). At the end of the algorithm, the list
of neighboring super-peers to which the query should be routed is determined.



Algorithm 1 Query Routing QR

1: Input: N :node, q:query point, r:search radius
2: RES = ∅
3: let p′ be the parent object of node N

4: for (∀p ∈ N) do

5: if (|dist(p′, q) − dist(p, p′)| ≤ r + r(p)) then

6: compute dist(p, q)
7: if (dist(p, q) ≤ r + r(p)) then

8: if (N is not a leaf) then

9: QR(T, q, r)
10: else

11: RES = RES ∪ {SP (p)}
12: end if

13: end if

14: end if

15: end for

16: return RES

6 Maintenance

In a dynamic P2P environment, maintenance of routing information is impor-

tant, especially in the presence of data updates, peer joins and failures. In this

section, we first discuss the maintenance cost of the routing indices. Afterwards,

we describe how churn affects the proposed framework.

6.1 Data Updates

Maintenance of routing indices is triggered by data insertion, updates and dele-

tions that occur at any peer. Any change of the data stored at a peer Pi causes

updates to Pi’s local M-Tree. However, as long as the peer’s hyper-spheres con-

tained in the root of the M-Tree do not change, such updates do not need to be

propagated to any other super-peer.

In the case that a root hyper-sphere description changes, then Pi’s responsible

super-peer has to be informed. The super-peer updates its local M-Tree index

and checks if the update changes the respective hyper-sphere descriptions at

root level. Only if such a change occurs, need the other super-peers be updated.

Otherwise, the change only affects the particular super-peer. Notice that if hyper-

spheres shrink, then even if the super-peers are not updated immediately, the

framework still provides correct answers to queries, at the cost of contacting

more super-peers. In practice, a super-peer informs its neighbors about changes

by broadcasting the modification in a similar way to the construction phase.

To summarize, data updates incur maintenance costs only if the hyper-

spheres of a peer root, and eventually the super-peer’s root hyper-sphere, are

modified.



6.2 Churn

The existence of super-peers makes the system more resilient to failures com-
pared to other P2P systems. Super-peers have stable roles, but in the rare case
that a super-peer fails, its peers can detect this event and connect to another
super-peer using the basic bootstrapping protocol.

On the other hand, a peer failure may cause the responsible super-peer to up-
date its hyper-spheres. Only if churn rate is high, these changes need to be prop-
agated to other super-peers. Even if updates are not propagated immediately
after a peer fails, the only impact to our system is that the cost of searching is
increased (i.e. super-peers no longer holding relevant results may be contacted),
but the validity of the result is not compromised.

As already mentioned, a peer joins the network by contacting a super-peer
using the bootstrapping protocol. The bootstrapping super-peer SPB uses its
routing clusters to find the most relevant super-peer to the joining peer. This is
equivalent to the way similarity search is performed over the super-peer network.
When the most relevant super-peer SPr is discovered, the new peer joins SPr.
An interesting property of our approach is that joining peers become members of
relevant super-peers, so it is expected as new peers join the system, that clustered
datasets are gradually formed, with respect to the assigned super-peers.

7 Experimental Evaluation

In order to evaluate the performance of our approach, we implemented a simu-
lator prototype in Java. The simulations run on 3.8GHz Dual Core AMD pro-
cessors with 2GB RAM. In order to be able to test the algorithms with realistic
network sizes, we ran multiple instances of the peers on the same machine and
simulated the network interconnection.

The P2P network topology used in the experiments consists of Nsp intercon-
nected super-peers in a random graph topology. We used the GT-ITM topology
generator4 to create well-connected random graphs of Nsp peers with a user-
specified average connectivity (DEGsp). In our experiments we vary the network
size (Np) from 4000 to 20000 peers, while the number of super-peers varies from
200 to 1000. We also tested different DEGsp values ranging from 4 to 7 and
different number of peers per super-peer (DEGp = 20 − 100). In addition, the
query selectivity (Qsel) of range queries is varied leading to queries that retrieve
between 50 and 200 objects.

We used synthetic data collections, in order to study the scalability of our
approach. Both uniform and clustered datasets are employed that were hori-
zontally partitioned evenly among the peers. The uniform dataset includes ran-
dom points in [0, 10000]d. For the clustered dataset, each super-peer picks ran-
domly a d-dimensional point and all associated peers obtain kp cluster cen-
troids that follow a Gaussian distribution on each axis with variance 0.05.

4 Available at: http://www.cc.gatech.edu/projects/gtitm/
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Fig. 4. Scalability with dimensionality for clustered dataset.

Thereafter, the peers’ objects are generated by following a Gaussian distribu-
tion on each axis with variance 0.025, and a mean equal to the correspond-
ing coordinate of the centroid. We conduct experiments varying the dimen-
sionality d (8-32d) and the cardinality n (4M-20M) of the dataset. We keep
n/Np=1000 in all setups. Additionally, we employed a real data collection (VEC),
which consists of 1M 45-dimensional vectors of color image features, which was
distributed to peers uniformly at random. In all cases, we generate 100 queries
uniformly distributed and we show the average values. For each query a peer
initiator is randomly selected. Although different metric distance functions can
be supported, in this set of experiments we used the Euclidean distance function.
We measure: (i) number of messages, (ii) volume of transferred data, (iii) num-
ber of transferred objects, (iv) maximum hop count, (v) number of contacted
peers, (vi) number of contacted super-peers, and (vii) response time.

7.1 Scalability with Dimensionality

Initially, we focus on the case of clustered dataset. We use a default setup
of: Nsp=200, Np=4000, DEGsp=4, n=4M, and the selectivity of range queries
ranges from 50 to 200 objects. We study the effect of increasing dimensionality
d to our approach. In Fig. 4(a), the number of messages required for search-
ing increases when the dimensionality increases. The volume and the number of
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Fig. 5. Contacted peers and super-peers for clustered dataset.

transferred objects are depicted in Fig. 4(b) and Fig. 4(c) respectively. Although
the number of transferred objects is not significantly affected, the volume in-
creases with dimensionality, as more bytes are necessary for representing objects
of higher dimensionality. Notice that the transferred volume remains relatively
low, between 100KB and 400KB. In Fig. 4(d), the maximum hop count is de-
picted, which relates to the latency of the approach. The number of required
hops is between 8 and 9, irrespective of the increased dimensionality, which im-
plies that latency is low, considering that the network consists of 4000 peers.
Then, in Figs. 5(a) and 5(b), we measure the number of contacted peers and
super-peers respectively. Although the number of super-peers that process the
query is between 120 and 150, the number of peers is much lower, ranging from
60 to 100 peers.

7.2 Scalability with Network Parameters

In the following, we study the scalability of our approach with respect to the
network parameters, by fixing d=8. For this purpose, we increase the number
of super-peers Nsp (Fig. 6(a)), peers Np (Fig. 6(b)) and the average number of
connections per super-peer DEGsp (Fig. 6(c)). We observe that the maximum
hop count increases only slightly, always remaining below 12, when the number
of super-peers is increased by a factor of 5. On the other hand, in Fig. 6(b), the
increasing number of peers only affects the number of contacted peers, however
the increase is only marginal compared to the network size. Lastly, increasing
the density of the super-peer network (DEGsp=4-7) causes more messages to
be transferred (500-700), in order to retrieve the result, but again the increase
is small even in the case that the network becomes dense (DEGsp=7).

7.3 Evaluation for Uniform Data

In Fig. 7, we examine the case of uniform data. Clearly, this is a hard case for
our approach, as a query may in worst case have to contact all peers, in order to
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Fig. 6. Scalability for clustered dataset with respect to network parameters.

retrieve the correct results. This actually occurs in our experiments, causing also
a large number of messages to be sent. However, notice that the maximum hop
count, depicted in Figure 7(a), is small (around 6), even smaller than in the case
of clustered dataset, since the probability of finding the results in smaller distance
increases. We show the volume of transferred data in Fig. 7(b). Compared to the
case of the clustered dataset, the total volume transferred increases by a factor
of 3-4.

7.4 Evaluation for Real Data

In addition, we evaluate our approach using a real dataset (VEC), which consists
of 1M 45-dimensional vectors of color image features. We used a network of 200
super-peers and 1000 peers, thus each peer stores 1000 data points. In Fig. 7(c),
the number of contacted peers and super-peers are depicted for increasing query
selectivity from 50 to 200 points. The results are comparable to the case of the
clustered dataset, but slightly worse, as the VEC dataset is not clustered. How-
ever, notice that the absolute numbers are comparable to the results obtained
using the synthetic dataset, which is a strong argument in favor of the feasibility
of our approach.
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Fig. 7. Experiments with uniform and real datasets.

7.5 Maintenance

We performed a series of experiments, in order to study the effect of updates
on our system. For this purpose, we updated up to 100% of each peer’s data,
by deletions of points followed by insertions of new data points that follow the
data distribution. Then, we measured the percentage of updates that actually
triggered an update of a) the peer’s hyper-spheres in the root of the peer M-Tree,
and b) the super-peer’s hyper-spheres in the root of the super-peer M-Tree. The
first is a metric of the update costs from any peer to its super-peer, whereas
the second indicates the update cost at super-peer level. The results show that
only fewer than 2% of the updates lead to updates from peers to super-peers.
More importantly, the percentage of updates that cause an update at super-peer
level is only 0.1%. This shows that only a small percentage of data updates have
an effect on the super-peer network, and such updates can still be efficiently
managed using the protocols described in Section 6.

7.6 Comparison to SIMPEER

In Fig. 8, we study the comparative performance of the proposed framework to
SIMPEER [14]. SIMPEER relies on the iDistance indexing technique instead of
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Fig. 8. Comparison to SIMPEER in terms of response time.

the M-Tree. We performed a set of experiments using both approaches, assuming
a modest 4KB/sec as network transfer rate, and we discuss our main findings
here. We employ both a uniform and a clustered dataset, in order to explore the
performance of both approaches. In the case of the uniform dataset, our frame-
work outperforms SIMPEER in terms of response time, as depicted in Fig. 8(a).
In contrast, when a clustered dataset is used, SIMPEER is marginally better
than our framework, as shown in Fig. 8(b). The key factor that determines the
individual performance achieved is the routing ability of the set of clusters that
iDistance uses to summarize the data, compared to the hyper-spheres of the root
of the M-Tree. For the clustered dataset, SIMPEER is able to accurately discover
the underlying clusters in the data, resulting in better performance. When the
data distribution is uniform, our framework based on M-Trees is more efficient
than SIMPEER, since the performance of our metric-based routing indices is
not influenced by the absence of a clustering structure in the data.

The M-Tree approach builds the index in a bottom-up manner and the in-
sertion method as well as the block size influences the quality (and the number
of) hyper-spheres of the root. On the other hand, iDistance relies on clustering
and the employed clustering method influences its overall performance. A generic
clustering algorithm, such as k-means, may lead to a poor performance, while an
application-specific clustering method may improve the performance of routing.
The advantage of our framework is that it does not require the existence of a
clustering structure in the data.

8 Conclusions

Similarity search in metric spaces has several applications, such as image re-
trieval. In such applications that require similarity search in metric spaces, usu-
ally a server indexes its data with a state-of-the-art centralized metric indexing
technique, such as the M-Tree. In this paper, we study the challenging problem
of supporting efficient similarity queries over distributed data in a P2P system.
We assume that each peer autonomously maintains its own data indexed by



an M-Tree. We propose a framework for distributed similarity search that ex-

ploits the local M-Trees, by using the hyper-spheres stored at the M-Tree roots

as a summarization of the data. Based on this information, an efficient routing

mechanism for similarity queries is built. The experimental results show that our

approach performs efficiently in all cases, while the performance of our frame-

work scales with all network and dataset parameters.
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