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ABSTRACT
Traditional document indexing techniques store documents using
easily accessible representations, such as inverted indices, which
can efficiently scale for large document sets. These structures of-
fer scalable and efficient solutions in text document management
tasks, though, they omit the cornerstone of the documents’ purpose:
meaning. They also neglect semantic relations that bind terms into
coherent fragments of text that convey messages. When seman-
tic representations are employed, the documents are mapped to the
space of concepts and the similarity measures are adapted appro-
priately to better fit the retrieval tasks. However, these methods
can be slow both at indexing and retrieval time. In this paper we
proposeSemaFor, an indexing algorithm for text documents, which
uses semantic spanning forests constructed from lexical resources,
like Wikipedia, andWordNet, and spectral graph theory in order to
represent documents for further processing.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: [Retrieval models,
Selection process]; H.3.1 [Content Analysis and Indexing]: [Lin-
guistic processing, Thesauruses]

General Terms
Algorithms, Experimentation, Theory

Keywords
Document Indexing, Semantic Graphs, Text Representation

1. INTRODUCTION
Document indexing has been traditionally conducted with the

use of a term to document mapping and its inverse, which takes
into account only the frequency of occurrence of terms in the in-
dexed documents, neglecting semantic relatedness between terms,
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Figure 1: The high-level representation of theSemaFor process
flow.

and their syntactic role in the document. In this paper we pro-
poseSemaFor, a new document indexing algorithm that takes into
account the semantic relatedness of terms within documents.Se-
maForaims at: (1) extracting information from text, namely terms,
and identify their semantic connections, (2) storing the semantic
information in an efficient manner that can support fast processing
of documents, and, (3) using publicly available resources for the
task, and an efficient methodology that does not require any type of
training, so that it can scale up for large document collections, and
be applied across different domains (domain agnostic).

SemaForlies in the formulation of semantic spanning trees (SSTs)
and semantic spanning forests (SSFs). Each document is first
parsed and transformed into a set ofSSTs, each one corresponding
to a document topic. TheSSF that contains the respectiveSSTs
is the document’s semantic representation. The forests are indexed
following an efficient methodology that allows fast retrieval of po-
tential matches at query time. A similarity measure for seman-
tic spanning forests based on spectral graph algebra is introduced
in order to provide the ability of the index to produce similarity
scores between documents (SSFs),i.e., for the purposes of docu-
ments clustering, or create a ranking of the potential matchingSSFs
to a given user query for the purposes of document retrieval. The
constructed index allows for fast search and ranking of the semantic
forests (documents), given a user query.

A high level representation of the process flow inSemaFor, is
shown in Figure 1. Given an initial set of input text documents, the
semantic extraction of document topicsmodule pre-processes the
texts and creates a semantic spanning forest for each document, as
explained in Section 3. Thesemantic indexingmodule indexes doc-



uments in the form of semantic spanning forests. Similarity com-
putation is performed usingspectral graph algebra, as explained
in detail in Section 3.

2. RELATED WORK
The basic hypothesis behind our approach is that the use of se-

mantic information for the representation of documents may im-
prove the performance of the text clustering and retrieval tasks,
both in precision and recall. The hypothesis is based on previously
published scientific indications, e.g., [10].

In one direction, several approaches attempt to capture seman-
tic relatedness between terms using statistical analysis of corpora.
They attempt to group the terms of a document into subsets (top-
ics) that contain statistically “related" terms, in order to represent
documents as combinations of one or more topics [4, 5]. How-
ever, such approaches require extensive analysis of large text cor-
pora, and the produced models cannot be easily transferred across
domains. In another direction, the use of lexical and other knowl-
edge resources is employed in order for the documents to be rep-
resented as graphs of terms [14]. Recent studies, e.g., [19] have
shown that linguistic and crowdsource-based knowledge sources,
for exampleWordNetandWikipediarespectively, can be used com-
plementary in this task. The processing of document semantics in
SemaForalso results in a graph, which contains the document terms
only. ThoughSemaFordoes not perform topic detection literally,
theSSTs of each indexed document can be seen as the document
topics. Taking one step further to the aforementioned approaches,
SemaForindexes the document graph using a mechanism that facil-
itates storage and fast processing, and incorporates semantic infor-
mation inside the indexing data structures. For the task of the graph
creation it uses bothWordNetandWikipedia, combining the “wis-
dom of linguists" and “wisdom of crowds". Close to our approach
are also the works that embed senses and semantic information for
text document management, like for exampleGeneralized Vector
Space Models(GVSM) [12] andsemantic kernels[2].

An important point in existing approaches is the consideration of
word sense disambiguationmethods (WSD) which can potentially
offer the transit from terms to senses. In this paper we address
word disambiguation by employing a very simpleWSDalgorithm
that provides state of the art performance and is used as a very
competitive baseline forWSDmethods; thefirst sense heuristic,
which selects the most frequently appearing sense of each word
[9].1.

Finally, with regards to semantic indexing methodologies, exist-
ing approaches map documents to graphs, yet they do not consider
the semantic information at indexing level. In [7], each document
is mapped to a graph with terms as vertices and4 types of edges
(based onWordNetrelations). The graph structure is neither in-
dexed, nor employed in the computation of similarity between doc-
uments. In [15] documents are mapped to semantic forests using
the co-occurrence of terms (actually stems) and their semantic re-
lations (as given byWordNet) in order to draw semantic relations
between terms. During the indexing and document similarity com-
putation phases, the graph information is neglected and each forest
is perceived as a set of terms. In contrast to the aforementioned ap-
proaches,SemaForintroduces a lightweight representation of the
document graph that keeps only the strongest edges and employs
spectral graph theoryin order to convert the spanning trees into an
indexable format.

1In our implementation we are usingWordNetas the main dictio-
nary, orWikipediadefinitions if the term is ambiguous and does not
appear in Wordnet

Algorithm 1 SSF(D)
1: INPUT: A text documentD.
2: OUTPUT: The Semantic Spanning Forest (SSF) ofD, SSF(D)
3: T : A set of term-POS pairs
4: G, SSF: Initially empty graphs
5: V : The set of vertices ofG, E: The set of edges ofG
6: T := PreProcessDoc(D)
7: for all tp ∈ T andtp ∈WordNetdo
8: Disambiguate(tp)
9: end for

10: for all i = 1 to |T | − 1 do
11: for all j = i+ 1 to |T | do
12: if tpi, tpj ∈ WordNetthen
13: S(tpi, tpj) = SR(tpi, tpj)
14: else
15: S(tpi, tpj) =WLM(tpi, tpj)
16: end if
17: if S(tpi, tpj) > 0 then
18: Addtpi, tpj in V and 1

S(tpi,tpj)
in E

19: end if
20: end for
21: end for
22: for all c ∈ connected components ofG do
23: SSF∪ MinimumSpanningTree(c)
24: end for
25: RETURN SSF

3. THE SEMAFOR ARCHITECTURE
In this section we present the details of theSemaForarchitecture

as shown in the high level representation of Figure 1. In Section
3.1, we explain the operations of theDocument Processing mod-
ule, which constructs the semantic spanning forests given a set of
documents. Section 3.2 explains the details of the Semantic Index-
ing module: (a) how the semantic spanning forest is transformed
into a set of points in a metric space usingspectral graph theory,
and (b) what information is stored in the index for each seman-
tic spanning forest. Section 3.3 illustrates thespectral graph sim-
ilarity computationmodule, the details of the distance metric and
the algorithm employed inSemaForfor document comparison and
similarity computation.

3.1 Construction of Semantic Spanning Forests
Given a documentD, the semantic spanning forest construction

process (Alg. 1) comprises three steps: (a) the pre-processing of the
document, i.e., part-of-speech tagging (POS tagging) and phrase
detection, (b) word sense disambiguation, and (c) construction of
the semantic spanning forest using measures of semantic related-
ness. For a given documentD of the collection, we initially per-
form POS tagging using theStanford Part of Speech Tagger[11],
which also enables us to perform sentence splitting in the docu-
ment. Next, phrase detection is performed to recognize terms of
more than two words. The phrase recognition takes place by sim-
ple dictionary look up, which in our case consists ofWordNetand
Wikipedia, examining only the noun phrases of each sentence. Fi-
nally, all stopwords are removed. In theWSDstep we use thefirst
sense heuristicapproach to disambiguate the terms into their re-
spective sense, by assigning to each term its most frequent sense
consultingWordNetas the reference dictionary, orWikipediain the
cases that the term does not exist inWordNet.

The algorithm of theSSF (D) construction, for a given docu-
mentD is described by Alg. 1. Given thatD contains a set of



n term-POSpairs, namelyT = tp1, tp2, ..., tpn, in the remain-
ing of this section we describe how a semantic spanning forest is
constructed from this set. Primarily, note that for any given pair
(tpi, tpj) with i 6= j and bothi, j ∈ [1..n] the t part of the term-
pair tpi might be identical with thet part of thetpj term pair, but
then thep part in the two term pairs must differ (i.e, we keep the
set of all distinct term-POSpairs forD).

Initially, we compute the semantic relatednessS between every
term-pair combination inT . In our implementation, for pairs of
terms that exist inWordNetwe are usingOmiotis [13]; for the
rest we are usingWLM, a Wikipedia-based measure [8].Omio-
tis, which has been shown to outperformWLM in case both terms
exist inWordNet[13]. Note that the suggested methodology is gen-
eral enough to allow for the use of any other measure of semantic
relatedness or similarity. Both used measures are in the range of
[0, 1], with 1 meaning totally related and0 meaning totally unre-
lated, they are publicly available and their performance is state-
of-the-art in their category of measures [19]. Since for both mea-
suresS(tp1, tp2) = S(tp2, tp1) we need exactlyn·(n−1)

2
com-

putations of semantic relatedness. Based on the above we define
S(tpi, tpj) = SR(tpi, tpj), if tpi, tpj ∈WordNet, elseS(tpi, tpj) =
WLM(tpi, tpj).

Next, we construct a semantic graph which initially contains all
the elements ofT as nodes. Each node represents a term-POSel-
ement ofD. We add an edgeetpi,tpj between every pair of nodes
(tpi, tpj) for which S(tpi, tpj) > 0, with weight wtpi,tpj =

1
S(tpi,tpj)

, andi 6= j.
Once all the edges have been added, the semantic graph contains

terms as nodes and reverse semantic relatedness values between
them as edges. For each connected component of the graph, i.e., as
this is defined by traditional graph theory, we apply the computa-
tion of the minimum spanning tree algorithm of Kruskal.D is now
a set ofminimum semantic spanning trees. We define this set as
theSemantic Spanning Forestrepresenting documentD (SSF(D)),
and eachi-th semantic tree ofD (SSTi(D)) as one of its topics.

3.2 Indexing of Semantic Spanning Forests
Having the documents in the form of semantic spanning forests

(SSF), we now proceed in representing them to a metric space
where we can compute similarity between documents. For their
similarity, we are based on thespectraof the normalized Laplacian
of the two bipartite graphs, following the basis of spectral graph
theory [3]. The similarity between two semantic forests is even-
tually based on the computation of theHausdorff distance [1] be-
tween the twoSSFs, which considers the spectral properties of the
two graphs, and more specifically thesectional curvaturesof their
edges. TheHausdorff distance has been shown to perform very
well in the application of graph clustering in the field of computer
vision [6]. Thus, the following procedure, though not new, it consti-
tutes a novel embedding in our case, since it is for the first time, to
the best of our knowledge, that it is applied in graphs representing
documents, as a means ofSSFs. We give details on theHausdorff
distance in the following section.

In the following we explain the details of the first application
of this technique in text processing and more specifically we show
howSSFs are transformed to facilitate spectral similarity computa-
tion. Initially, letG(V,E) be a graph, which in our case represents
a document as a means of aSSF, whereV is the set of its vertices,
andE the set of its edges. For reasons of simplicity, let us also
assume thatG is connected, forming a spanning tree. Primarily,
for every such graph in our document collection, we compute the

degreedv of each vertexv ∈ V as:

dv =
∑

u

w(v, u) (1)

where vertexu ∈ V is any adjacent node to vertexv andw(v, u) =
w(u, v) is the weight of the edge connecting them.

Then, the LaplacianL of G can be computed as follows:

L(u, v) =











dv − w(v, v), if u = v

−w(u, v), if u and v are adjacent

0, otherwise

(2)

We also construct a diagonal matrixD, with D(v, v) = dv, in
order to compute the normalized LaplacianL̂ of G. TheL̂ matrix
is needed, as its eigenvalues constitute the spectrum of the initial
graph.L̂ is computed as follows:

L̂ = D
− 1

2LD
− 1

2 (3)

and the spectral decomposition of the normalized LaplacianL̂ as:

L̂ = ΦΛΦT (4)

whereΛ is the diagonal matrix with the ordered eigenvalues as its
elements andΦ contains the eigenvectors as columns.

To measure theHausdorff distance between twoSSFs, we need
to embed the nodes of eachSSFinto a vector space. There is a
strong connection between the heat kernel of a graph and the man-
ifold in which its node reside [17]. Thus, we initially compute the
heat kernelht [3], which encapsulates the way information flows
through the graph edges over time. Essentially the heat kernel can
be computed by exponentiating thêL matrix using a parametert
that stands for time. Higher values oft give more focus to the full
graph (i.e., trust more the edges of the entirety of the full graph),
in contrast to lowert values that focus on the locality of the graph.
The heat kernel in our case can be computed as follows:

ht = exp[−L̂t] = Φexp[−tΛ]ΦT (5)

We can obtain the matrix that contains the coordinates for each
node in this new vector space. This can be done by applying the
Young-Householderdecomposition [18] of the heat kernelht =
Y TY , where onY the columns will represent the nodes as vectors
in the vector space. As a result, the matrix of the resulting co-
ordinates is expressed as:

Y = exp[−1

2
tΛ]ΦT (6)

In this new vector space, the Euclidean distance between nodes
(u, v) of G can then be computed as [6]:

d
2
E(u, v) =

|V |
∑

i=1

exp[−λit](φi(u)− φi(v))
2 (7)

whereλi is thei-th eigenvalue inΛ (the non-zero value in thei-th
row of theΛ matrix), andφi(u) is the value in position(i, u) of the
eigenvector matrixΦ. Since for the computation of theHausdorff
distance we need the sectional curvature of the edges ofG, we
require the geodesic distance of the nodes(u, v), in addition to
their Euclidean distance. This can be computed as follows [6]:

dG(u, v) = floorn{
|V |
∑

i=1

(1− λi)
n
φi(u)φi(v)} (8)

wheren constitutes the length of the walk on theSSFwith the
smallest number of connecting edges. Eventuallyn is the smallest
value for which the sum in Equation 8 becomes positive.



Algorithm 2 SemaFor(SSF, t)
1: INPUT: A semantic spanning forestSSF, the parametert of

the heat kernel.
2: OUTPUT: The indexing ofSSFas a set of ordered lists of real

values in a low-dimensional space.
3: L̂,Λ,Φ,K: Initially empty matrices
4: Kset: An initially empty set of ordered real values
5: L: An initially empty list ofKset

6: SST: An initially empty set of trees
7: for all s ∈ SSTdo
8: L̂ := NormalizedLaplacian(s)
9: Λ,Φ := EigenValueDecomposition(̂L)

10: for all (u, v) pairs∈ s do
11: d2E(u, v) :=

∑|V |
i=1 exp[−λit](φi(u)− φi(v))

2

12: dG(u, v) := floorn{
∑|V |

i=1(1− λi)
nφi(u)φi(v)}

13: K[u, v] := 2
√
6(dG(u,v)−dE(u,v)

1

2

dG(u,v)
3

2

14: end for
15: Kset := OrderValuesOf(K)
16: L := AddToList(Kset)
17: end for
18: StoreSSFasL

Eventually, the sectional curvature of the edge(u, v) can be com-
puted as follows (the proof can be found in [16]):

k(u, v) =
2
√
6(dG(u, v)− dE(u, v)

1

2

dG(u, v)
3

2

(9)

The sectional curvatures of theSSFare the only information that
we index for our tree structures. Essentially, the sectional curva-
tures capture the topological structure ofSSFand allows us to con-
struct a low-dimensional feature space in which these values reside.
Ultimately, we only need to index those values instead of the full
SSFstructure. Algorithm 2 describes theSemaFordocument in-
dexing algorithm. It assumes that theSSFof a given documentD
has already been computed (using Alg 1). Eventually, a list of sets
of ordered real values are indexed for theSSF. Each set represents
eachSSTof the SSF, and the values are the respective sectional
curvatures of theSSTedges.

3.3 TheHausdorff Distance
Given two graphsG1(V1, E1,K1) andG2(V2, E2,K2), where

V1, V2 are the respective sets of their vertices,E1, E2 are the re-
spective sets of their edges, andK1,K2 are the respective matrices
with the sectional curvatures of their edges (e.g.,K1(u, v) is the
sectional curvature of edge(u, v) in G1) we are using theHaus-
dorff distance [6] to compute the distance betweenG1 andG2 as
follows:

Hausdorff(G1, G2) = max
i,j∈V1

min
I,J∈V2

||k2(I, J)− k1(i, j)|| (10)

TheHausdorffdistance in our case is amaximinfunction between
the sectional curvature matrices. Since we have assumed that the
SSFs we are examining are connected, we will generalize Equation
10 to capture all the cases, i.e., cases thatSSFmay contain several
semantic spanning trees (SST). The generalization takes place in a
similar manner that the average-link works during the agglomera-
tion step in the hierarchical agglomerative clustering (HAC). The
reason is simple: given two sets (i.e., theSSFs) of elements (their
SSTs), we estimate the distance between sets based on theHaus-
dorff distance between elements. This is exactly the problem faced
by theHAC algorithm.

Reuters Subset VSM LSI CF SemaFor
C1 0.64 0.64 0.74 0.94

C2 0.5 0.62 0.8 0.84
C3 0.25 0.34 0.48 0.71

Table 1: Overall clustering accuracies on the Reuters subsets.

Subset Cat. P R F1 MP MR MF1

C1
Oil 0.92 0.958 0.938

0.94 0.94 0.94
Nat-Gas 0.96 0.923 0.941

C2
Coffee 0.693 1.0 0.819

0.847 0.875 0.86
Sugar 1.0 0.75 0.857

C3

Grain 0.51 0.91 0.66

0.69 0.84 0.76
Wheat 0.51 0.86 0.64

Ship 1.0 0.6 0.75

Crude 0.77 1.0 0.86

Table 2: Detailed clustering results on the Reuters subsets.

The possible solutions are: (a) single-link, with the caveat of the
effect of chaining, (b) complete-link, with the caveat that can be
sensitive to outliers (i.e., smallSSTin our case, describing small
document topics that are quite distant from the largerSST, meaning
the larger document topics), and (c) average-link, which is a com-
promise between the sensitivity of complete-link to outliers and
the lack of compactness of single-link. If solution (c) is chosen,
the generalization of theHausdorff distance betweenG1 andG2

becomes:

Hausdorff∗(G1, G2) =

∑|SSTG1
|

i=1

∑|SSTG2
|

j=1 Haudorff(SSTi, SSTj)

|SSTG1
| · |SSTG2

|
(11)

where|SSTG1
|, |SSTG2

| is the number ofSSTin G1 andG2 re-
spectively, andSSTi, SSTj are thei-th andj-th SSTof G1 and
G2 respectively.

In the remaining of the paper, we will be using Equation 11
whenever the distance computation between documents is required,
e.g., document clustering usingHAC, and its inverse, whenever
similarity is required (e.g., similarity between a query and a doc-
ument). Note that for two documentsD1 andD2 that are iden-
tical, their SSFs are identical. In this case we do not use Equa-
tion 11, because it uses the average-link, and we assumeHaus-
dorff∗(G1, G2) = 0 and the respective similarity being a very
large positive constant.

4. EXPERIMENTAL EVALUATION
We experimentally evaluateSemaForin the text clustering and

retrieval tasks. We are using theReuters-21578 collection for the
former task and theTRECcollection for the latter.

4.1 Text Documents Clustering
The application ofSemaForin clustering is straightforward, and

can be easily embedded into the hierarchical agglomerative algo-
rithm (HAC) (i.e, a distance between two documents is theHaus-
dorff distance of theirSSFs). To evaluate the performance ofSe-
maFor in text clustering we use theReuters-21578 data set, com-
prising approximately21, 500 files organized in132 (possibly over-
lapping) categories. We are comparing its performance against a
standard baseline, namely vector space document representation
with TF-IDF term weights,LSI, and theConcept Foresttext docu-
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ment similarity approach [15]. In order to be compatible with the
results presented in [15], we are using the same document subsets,
produced as described in their respective work: (1)C1, comprising
50 documents in total from theOil andNat-Gascategories (25 doc-
uments from each category), (2)C2, comprising100 documents
in total from theCoffeeandSugarcategories (50 documents from
each category), and (3)C3, comprising200 documents from the
Grain, Wheat, ShipandCrudecategories (50 documents in each
category). For our evaluation, we compute precision, recall, and
F-Measure (orF1 score) for each category in every case (C1, C2,
andC3), as well as their macro-averages, and overall accuracy.
The accuracy results, that are directly comparable with the results
reported in [15] are shown in Table 1. Table 2 contains the detailed
results ofSemaForfor each category, in each subset, whereMP,
MR, andMF1 are macro-averaged precision, recall and F1-score
respectively.

4.2 Text Retrieval
For the text retrieval evaluation ofSemaForwe are using the

TREC2document collection, and more specifically theWall Street
Journal articles from1990, so that we can directly compare with
the semantic indexing approach proposed by Kang and Lee [7].
This document set comprises21, 705 articles, and the50 query top-
ics101− 150 from the respective collection are used.

Figure 2 shows the average precision results of topN documents
over all queries forSemaFor, the SW-IDF semantic indexing ap-
proach introduced in [7] and the standard baseline. TheSW-IDF
andTF-IDF VSMresults are taken from [7].

The results show that the precision ofSemaForis higher than
that ofSW-IDF([7]) in the top-10 (k = 10) and top-20 (k = 20)
documents, which is the typical amount of retrieval results that a
user examines in a search. Precision is always higher than that of
the baseline method. The top results ofSemaForare better than
that of its competitors.

5. CONCLUSIONS AND FUTURE WORK
In this work, we presentedSemaFor, a novel document indexing

algorithm that is based on the spectra of the documents’ seman-
tic graphs to represent and index documents.SemaForuses the-
sauri (WordNetandWikipedia) in order to extract the semantic rela-
tions between documents’ terms. The indexing algorithm employs
algebraic transformations from spectral graph theory in order to
provide a reduced and compact representation for each document.
TheHausdorffdistance is used to define the distance between two
documents. Evaluation in text clustering experiments shows that
the spectrum-based graph representation of the documents can im-
prove significantly the performance of the text clustering process,
and has satisfactory performance in the retrieval task. Our next

steps involve the optimization of the current implementation and
its expansion in further applications.
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