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ABSTRACT

Traditional document indexing techniques store documents using

easily accessible representations, such as inverted indices, which

can efficiently scale for large document sets. These structures of-
fer scalable and efficient solutions in text document management

tasks, though, they omit the cornerstone of the documents’ purpose:

meaning. They also neglect semantic relations that bind terms into
coherent fragments of text that convey messages. When seman
tic representations are employed, the documents are mapped to th

space of concepts and the similarity measures are adapted appror

priately to better fit the retrieval tasks. However, these methods
can be slow both at indexing and retrieval time. In this paper we
proposeSemakoran indexing algorithm for text documents, which
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uses semantic spanning forests constructed from lexical resourcesFigure 1: The high-level representation of theSemaFor process

like Wikipediag andWordNet and spectral graph theory in order to
represent documents for further processing.
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1. INTRODUCTION

Document indexing has been traditionally conducted with the
use of a term to document mapping and its inverse, which takes
into account only the frequency of occurrence of terms in the in-

flow.

and their syntactic role in the document. In this paper we pro-
poseSemakora new document indexing algorithm that takes into
account the semantic relatedness of terms within docum&ds.
maForaims at: (1) extracting information from text, namely terms,
and identify their semantic connections, (2) storing the semantic
information in an efficient manner that can support fast processing
of documents, and, (3) using publicly available resources for the
task, and an efficient methodology that does not require any type of
training, so that it can scale up for large document collections, and
be applied across different domains (domain agnostic).
SemaFoties in the formulation of semantic spanning tregsT's)
and semantic spanning forestSqF's). Each document is first
parsed and transformed into a seS8&T's, each one corresponding
to a document topic. Th8SF that contains the respectiieST's
is the document’s semantic representation. The forests are indexed
following an efficient methodology that allows fast retrieval of po-
tential matches at query time. A similarity measure for seman-
tic spanning forests based on spectral graph algebra is introduced

dexed documents, neglecting semantic relatedness between termd order to provide the ability of the index to produce similarity

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CIKM'12, October 29—-November 2, 2012, Maui, HI, USA.

Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

scores between documentsqF's),i.e., for the purposes of docu-
ments clustering, or create a ranking of the potential match8ig

to a given user query for the purposes of document retrieval. The
constructed index allows for fast search and ranking of the semantic
forests (documents), given a user query.

A high level representation of the process flowSamaFoy is
shown in Figure 1. Given an initial set of input text documents, the
semantic extraction of document topite®dule pre-processes the
texts and creates a semantic spanning forest for each document, as
explained in Section 3. Theemantic indexingnodule indexes doc-



uments in the form of semantic spanning forests. Similarity com- Algorithm 1 SSKD)

putation is performed usingpectral graph algebra, as explained 1: INPUT: A text documentD.

in detail in Section 3. 2: OUTPUT: The Semantic Spanning ForeSSH of D, SSKD)
3: T: A set of term-POS pairs

4:

5:

G, SSE Initially empty graphs

2. RELATED WORK V': The set of vertices off, E: The set of edges aFf
The basic hypothesis behind our approach is that the use of se- 6: 7 := PreProcessDo£)

mantic information for the representation of documents may im- 7. for all tp € T andtp eWordNetdo

prove the performance of the text clustering and retrieval tasks, 8:  Disambiguatef)

both in precision and recall. The hypothesis is based on previously 9: end for

published scientific indications, e.g., [10]. 10: forall s = 1to|T| — 1 do

In one direction, several approaches attempt to capture seman-11:  forall j =i+ 1to|7| do
tic relatedness between terms using statistical analysis of corpora.; 2: if tpq,tp; € WordNetthen
They attempt to group the terms of a document into subsets (top-13: S(tpi, tp;) = SR(tpi,tp;)
ics) that contain statistically “related” terms, in order to represent 14: else
documents as combinations of one or more topics [4, 5]. How- 15: S(tps, tp;) =WLM(tp;, tp;)
ever, such approaches require extensive analysis of large text cor 16: end if
pora, and the produced models cannot be easily transferred acrosg7: it S(tpi,tp;) > 0 then
domains. In another direction, the use of lexical and other knowl- 1g: Addtp;, tp; in vV andﬁ inE
edge resources is employed in order for the documents to be rep-; 4. end if Fotha
resented as graphs of terms [14]. Recent studies, e.g., [19] havezo_ end for
shown that linguistic and crowdsource-based knowledge SOUrCeS,»1. and for

for exampIe\{Vord_NetandWikipediarespectively, can be used COM- 55 torall ¢ € connected components 6fdo
plementary in this ta:sk. The processing of QOcument semantics iN,3.  ggp) MinimumSpanningTree]
SemaForlso results in a graph, which contains the document terms 24+ end for

only. ThoughSemaFordoes not perform topic detection literally, 25: RETURN SSF

the SST's of each indexed document can be seen as the document
topics. Taking one step further to the aforementioned approaches,

Semakoindexes the document graph using a mechanism that facil-

itates storage and fast processing, and incorporates semantic infor3. | HE SEMAFOR ARCHITECTURE

mation inside the indexing data structures. For the task of the graph  |n this section we present the details of BemaForarchitecture
creation it uses bottordNetandWikipedia combining the tis- as shown in the high level representation of Figure 1. In Section
dom of linguist$ and “wisdom of crowds Close to our approach 3.1, we explain the operations of tl®cument Processing mod-
are also the works that embed senses and semantic information folle, which constructs the semantic spanning forests given a set of
text document management, like for exam@leneralized Vector  documents. Section 3.2 explains the details of the Semantic Index-
Space Model§GVSM) [12] andsemantic kernelf2]. ing module: (a) how the semantic spanning forest is transformed
An important point in existing approaches is the consideration of into a set of points in a metric space usiectral graph theory
word sense disambiguationethods WSD which can potentially  and (b) what information is stored in the index for each seman-
offer the transit from terms to senses. In this paper we addresstjc spanning forest. Section 3.3 illustrates #pectral graph sim-
word disambiguation by employing a very simpiéSDalgorithm ilarity computationmodule, the details of the distance metric and

that provides state of the art performance and is used as a verythe algorithm employed iBemaForfor document comparison and
competitive baseline fotwWSD methods; théfirst sense heuristjc similarity computation.

which selects the most frequently appearing sense of each word
1 . . .
[9]."- 3.1 Construction of Semantic Spanning Forests

Finally, with regards to semantic indexing methodologies, exist- Gi d b, th . ing f .
ing approaches map documents to graphs, yet they do not consider Iven a document, t e semantic spanning forest constr_uctlon
rocess (Alg. 1) comprises three steps: (a) the pre-processing of th

the semantic information at indexing level. In [7], each document g - ¢ h ) POS X d oh
is mapped to a graph with terms as vertices angpes of edges ocument, i.e., part-of-speech tagging ( tagging) and phrase

(based onWordNetrelations). The graph structure is neither in- detection, (.b) word sense disampiguation, and (c) constr.uction of
dexed, nor employed in the computation of similarity between doc- the semantic spanning forest using measures of Ste.”?a”t'c related-
uments. In [15] documents are mapped to semantic forests usingness' Fora given do_cumeﬁl of the collection, we initially per-

the co-occurrence of terms (actually stems) and their semantic re-fo”_n POS tagging using thitanford Part of Spee_ch Ta_ggErl],
lations (as given byVordNej in order to draw semantic relations which also enables us to perfqrm sentence splitting n the docu-
between terms. During the indexing and document similarity com- ment. Next, phrase detection is performe@ to recognize term; of
putation phases, the graph information is neglected and each fores{"or® than two words. Th? phrase recognltlon_ takes place by sim-
is perceived as a set of terms. In contrast to the aforementioned ap-ph.e _dlctlpnary Io_ok_ up, which in our case consists/brdNetand .
proachesSemaForintroduces a lightweight representation of the Wikipedia examining only the noun phrases of each sente_nce. Fi-
document graph that keeps only the strongest edges and employga"y' all stopwords are removed. In téSDstep we use thérst

spectral graph theorjn order to convert the spanning trees intoan ~ >SNS€ heurlstuapproach to disambiguate thg terms into their re-
indexable format spective sense, by assigning to each term its most frequent sense

consultingWordNetas the reference dictionary, Wfikipediain the
YIn our implementation we are usinjordNetas the main dictio- ~ Cases that the term does not existWordNet

nary, orWikipediadefinitions if the term is ambiguous and does not ~ The algorithm of theSSF(D) construction, for a given docu-
appear in Wordnet ment D is described by Alg. 1. Given thdD contains a set of




n termPOSpairs, namelyl’ = tp1,tpa, ..., tpn, in the remain- degreed, of each vertex € V as:

ing of this section we describe how a semantic spanning forest is

constructed from this set. Primarily, note that for any given pair dy = Zw(”v u) @
(tps, tp;) with ¢ # j and bothi, j € [1..n] thet part of the term- u

pair tp; might be identical with the part of thetp; term pair, but where vertexu € V is any adjacent node to vertexandw (v, u) =
then thep part in the two term pairs must differ (i.e, we keep the w(u,v) is the weight of the edge connecting them.

set of all distinct ternPOSpairs for D). Then, the Laplaciail of G can be computed as follows:
Initially, we compute the semantic relatedn&dsetween every .

term-pair combination iff". In our implementation, for pairs of dy —w(v,v), fu=v

terms that exist inVordNetwe are usingOmiotis [13]; for the L(u,v) = ¢ —w(u,v), if u and v are adjacent (2)

rest we are usingVLM, a Wikipediabased measure [8]Omio- 0, otherwise

tis, which has been shown to outperfokiLM in case both terms ) . )
exist inWordNe{13]. Note that the suggested methodology is gen- Ve also construct a diagonal matri, with D(v,v) = do, in

eral enough to allow for the use of any other measure of semantic order to compute the normalized Laplaciarof G. The L matrix
relatedness or similarity. Both used measures are in the range ofis needed, as its eigenvalues constitute the spectrum of the initial
[0,1], with 1 meaning totally related an@ meaning totally unre-  graph.L is computed as follows:

lated, they are publicly available and their performance is state- P—pirp-} 3)
of-the-art in their category of measures [19]. Since for both mea- -

suresS(tp1,tp2) = S(tp2,tp1) we need exactlw com- and the spectral decomposition of the normalized Laplatias:
putations of semantic relatedness. Based on the above we define

7 T
S(tpi, tp]') = SR(tpi, tpj), if tpi,tp; € WordNet, e|S§(tpi, tp]') = L=2oA® (4)
W LM (tp;,tp;). whereA is the diagonal matrix with the ordered eigenvalues as its
Next, we construct a semantic graph which initially contains all elements ané contains the eigenvectors as columns.

the elements of" as nodes. Each node represents a tesel- To measure thélausdorff distance between tw8SF, we need
ement ofD. We add an edge,, +,; between every pair of nodes  to embed the nodes of ea88Finto a vector space. There is a
(tpi, tp;) for which S(tp;,tp;) > 0, with weight wip, tp; = strong connection between the heat kernel of a graph and the man-

L andi # j. ifold in which its node reside [17]. Thus, we initially compute the

S(tpi,tp;)’ . X .

Once all the edges have been added, the semantic graph contain8€at kerneh [3], which encapsulates the way information flows
terms as nodes and reverse semantic relatedness values betwedfrough the graph edges over time. Essentially the heat kernel can
them as edges. For each connected component of the graph, i.e., ad¢ computed by exponentiating ttiematrix using a parameter
this is defined by traditional graph theory, we apply the computa- that stands for time. Higher values ogive more focus to the full

tion of the minimum spanning tree algorithm of Kruskal.is now graph (i.e., trust more the edges of the entirety of the full graph),
a set ofminimum semantic spanning treed/e define this set as N contrast to Iowet values that focus on the locality of the graph.
the Semantic Spanning Forestpresenting documeii? (SSKD)), The heat kernel in our case can be computed as follows:

and eachi-th semantic tree oD (SST;(D)) as one of its topics. he = exp|—Lt] = Pexp[—tA]®T (5)

We can obtain the matrix that contains the coordinates for each
node in this new vector space. This can be done by applying the
3.2 Indexing of Semantic Spanning Forests Young-Householdedecomposition [18] of the heat kernk] =
Having the documents in the form of semantic spanning forests ¥ ¥, where on” the columns will represent the nodes as vectors
(SSH, we now proceed in representing them to a metric space in the vector space. As a result, the matrix of the resulting co-
where we can compute similarity between documents. For their Ordinates is expressed as:
similarity, we are based on tlspectraof the normalized Laplacian 1 T
of the two bipartite graphs, following the basis of spectral graph Y= exp[—EtA]cb (6)
theory [3]. The similarity between two semantic forests is even-
tually based on the computation of thkausdorff distance [1] be-
tween the twdSSFs, which considers the spectral properties of the

In this new vector space, the Euclidean distance between nodes
(u,v) of G can then be computed as [6]:

two graphs, and more specifically teectional curvaturesf their VI
edges. TheHausdorff distance has been shown to perform very d3(u,v) = Zeiﬂp[*kiﬂ(gf)i(u) — ¢i(v))? @)
well in the application of graph clustering in the field of computer i=1

vision [6]. Thus, the following procedure, though not new, it consti- \yhere); is thei-th eigenvalue im (the non-zero value in thith
tutes a novel embedding in our case, since it is for the first time, to o of the A matrix), andg; (u) is the value in positiotti, ) of the
the best of our knowledge, that it is applied in graphs representing gjgenvector matrixp. Since for the computation of tHéausdorff
documents, as a means®8Fs. We give details on thelausdorff distance we need the sectional curvature of the edges, ofie
distance in the following section. require the geodesic distance of the nodesv), in addition to

In the following we explain the details of the first application their Euclidean distance. This can be computed as follows [6]:
of this technique in text processing and more specifically we show

how SSF are transformed to facilitate spectral similarity computa- "
tion. Initially, let G(V, E) be a graph, which in our case represents de (u,v) = floor, {> (1 — X)"¢i(u)di(v)} (8)
a document as a means 088F, whereV is the set of its vertices, i=1

and E the set of its edges. For reasons of simplicity, let us also wheren constitutes the length of the walk on ti&SFwith the
assume tha€7 is connected, forming a spanning tree. Primarily, smallest number of connecting edges. Eventually the smallest
for every such graph in our document collection, we compute the value for which the sum in Equation 8 becomes positive.

V]



Algorithm 2 SemaFofSSF, t)
1: INPUT: A semantic spanning fore&SF the parametet of
the heat kernel.
OUTPUT: The indexing ofSSFas a set of ordered lists of real
values in a low-dimensional space.
. L, A, ®, K: Initially empty matrices
: Kset Aninitially empty set of ordered real values
: L: Aninitially empty list of Kset
: SST An initially empty set of trees
: for all s € SSTdo
L := NormalizedLaplacian(s)
A, ® := EigenValueDecompositiof)
for all (u,v) pairse s do
diy(u, v) = SV eap[-Nit] (di(u) — 6i(v))*
de(u,v) = floor, {21V (1= X)) i ()i (v)}
Klu, 0] = 2\/6<dc<u,v>—df<u,v>%
dg(u,v)?2

2:

3
4
5
6
7
8:
9:
10
11
12

13:
14.

end for

15:  Kset:= OrderValuesOfK)
16: L := AddToList(Kse)

17: end for

18: StoreSSFasL

Eventually, the sectional curvature of the edgev) can be com-
puted as follows (the proof can be found in [16]):

2v/6(de (u,v) — dp (u,v)?
dg(uw)%

The sectional curvatures of ttf&SFare the only information that
we index for our tree structures. Essentially, the sectional curva-
tures capture the topological structureS8Fand allows us to con-

k(u,v) = 9)

struct a low-dimensional feature space in which these values reside.

Ultimately, we only need to index those values instead of the full
SSFstructure. Algorithm 2 describes tf@&emaFordocument in-
dexing algorithm. It assumes that t8&Fof a given documenD

Reuters Subset| VSM LSI CF SemalFor
C1l 0.64 | 0.64 | 0.74 0.94
C2 0.5 0.62 | 0.8 0.84
C3 0.25 | 0.34 | 0.48 0.71

Table 1: Overall clustering accuracies on the Reuters subsets.

Subset Cat. P R F1 MP MR MF1
Oil 0.92 | 0.958 | 0.938

c1 Nat-Gas | 0.96 | 0.923 | 0.941 0-94 0.94 1 0.94
Coffee | 0.693 1.0 0.819

c2 Sugar 1.0 0.75 | 0.857 0.847 | 0.875 | 0.86
Grain 0.51 0.91 0.66
Wheat 0.51 0.86 0.64

C3 Ship 10 06 075 0.69 0.84 | 0.76
Crude 0.77 1.0 0.86

Table 2: Detailed clustering results on the Reuters subsets.

The possible solutions are: (a) single-link, with the caveat of the
effect of chaining, (b) complete-link, with the caveat that can be
sensitive to outliers (i.e., smaBSTin our case, describing small
document topics that are quite distant from the la®®T meaning
the larger document topics), and (c) average-link, which is a com-
promise between the sensitivity of complete-link to outliers and
the lack of compactness of single-link. If solution (c) is chosen,
the generalization of thelausdorff distance betweety; and G-
becomes:

|S5Tg, |

Z'L:l

ZL.S:SITG“ Haudorff{(SST;, SST;)

Hausdorff (G1, G2) = 1SST6. ] 155Ta, |
1 2

11)
where|SSTq, |,|SSTq,| is the number 06STin G1 andG; re-
spectively, andSST;, SST; are thei-th andj-th SSTof G, and

has already been computed (using Alg 1). Eventually, a list of sets G2 respectively.

of ordered real values are indexed for ®8F Each set represents
eachSSTof the SSE and the values are the respective sectional
curvatures of th&STedges.

3.3 TheHausdorff Distance

Given two graphs7: (Vi, E1, K1) andGz(Vz, Es2, K3), where
Vi, Vo are the respective sets of their verticés, E» are the re-
spective sets of their edges, aRd, K are the respective matrices
with the sectional curvatures of their edges (ef(u, v) is the
sectional curvature of eddge:, v) in G1) we are using théfaus-
dorff distance [6] to compute the distance betwé&nand G, as
follows:

Hausdorf{G1, G2) = max min [[k2(1,J) — k1 (6, 5)]| (10)

TheHausdorffdistance in our case ismaaximinfunction between

In the remaining of the paper, we will be using Equation 11
whenever the distance computation between documents is required,
e.g., document clustering usitgAC, and its inverse, whenever
similarity is required (e.g., similarity between a query and a doc-
ument). Note that for two documeni3; and D, that are iden-
tical, their SSF are identical. In this case we do not use Equa-
tion 11, because it uses the average-link, and we asstemns-
dorff*(G1,G2) = 0 and the respective similarity being a very
large positive constant.

4. EXPERIMENTAL EVALUATION

We experimentally evaluat8emakForin the text clustering and
retrieval tasks. We are using tiReuters21578 collection for the
former task and th& RECcollection for the latter.

the sectional curvature matrices. Since we have assumed that thét-1 ~ Text Documents Clustering

SSFs we are examining are connected, we will generalize Equation
10 to capture all the cases, i.e., cases 88fFmay contain several
semantic spanning treeS$7T). The generalization takes place in a
similar manner that the average-link works during the agglomera-
tion step in the hierarchical agglomerative clusteriRl\C). The
reason is simple: given two sets (i.e., B8F5) of elements (their

The application oSemakFoiin clustering is straightforward, and
can be easily embedded into the hierarchical agglomerative algo-
rithm (HAC) (i.e, a distance between two documents isHiiaes-
dorff distance of theilSSF). To evaluate the performance $¢-
makForin text clustering we use thReuters21578 data set, com-
prising approximatel21, 500 files organized i 32 (possibly over-

SSTE), we estimate the distance between sets based dhahe- lapping) categories. We are comparing its performance against a
dorff distance between elements. This is exactly the problem faced standard baseline, namely vector space document representation
by theHAC algorithm. with TF-IDF term weights| S|, and theConcept Forestext docu-



Average Precision of top N documents (P at N)
o.3 -

Figure 2: Average Precision of top N documents.

ment similarity approach [15]. In order to be compatible with the
results presented in [15], we are using the same document subsets,
produced as described in their respective work:({1) comprising

50 documents in total from th@il andNat-Gascategories45 doc-

uments from each category), (2)2, comprising100 documents
in total from theCoffeeand Sugarcategories§0 documents from
each category), and ()3, comprising200 documents from the
Grain, Wheat Shipand Crude categories §0 documents in each
category). For our evaluation, we compute precision, recall, and

F-Measure (o, score) for each category in every caéél(C2,

steps involve the optimization of the current implementation and
its expansion in further applications.
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