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Abstract

In distributed database systems, tables are frequently fragmented over a
number of sites in order to reduce access costs. How to fragment and how
to allocate the fragments to the sites is a challenging problem that has previ-
ously been solved either by static fragmentation and allocation, or based on
query analysis. Many emerging applications of distributed database systems
generate very dynamic workloads with frequent changes in access patterns
from different sites. In those contexts, continuous refragmentation and re-
allocation can significantly improve performance. In this paper we present
DYTAF, a decentralized approach for dynamic table fragmentation and al-
location in distributed database systems based on observation of the access
patterns of sites to tables. The approach performs fragmentation and reallo-
cation based on recent access history, aiming at being able to maximize the
number local accesses compared to accesses from remote sites. Through sim-
ulations we show that the approach gives close to optimal performance for
typical access patterns and thus demonstrate the feasibility of our approach.
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1 Introduction

There is an emerging need for efficient support for databases consisting of very
large amounts of data that are created and used by sites at different physical lo-
cations. Examples of application areas include Grid databases, distributed data
warehouses, and large distributed enterprise databases.

In distributed databases, communication cost can be reduced by partitioning
database tables horizontally into fragments, and allocate these fragments to the
sites where they are most frequently accessed. The aim is to make most data ac-
cesses local, and avoid remote read/write. Obviously the big challenges are how to
fragment and how to allocate.

In many of the application areas above there is a very dynamic workload with
frequent changes in access patterns of different sites. One common reason for this
is that data usage often consists of two separate phases: a first phase where writing
of data dominates (for example during simulation when results are written), and
a subsequent second phase when data is mostly read. The dynamism of the total
access pattern is further increased by different instances of the applications being
in different phases.

Previous work on data allocation has focused on (mostly static) fragmenta-
tion based on queries, which is appropriate for the second phase. However, these
techniques are most useful in contexts where read queries dominate and where de-
cisions can be made based on SQL-statement analysis. In general these techniques
also involve a centralized computation based on collected statistics from partici-
pating sites.

Because of dynamic workloads, static/manual fragmentation can not be opti-
mal. Instead, the fragmentation and fragment allocation should be dynamic and
completely automatic, i.e., changing access patterns should result in refragmenta-
tion and reallocation of fragments when beneficial.

In this paper we present DYTAF, a decentralized approach for dynamic table
fragmentation and allocation in distributed database systems based on observation
of the access patterns of sites to tables. The approach performs fragmentation and
reallocation based on recent access history, aiming at being able to maximize the
number local accesses compared to accesses from remote sites.

An example of what we aim at with our approach is illustrated in Fig. 1, where
the figure illustrates the access pattern to a database table from two sites. Site 1 has
a uniform distribution of accesses, while Site 2 has an access pattern with distinct
hot spots. In this case, a good fragmentation would be 6 fragments, one for each of
the hot spot areas and one for each of the areas between. A good allocation would
be the fragments of the hot spot areas (F1, F3, and F5) allocated to site 2, with
the other fragments (F2, F4, and F6) allocated to site 1. As will be shown later in
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Figure 1: Example access pattern, and desired fragmentation and allocation.

the experimental evaluation, DYTAF will detect this pattern, split the table into the
appropriate fragments, and then allocate these fragments to the appropriate sites.
Note that if the access pattern changes later, this will be detected and fragments
reallocated in addition to possible repartitioning.

The main contributions of this paper are 1) a low-cost algorithm for fragmenta-
tion decisions, making it possible to perform refragmentation based on the current
workload, and 2) dynamic reallocation of fragments in order to minimize total ac-
cess cost in the system. The process is performed completely decentralized, i.e.,
without a particular controlling site. An important aspect of our approach is the
combination of the refragmentation and reallocation process. To our knowledge,
no previous work exists that do dynamic refragmentation based on both reads and
writes in a distributed setting.

The organization of the rest of this paper is as follows. In Section 2 we give an
overview of related work. In Section 3 we outline the assumed system and fragment
model and state the problem tackled in this work. In Section 4 we give an overview
of DYTAF. In Section 5 we describe how to manage fragment access statistics. In
Section 6 we describe in detail the dynamic table fragmentation algorithm. In
Section 7 we evaluate the usefulness of our approach. Finally, in Section 8, we
conclude the paper and outline issues for further work.

2 Related work

The problem of fragmenting tables so that data is accessed locally has been stud-
ied before [4, 10, 11, 16, 18, 22]. Given a set of common queries, these methods
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describe a fragmentation that is optimized for the query load. The problems with
these are that they focus on only queries [11, 16] or static placement of fragments
when the query set is known [4, 10, 18, 22]. Some methods also use more partic-
ular information on the data in addition to the query set [19]. This information is
provided by the user, and is not available in a fully automated system.

Our approach does not look at only the queries, but a combination of queries,
inserts, updates and deletes. It can be argued that the workload should be viewed
as a sequence of operations, not a set [1], which is the approach we have taken.
Also, our solution handles both dynamic fragmentation and allocation.

Fragmentation, together with other physical database tuning, such as creat-
ing and dropping indices and materialized views, can be viewed as something to
do only when doing major reconfiguration [17], possibly with the aid of a design
advisor that suggests possible courses of action [23]. On the other hand, fully au-
tomatic tuning [21] has become a popular research direction. Recently, work has
appeared aiming at integrating vertical and physical partitioning while also taking
other physical design features like indices and materialized views into considera-
tion [2].

Using our method, fragments are automatically split, coalesced and reallocated
to fit the current workload using fragment access statistics as a basis for fragment
adjustment decisions. When the workload changes, our method adjusts quickly to
the new situation, without waiting for human intervention or major reconfigura-
tion moments. Closest to our approach may be the work of Brunstrom et al. [6],
which studied dynamic data allocation in a system with changing workloads. Their
approach is based on pre-defined fragments that are periodically considered for re-
allocation based on the number of accesses to each fragment. In our work, there are
no pre-defined fragments. In addition to reallocating, fragments can be split and
coalesced on the fly. Our system constantly monitors access statistics to quickly
respond to emerging trends and patterns.

Mariposa [20] is a notable exception to the traditional, manually fragmented
systems. Mariposa provides refragmentation and reallocation based on a bidding
protocol. The difference from our work is chiefly in the decision making process.
A Mariposa site will sell its data to the highest bidder in a complex bidding process
where sites may buy data to execute queries locally or pay less to access it remotely
with larger access times, optimizing for queries that have the budget to buy the most
data. A DYTAF site will split off or reallocate a fragment if it optimizes access to
the fragment, seen from the fragment’s viewpoint. This is done also during query
execution, not only as part of query planning, as is the case in Mariposa.

Adaptive indexing [1, 5] aims to create indices dynamically when the costs can
be amortized over a long sequence of read operations, and to drop them if there is
a long sequence of write operations that would suffer from having to update both
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base tables and indices. Our work is on tables and table fragments, but shares the
idea of amortizing costs over the expected sequence of operations.

In adaptive data placement the focus has either been on load balancing by data
balancing [7, 13], or on query analysis [15]. In our algorithms we seek to place
data on the sites where they are being used, whether it is reading or writing, not to
balance the load.

During the last years, a number of papers exploring the use of evolutionary al-
gorithms in the fragment allocation task has appeared [3, 8]. However, they do not
look into how the tables should be fragmented, and not how to cope with dynamic
workloads.

Obviously some of the research in distributed file systems (see summary in [12])
is also relevant to our approach. One important difference between distributed file
systems and distributed database systems is the typical granularity of data under
consideration (files vs. tuples) and the availability of a fragmentation attribute that
can be used for partitioning in distributed database systems. Our system adapts its
granularity, i.e., fragment size, to the current workload.

Our approach is to refragment on the fly, based on current operations and re-
cent history of reads and writes. Refragmentation is done automatically without
user interaction. Contrary to much of the work on parallel database systems, our
approach has each site as an entry point for operations. This means that no single
site has the full overview of the workload. Instead of connecting to the query pro-
cessor and reading the WHERE-part of queries, we rely on local access statistics
to make fragmentation decisions.

3 Preliminaries

In this section we present preliminaries that provides the context for the rest of the
paper. We also introduce symbols to be used throughout the paper, summarized in
Table 1.

3.1 System model

The system is assumed to consist of a number of sites Si, i = 1 . . . n, and we
assume that sites have equal capabilities and communication capacities.

Each site has a DBMS, and a site can access local data and take part in the
execution of distributed queries, i.e., the DBMSs together constitute a distributed
database system. The distribution aspects can be supported directly by the local
DBMS or can be provided through middleware.

Our approach assumes that data can be represented in the (object-)relational

6



data model, i.e., tuples ti being part of a table T . A table can be stored in its
entirety on one site, or it can be horizontally fragmented over a number of sites.
Fragment i of table T is denoted Fi.

In order to improve both performance as well as availability, fragments can
be replicated, i.e., a fragment can be stored on more than one site. We require
that replication is master-copy based, i.e., all updates to a fragment are performed
to the master-copy, and afterwards propagated to the replicas. Beyond this, repli-
cation has little impact on our approach. If a master replica gets refragmented,
other replicas must be notified so they can be refragmented as well. Beyond the
notification, this should not incur any extra communication cost.

3.2 Fragment model

Fragmentation is based on one attribute value having a domain D, and each frag-
ment covers an interval of the domain of the attribute, which we call fragment
value domain (FVD). We denote the fragment value domain for a fragment Fi as
FVD(Fi) = Fi[mini,maxi]. Note that the FVD does not imply anything about
what values that actually exist in a fragment. It only states that if there is a tuple in
the global table with value v in the fragmentation attribute, then this tuple will be
in the fragment with the FVD that covers v. We define two fragments Fi and Fj to
be adjacent if their FVD meets, i.e.:

adj(Fi, Fj)⇒ maxi = minj ∨maxj = mini

When a table is first created, it consists of one fragment covering the whole
domain of the fragmentation attribute value, i.e., F0[Dmin, Dmax], or the table
consists of a number of fragments F1, . . . , Fn where ∪FVD(Fi) = [Dmin, Dmax]
A fragment Fprev can subsequently be split into two or more fragments F1, . . . , Fn.
In this case, the following is true:

∪n
i=1Fi = Fprev

∀Fi, Fj ∈ {F1, . . . , Fn}Fi 6= Fj ⇒ Fi ∩ Fj = ∅

In other words, the new fragments together cover the same FVD as the origi-
nal fragment, and they are non-overlapping. Two or more adjacent fragments
F1, . . . , Fn can also be coalesced into a new fragment if the new fragment cov-
ers the same FVD as the previous fragments covered together:

Fnew = ∪n
i=1Fi

∀Fi ∈ {F1, . . . , Fn}∃(Fj ∈ {F1, . . . , Fn})adj(Fi, Fj)
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Symbol Description
Si Site
ti Tuple
T Table T
Fi Fragment i of table T
Fi[min,max] Fragment value domain
Ft Fragmentation at time t
C Cost
Ai Tuple access
REj Refragmentation

Table 1: Symbols.

Assume a distributed database system consisting of a number of sites Si, i =
1 . . . n and a global table T . At any time t the table T has a certain fragmentation
Ft = {S0(F0, F3), S3(F1, F2)}. Note that not all sites have allocated fragments,
and that there in addition might be replicas of fragments created based on read
pattern.

3.3 Problem definition

During operation, tuples are accessed as part of read or write operations. If the
fragment where a tuple belong (based on the value of the fragmentation attribute)
is stored on the same site as the site Sa performing the access A, the cost is C(A) =
CL. On the other hand, if the fragment is stored on a remote site, a remote access
has to be performed, which has a cost of C(A) = CR. In this paper we focus on
reducing the communication costs, and let CL = 0. Note however that it is trivial
to extend our approach by including local processing cost.

If we consider the accesses in the system as a sequence of n operations at
discrete time instants, the result is a sequence of accesses [A1, ..., An]. The total
access cost is C =

∑
i C(Ai). The access cost of a tuple at a particular time instant

depends on the fragmentation Ft.
Refragmentation and reallocation of fragments can be performed at any time.

The main cost of refragmentation (given a computationally cheap algorithm for
determining fragmentation and allocation) is the migration of fragments from one
site to another. We denote the total cost of one refragmentation/reallocation as
C = C(REj) (this includes any regeneration of indices after migration). Thus
the total refragmentation/reallocation during the time the system is observed is
C =

∑
j C(REj).

The combined cost of access and refragmentation/reallocation is thus Ctotal =
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Figure 2: Dynamic fragmentation and allocation.

∑
i C(Ai) +

∑
j C(REj). Note that the access and refragmentation/reallocation

operations are interleaved. The aim of our approach is to optimize the cost Ctotal.

4 Overview of DYTAF

This section describes our approach to dynamically fragment tables and allocate
those fragments to different sites in order to improve locality of table accesses and
thus reduce communication costs. Each site makes the decision to split and/or
migrate its local fragments independently of other sites. In case of replication,
only the master replicas are considered. This means that no extra communication
between sites is necessary to make fragmentation decisions. Our approach has two
main parts: 1) detecting fragment access patterns, and based on these statistics to
2) decide on refragmentation and reallocation. The approach is illustrated in Fig. 2.

In order to make informed decisions about useful fragmentation changes, future
accesses have to be predicted. As with most online algorithms, predicting the future
is based on knowledge of the past. In our approach, this means detecting fragment
access patterns, i.e., which sites are accessing which parts of fragments. This is
performed by recording fragment accesses in order to discover access patterns.
Recording accesses is performed continuously, with old data periodically discarded
to make the statistics only include recent accesses. In this way the system can adapt
to changes in access patterns. Statistics are stored using histograms, as described
in Section 5.

Given available statistics, our table fragmentation algorithm examines accesses
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for each fragment and evaluates possible refragmentations and reallocations based
on recent history. The algorithm runs at given intervals, individually for each
fragment. A vital component of this algorithm is a cost function that estimates
the difference in future communication costs between a given refragmentation and
keeping the fragment as is. Details are presented in Section 6.

5 Fragment access statistics

Recording of fragment accesses is performed at tuple level. The access data con-
sists of (S, v) tuples, where S is the site from which the operation came and v is
the value of the fragmentation attribute. In cases where recording every access can
be costly (overhead is discussed later), it is possible to instead record a sample of
accesses – trading accuracy for reduced overhead.

Since we only record accesses to the master replica, accesses will not include
reads performed on non-master replicas. This choice was made for two reasons:
1) we focus on optimizing writes as optimizing reads has been previously studied
(see Section 2), and 2) recording accesses to the master replicate can be performed
without involving sites with other replicas. In cases where recording all reads is
important, our approach can easily be extended by recording statistics on all replica
sites and transmit them periodically to the master replica site.

The data structure used to store access statistics is of great importance to our
approach. It should have the following properties:

• Must hold enough information to capture access patterns.

• Efficient handling of updates as they will be frequent.

• Memory efficient - storage requirements should not depend on fragment size
or number of accesses.

• Must be able to handle any v values, because it will not be known beforehand
which ranges are actually used.

• Must be able to effortlessly remove old access history in order to only keep
recent history.

Since our purpose for recording accesses is to detect access patterns in order
to support fragmentation decisions, we are interested in knowing how much any
given site has accessed different parts of the fragment. For this reason, we have
selected to use a set of histograms, one for each site, as the basic data structure for
each fragment. These histograms must be small enough to be kept in main memory
for efficient processing.
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Symbol Description
Hi Histogram
bk Histogram bucket number
Bi[bk] Histogram bucket
W Bucket width
MAXB Maximum number of buckets
ZW Factor used when resizing buckets

Table 2: Histogram symbols.

Below we present the design of our access statistics histograms as well as al-
gorithms for the different histogram operations.

5.1 Histogram design

Histograms have been used for a long time to approximate data distribution in
databases [14]. Most of these have been static histograms constructed from an
existing data series and then left unchanged. In our case, data arrives and must be
recorded in the histogram continuously. Static histograms would therefore soon
be out of date and constant construction of new histograms would have prohibitive
cost.

Another class of histograms is dynamic histograms [14, 9], that are maintained
incrementally and therefore more suited for our approach. Most histograms de-
scribed in the literature are equi-depth histograms, since these capture distributions
better than equi-width histograms for the same number of buckets [14].

For our approach we have instead chosen to use equi-width histograms. This
was done in order to improve the performance of histogram operations, since equi-
width histograms by design are simpler to use and access than equi-depth his-
tograms. This is because all buckets have the same width, and finding the correct
bucket for a given value is therefore a very simple computation. As will become
apparent when we describe histogram updates and retrievals in detail below, it also
simplifies computing histogram range counts when we use two different histogram
sets in order to store only the recent history. The obvious disadvantage of using
equi-width histograms is that we have to use more buckets in order to capture ac-
cess patterns equally well to equi-depth histograms. However, the considerably
reduced computational cost makes this an acceptable trade-off.

Histogram-related symbols used in the following discussion are summarized
in Table 2. The value of bucket number bk of histogram Hi is denoted as Bi[bk].
We use equi-width histograms with bucket width W and limit bucket value ranges
to start and end on multiples of W . This means that the value range covered by
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bucket Bi[bk] is [bk ∗W, (bk + 1) ∗W ).
Histograms only maintain statistics for values that are actually used, i.e., they

do not cover the whole FVD. This saves space by not storing empty buckets, which
is useful since we lack a priori knowledge about fragment attribute values. Buckets
are therefore stored as (bk, Bi[bk]) pairs hashed on bk for fast access.

In order to limit memory usage, there is a maximum number of stored buckets
MAXB . If a histogram update brings the number of stored buckets above MAXB ,
the bucket width is scaled up by a factor ZW . Similarly, if the number of buckets
used is small, bucket width is decreased by the same factor. This is performed to
make sure we have as many buckets as possible, as this better captures the fragment
access history.

In order to store only the most recent history, we use two sets of histograms: the
old and the current set. All operations are recorded in the current set. Every time
the evaluation algorithm has been run, the old set is cleared and the sets swapped.
This means that the current set holds operations recorded since the last time the
algorithm was run, while the old set holds operations recorded between the two last
runs. For calculations, the fragmentation algorithm uses both sets. This is made
simple by the fact that we always use the same bucket width for both sets and that
bucket value range is a function of bucket number and width. Adding histograms is
therefore performed by adding corresponding bucket values. We denote the current
histogram storing accesses from site Si to fragment Fj as Hcur[Si, Fj ], while the
old histogram is Hold[Si, Fj ]

5.2 Histogram operations

This section presents algorithms for the different histogram operations.

5.2.1 Histogram update

Every time a tuple in one of the local fragments is accessed, the correspond-
ing histogram is updated. This is described in Algorithm 1. Although not in-
cluded in the algorithms to improve clarity, we perform value normalization on
values before they are entered into the histogram. Assuming a fragment Fi with
FVD(Fi) = Fi[mini,maxi] and a tuple tj with fragmentation attribute value vj .
We then record the value vj −mini. This means that histogram bucket numbers
start at 0 regardless of the FVD.

Since this operation is performed very often, it is important that it is efficient.
As described above, the value range of bucket number bk is [bk ∗W, (bk +1)∗W ).
Processing is therefore determining bk for a given fragmentation attribute value
vj and incrementing the bucket value. The formula is bk = vj/W which means
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Algorithm 1 Site Si accesses tuple tj in fragment Fj with fragmentation attribute
value vj .
histogramUpdate(Si, Fj , vj){

Hi ← Hcur[Si, Fj ]
bk ← vj/W
Bi[bk]← Bi[bk] + 1
if numberOfBuckets > MAXB then

increaseBucketWidth(Fj)
end if

}

processing is O(1). Also, since histograms are kept in main memory, histogram
updates do not incur any disk accesses.

If no bucket already exist for bucket number bk, a new bucket must be con-
structed. This is the only time the histogram gets more buckets, so after the update
the current number of buckets is checked against the upper bound MAXB and
bucket width is increased (and thus the number of buckets decreased) if we now
have too many buckets.

5.2.2 Histogram bucket resizing

If at any time a tuple access occurs outside the range covered by the current buckets,
a new bucket is made. If the upper bound of buckets MAXB is reached, the bucket
width W is increased and the histograms reorganized. We do this by multiplying
W with a scaling factor ZW . This factor is an integer such that the contents of
new buckets are the sum of a number of old buckets. Increasing bucket width of
course reduces the histogram accuracy, but it helps reduce both memory usage and
processing overhead. Since we only store recent history, we may reach a point
where the set of buckets in use becomes very small. If we can reduce bucket
width to W/ZW and still have fewer buckets than the upper bound, the histogram
is reorganized by splitting each bucket into ZW new buckets. This reorganization
assumes uniform distribution of values inside each bucket, which is a common
assumption [14]. Details are shown in Algorithm 2. Note that this is performed
for both the current and old set of histograms in order to make them have the same
bucket width as this makes subsequent histogram accesses efficient. The function
getActiveSites(F ) returns the set of all sites that have written to fragment F .

Similarly, if we at any point only use a very low number of buckets, the bucket
widths can be decreased in order to make access statistics more accurate. Algo-
rithm 3 describes how this is done. Of special note is the expression max(1, Bi[bk]/ZW ).
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Algorithm 2 Increase bucket width W for histograms for fragment F by factor
ZW .
increaseBucketWidth(F ){

for all Si ∈ getActiveSites(F ) do
for all Hi ∈ Hcur[Si, F ] ∪Hold[Si, F ] do

H ′
i ← 0 {′ indicates temporary values}

for all Bi[bk] ∈ Hi do
b′
k = bk/ZW

B′
i[b

′
k] = B′

i[b
′
k] + Bi[bk]

end for
Hi ← H ′

i

end for
end for
}

If the large bucket to be divided into smaller buckets contain only a few tuples,
rounding can make Bi[bk]/ZW = 0 which would in effect remove the bucket (since
only buckets containing tuples are stored). To prevent loss of information in this
case, new buckets contain a minimum of 1.

5.2.3 Histogram range count

When retrieving access statistics from histograms, i.e., contents of buckets within
a range, both current and old histograms are used. Since both histograms have
the same bucket width and corresponding bucket numbers, retrieval is a straight
summation of range counts from the two histograms and therefore very fast to
perform. Range count is shown in Algorithm 4. In order to get the sum of range
counts from all sites, the function histogramRangeCountAll(F, bmin, bmax) is
used.

5.2.4 Histogram reorganization

As stated earlier, it is important that only the recent access history is used for
fragment evaluations in order to make it possible to adapt to changes in access
patterns. This is done by having two sets of histograms. How these two sets are
swapped is described in Algorithm 5.

The only time buckets are removed from the histogram is during reorganiza-
tion. It is therefore the only time that the number of buckets in the histogram can
get so low that we can decrease the bucket width (thus creating more buckets) and
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Algorithm 3 Decrease bucket width W for histograms for fragment F by factor
ZW .
decreaseBucketWidth(F ){

for all Si ∈ getActiveSites(F ) do
for all Hi ∈ Hcur[Si, F ] ∪Hold[Si, F ] do

H ′
i ← 0

for all Bi[bk] ∈ Hi do
for b′

k = 0 to ZW do
B′

i[bk ∗ ZW + b′
k] = max(1, Bi[bk]/ZW )

end for
end for
Hi ← H ′

i

end for
end for
}

Algorithm 4 Count number of accesses from site S to fragment F stored in buckets
numbered [bmin, bmax].
histogramRangeCount(S, F, bmin, bmax){

n← 0
Hcur ← Hcur[S, F ]
Hold ← Hold[S, F ]
for bi = bmin to bmax do

n← n + Bcur[bi] + Bold[bi]
end for
return n

}
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Algorithm 5 Performed periodically to remove old access history statistics for
fragment F .
histogramReorganize(F ){

for all Si ∈ getActiveSites(F ) do
Hold[Si, F ]← Hcur[Si, F ]
Hcur[Si, F ]← 0

end for
if numberOfBuckets ∗ ZW < MAXB then

decreaseBucketWidth(F )
end if

}

still stay below the bucket number maximum MAXB .

5.3 Histogram memory requirements

It is important that the size of the histograms is small so enough main memory
is available for more efficient query processing and buffering. For every master
replica a site has, it must store two histograms for each active site accessing the
fragment. Every bucket is stored as a (bk, Bi[bk]) pair. Assuming b buckets and c
active sites, the memory requirements for each fragment is 2∗c∗b∗sizeOf(bucket)
or O(b ∗ c). Since b have an upper bound MAXB , memory consumption does not
depend on fragment size or number of accesses, only the number of active sites.

6 Dynamic table fragmentation algorithm

The aim of the fragmentation algorithm is to identify parts of a table fragment that,
based on recent history, should be extracted to form a new fragment and migrated to
a different site in order to reduce communication costs (denoted extract+migrate).

More formally, assume a fragmentationFold which includes a fragment Fi with
FVD(Fi) = Fi[mini,maxi] allocated to site Si. Find a set of fragments Fm, ..., Fn

such that ∪Fm, ..., Fn = Fi with Fnew ∈ Fm, ..., Fn allocated to site Sk 6= Si such
that communication cost Ctotal =

∑
C(Ai) +

∑
C(REj) decreases.

Below we first present the algorithm itself before we describe the cost function
used to predict future communication costs from a given refragmentation.
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6.1 Algorithm details

The algorithm is run for each fragment a given site has the master replica of, at
regular intervals. The result of each execution can be either: 1) do nothing, i.e,
the fragment is where it should be, 2) migrate the whole fragment, or 3) extract a
new fragment Fnew with FVD(Fnew) = Fnew[minnew,maxnew] and migrate it. If
any fragments are migrated, the algorithm is run again on the remaining fragments
until no further changes are made. A decision to migrate the whole fragment can
be seen as a special case of extract+migrate. In the discussion below, we therefore
focus on how to find appropriate values for minnew and maxnew.

The algorithm for evaluating and refragmenting a given fragment F is pre-
sented in Algorithm 6. In the algorithm the cost function (to be described in detail
below) is applied to all possible Fnew for each remote site Sr that has written to F .
The result is a utility value that estimates the communication cost reduction from
extracting and migrating Fnew to Sr. After all possible Fnew and Sr have been
evaluated, the extract+migrate with highest utility is executed. In the case of no
alternatives giving a utility larger than 0, no refragmentation will be made. Note
that no fragments with FVD less than fragmentMinSize will be extracted in order
to prevent refragmentation to result in an excessive number of fragments.

Given a fragment Fi with FVD(Fi) = Fi[mini,maxi]. The size of the frag-
ment value domain is then width = maxi −mini + 1. Assume a new fragment
Fnew such that FVD(Fnew) = Fnew[minnew,maxnew] ∈FVD(Fi). If FVD(Fnew)
is assumed to be non-empty, i.e., maxnew > minnew, then width − 1 possible
values for minnew and maxnew are possible. This means that O(width2) possible
fragments Fnew will have to be evaluated. This could easily lead to a prohibitively
large number of Fnew to consider, so some simplification is necessary.

The reduction in number of possible fragments to consider is obtained based
on the following observation:

Observation: The basis for the evaluation algorithm is the access histograms
described above. These histograms represent an approximation since details are
limited to the histogram buckets. It is therefore only meaningful to consider FVD(Fnew)
with start/end-points at histogram bucket boundaries.

With b histogram buckets and b << width as well as b having a upper bound,
processing becomes feasible. The number of value ranges to consider is b(b +
1)/2 or O(b2). An example of a histogram with four buckets and 10 possible
FVD(Fnew) is shown in Fig. 3.

If any Fnew is migrated, the algorithm runs recursively on any remaining frag-
ments. The minimum size of FVD(Fnew) is one bucket width or W . With respect
to run time, the worst case is a new fragment of minimum size extracted from each
recursive iteration. This means that the maximum recursive depth is equal to the
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Algorithm 6 Evaluate fragment F for any possible extract+migrates. F is cur-
rently located on site Sl.
dynamicFragmentation(F ){

bestUtility ← 0
for all Sr ∈ getActiveSites(F ) do

Hcur ← Hcur[Sr, F ]
Hold ← Hold[Sr, F ]
for all Bcur[min] ∈ Hcur, Bold[min] ∈ Hold do

for all Bcur[max] ∈ Hcur, Bold[max] ∈ Hold do
cardr ← histogramRangeCount(Sr, F, min, max)
cardl ← histogramRangeCount(Sl, F, min, max)
cardA ← histogramRangeCountAll(F,min,max)
utility ← cardr−wSl∗cardl−wSA∗cardA−wF ∗card(F ) {Explained
in Section 6.2}
if utility > bestUtilty and (max−min+1) > fragmentMinSize then

bestutility ← utility
Smigrate ← Sr

bestMin← min
bestMax← max

end if
end for

end for
end for
if bestUtility > 0 then

F1, Fnew, F2 ← extract(F, bestMin, bestMax)
migrateFragment(Fnew, Sr) dynamicFragmentation(F1)
dynamicFragmentation(F2)

else
coalesceLocalFragments(F )
histogramReorganize(F )

end if
}

18



Bk[1] Bk[2] Bk[3] Bk[4]

Histogram

buckets

Possible

value

ranges

Figure 3: Histogram with four buckets and corresponding value ranges.

number of buckets.
Finally, after the algorithm has completed, any adjacent fragments that now re-

side on the same site, are coalesced (denoted coalesceLocalFragments() in the
algorithm). This helps keep the number of fragments down. Also, old access statis-
tics are removed (histogramReorganize()) from any remaining local fragments
as described in Algorithm 5.

6.2 Cost function

The core of the dynamic table fragmentation algorithm is the cost function. As-
suming a fragment F is currently allocated to site Sl. The function estimates the
communication cost difference between keeping F as is, and migrating it to Sr.
The basic assumption is that future fragment accesses will resemble recent history
as recorded in the access statistics histograms.

From Section 3.3 we have that the communication cost is Ctotal =
∑

i C(Ai)+∑
j C(REj). We first consider keeping the fragment F on site Sl. This means no

migration, i.e.,
∑

j C(REj) = 0. The recent history for fragment F consists of a
series of accesses SA = [A1, ..., An]. Each access Ai comes from a site Sk. The
accesses from a given site Sk is SA(Sk) where SA(Sk) ⊂ SA. Since we mea-
sure communication cost, local accesses have no cost, i.e., ∀Ai, Ai ∈ SA(Sl) ⇒
C(Ai) = 0. The communication cost for one remote access is CR, thus:

Ckeep = CR ∗ card(SA− SA(Sl)) (1)

where card(SA) is the number of accesses.
Alternatively we can migrate F to Sr with the communication cost C(REj).

After the migration is complete, accesses from Sr will become local (i.e., no cost),
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while accesses from Sl will become remote and now cost CR each. The communi-
cation cost is therefore:

Cmigrate = C(REj) + CR ∗ card(SA− SA(Sr)) (2)

Our basic assumption is that a migration should be made if recent history in-
dicates that the fragment should have been migrated a while ago, i.e. fragment F
should be migrated if Cmigrate < Ckeep. Since accesses from sites other than Sl

and Sr will be remote accesses no matter what, their cost is irrelevant and can be
omitted. We should therefore migrate F to Sr if:

C(REj) + CR ∗ card(SA(Sl)) < CR ∗ card(SA(Sr)) (3)

The card(SA(Sl)) and card(SA(Sr)) values are found using the fragment
access statistics histograms. We have used CR = 1, i.e. a cost of 1 for accessing
one tuple. Similarly, the cost of migrating a fragment F is equal to the number of
tuples in the fragment, denoted card(F ). We therefore get:

card(F ) + card(SA(Sl)) < card(SA(Sr)) (4)

In order to compare different possible migrations, we use:

utility′ = card(SA(Sr))− card(SA(Sl))− card(F ) (5)

While this equation is an expression of possible communication cost savings
from a given migration, it can not quite be used as it is in the actual implementation.
There are a couple of problems. First, SA by design includes only the recent
history and the card(SA) values are therefore dependent on how much history we
include. On the other hand, card(F ) is simply the current number of tuples in the
fragment and thus independent on history size. We therefore scale card(F ) by a
cost function weight wF . This weight will have to be experimentally determined
and optimal value will depend on how much history we allow SA to contain.

The second problem is that Eq. 5 could in some cases lead to an unstable situa-
tion where a fragment is migrated back and forth between sites. This is something
we want to prevent as migrations causes delays in table accesses and indicies may
have to be recreated every time. For a small fragment, especially with the introduc-
tion of wF , just a few more accesses from Sr compared to Sl is enough to result in
migration. If two sites alternate in having the upper hand with respects to number
of accesses, unstable fragmentation would be the result. To alleviate this problem,
we scale card(SA(Sl)) by wSl. A value wSl = 1.5 would mean that there have to
be 50 % more remote accesses than local accesses for migration to be an option.
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For small fragments with little traffic, wSl is not enough to achieve stability
(e.g. 2 > wSl ∗ 1). To prevent this, we ensure that the number of remote accesses
is above a percentage wSA of the total number of accesses. The revised version of
Eq. 5 becomes:

utility = card(SA(Sr)− wSl ∗ card(SA(Sl))
−wSA ∗ card(SA)− wF ∗ card(F ) (6)

Values for all these three cost function weights are experimentally determined
in the Evaluation Section below.

7 Evaluation

In this section we present an evaluation where our approach is compared to two al-
ternative fragmentation strategies. We compare by measuring the communication
cost (remote accesses and migrations) for a series of distributed workloads. The
evaluation has five parts. First we describe the experimental setup. Then we de-
termine optimal values for the three cost function weights. Next, we examine how
sensitive the evaluation result is to changes in the function weights. The optimal
values for the weights are then used in an examination of ten simple workloads
where each highlight a different aspect of how our approach works. Finally, we
study in detail a more complex workload involving five sites.

7.1 Experimental setup

For the evaluation, we implemented a simulator which allowed us to generate dis-
tributed workloads, i.e., simulate several sites all performing tuple accesses with
separate access patterns. For each simulated site, the following parameters could
be adjusted:

• Fragmentation attribute value interval: minimum and maximum values in
the accesses from the site.

• Access distribution: either uniform, hot spot (10 % of the values get 90 % of
the accesses) or sequential access.

• Frequency: this could either be constant or with bursts. For bursts, 90 % of
the operations were generated in 10 % of the time.

• Average rate of tuple accesses in number of accesses per minute. We use a
Poisson distribution to generate accesses according to the frequency settings
(constant or burst).
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To our knowledge, no previous work exists that do dynamic refragmentation
based on both reads and writes in a distributed setting. We have therefore chosen
to compare our dynamic fragmentation approach to two alternative fragmentation
methods:

The first is a baseline where the table is not fragmented at all. The table con-
sists of a single fragment permanently allocated to the site with the largest total
number of accesses. This is what would happen in a database system that does
not use fragmentation (e.g. to simplify implementation and configuration), at least
given that workloads were completely predictable. Since there is no fragmentation,
there are no communication costs from migrations either.

The second allocation method we compare against, is optimal fragmentation.
Here we assume full knowledge about future accesses. Each table is (at runtime)
fragmented and the fragments are migrated to the sites which would minimize
remote accesses.

It should be noted that both these fragment allocation alternatives assume ad-
vance knowledge about the fragmentation attribute value interval, distribution and
frequency of accesses, neither of which are required for our dynamic approach.

7.2 Cost function weights

For initial testing, we designed 10 test cases. Each test case has two sites accessing
10000 tuples each. Early testing showed that 10000 tuples was more than enough
to reach a stable fragmentation situation. Only two sites were used for these work-
loads in order to simplify workloads which would allow us to better detect how
different workload parameters impact our results. Each workload was therefore
designed with one specific purpose in mind. We later present a more complex
workload involving five sites.

The fragmentation attribute value intervals for the two sites were designed so
that they either overlap 100 %, 10 % or not at all. Two rates are used, a high rate
of 1500 operations per minute and a low rate of 750 operations per minute. For
the first seven test cases, the workload was constant for both sites, while the last
three switched workload parameters halfway through the test case. These three
serve as examples of dynamic workloads where access patterns are not constant
and predictable. The results from these cases should illustrate if our approach’s
ability to adjust fragmentation at runtime result in communication cost savings.

The test cases are detailed in Table 3. Below is an explanation of what we
wanted to test with each test case.

Test case 1: Since there are no overlap between the accesses from the two sites,
we should end up with two fragments; one for each site. This is therefore a simple
test to see if the algorithm is able to detect non-overlapping accesses.
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Test case Overlap Distribution Frequency Rate Purpose
1 0 % Uniform Constant High Detect non-overlap
2 100 % Uniform Constant High Baseline
3 100 % Uniform Burst High Effects of burst
4 100 % Uniform Constant High / Low Detect rate diff.
5 100 % Uniform / Hot spot Constant High Detect hot spots
6 100 % Uniform / Sequential Constant High Effects of sequential
7 10 % Uniform Constant High Detect overlap
8 100 % Uniform Constant High Detect overlap change

10 % Uniform Constant High
9 100 % Hot spot / Uniform Constant High Detect distribution change

100 % Uniform / Hot spot Constant High
10 100 % Uniform Constant High / Low Detect rate change

100 % Uniform Constant Low / High

Table 3: Evaluation test cases.

Test case 2: With 100 % overlap, uniform distribution and constant rate, the
two sites are completely equal. One site should therefore not be preferred over the
other and the fragment should remain whole and not be migrated. This is therefore
a test of stability.

Test case 3: With burst accesses, one site can temporarily dominate the other
in terms of number of accesses. However since the distribution and overall rates
are equal, there is little to gain from migration. This test case therefore serves as a
more difficult test of stability than the previous case.

Test case 4: Here the two sites have different access rates. The fragment should
therefore end up on the site with the highest rate.

Test case 5: In this case, one of the sites has 10 hot spots while the other has
uniform access distribution. Ideally, these 10 hot spots should be detected and
migrated while the remainder should be left on the uniform access site. This case
is similar to the one presented in Fig. 1.

Test case 6: Sequential access works against our approach since we assume
that recent history will be repeated in the near future. We therefore expect this test
case to perform worse than the above cases.

Test case 7: This case has only 10 % overlap between the accesses from the
two sites. This overlap should be detected and placed on either site while the two
non-overlapping sections should be migrated to their respective sites.

Test case 8: In this case the workload changes after 50 % of the accesses have
been made. Essentially we change from test case 2 to 7 and the fragmentation
should match this change.

Test case 9: Another case with workload change. This time two clients swap
between having uniform access and hot spots.

Test case 10: The last case is to test how well the algorithm can detect a work-
load where the rate changes halfway through.

A wide variety of values for the three different cost function weights were
tested using these test cases. In these tests the dynamic fragmentation algorithm
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Figure 4: Communication cost as function of wSl.

was run every 30 seconds. From the results, it was determined that the best results
were achieved with:

• wSl = 1.5

• wSA = 0.04

• wF = 0.1

7.3 Cost function weight sensitivity

Since the values for the three cost function weights were determined experimen-
tally, it is important to examine to which degree small changes in weight values
influence the result. Figures 4, 5 and 6 show how the communication cost in-
creases with varying weight values compared to the best weight value set. Error
bars indicate the standard deviation. Each point is an average from 60 runs of each
of the 10 test cases described above.

The wSl weight controls the degree in which the number of local accesses
should impact the chance of migration. With low values, many local accesses are
needed to prevent migration and the migration cost thus dominated. With high
values, only a few local accesses are needed to keep the fragment fixed and remote
accesses will dominate the communication cost.

The second weight, wSA, controls the percentage of accesses that must be from
a given remote site before migration to this site is considered. With wSA = 0,
one more remote access than local access can be enough to force migration of a
small fragment. So with low weight values, the situation is unstable with lots of
migrations back and forth, leading to high communication cost. For high weight
values, one remote site must dominate other sites with respect to access frequency
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in order to force migration. This tends to lead to too few migrations and a large
number of remote accesses.

wF controls how important the fragment size is when migration is considered.
For low weight values, large fragments will more easily be migrated and migration
will dominate the communication cost. Similarly, large values will make large
fragments all but immovable and remote accesses will be more prevalent.

7.4 Detailed results

Detailed results from the test with the best weight value set, is shown in Table 4.
This table lists the number of remote accesses (out of 20000), migrations, frag-
ments at the end of the run and the number of tuples transferred during migrations.
The values are averages from 60 simulation runs. The communication cost is the
sum of remote accesses and tuples transferred. The final two columns shows the
communication cost from the no fragmentation and optimal allocation methods.

Test Case Remote accesses Migrations Fragments Tuples Comm. cost No fragmentation Optimal
1 749 1 2 523 1272 10000 0
2 10000 0 1 0 10000 10000 10000
3 9982 20 4 431 10413 10000 10000
4 5123 5 2 199 5322 5000 5000
5 4038 11 20 422 4460 10000 2000
6 10132 4 2 354 10486 10000 10000
7 1674 1 2 494 2168 10000 1000
8 6199 1 2 896 7095 10000 5500
9 6821 51 21 1188 8009 10000 3000

10 6078 8 3 1258 7336 10000 6000

Table 4: Detailed results, best weight value set.

Fig. 7 show the results graphically. For each alternative algorithm, the graph
shows the percentage of tuples transferred (either from remote writes or migra-
tions).
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Test case 1: Since we have 0 % overlap we should end with two fragments, one
for each site. The results show that this is what happens. The only remote accesses
that happen, are those that occur before the algorithm runs for the first time and the
access pattern is detected.

Test case 2: With uniform distribution and 100 % overlap, it makes no sense to
migrate anything as there is nothing to be saved wrt. locality. Note that the situation
is stable, no migrations happen.

Test case 3: Burst causes some instability since it may appear from recent
access history that one client is more active than the other. We therefore experi-
ence some migrations and fragmentation. This is an example of a workload not
especially suited for our approach, even if the overhead compared to the other
fragmentation strategies is minor.

Test case 4: With a rate difference, the fragment should always end up on
the site with the highest rate. This happens, but it can take a little while for the
algorithm to notice the pattern, especially if the first recorded accesses come from
the low rate site.

Test case 5: Ideally, the algorithm should detect all hot spots and extract+migrate
corresponding fragments while leaving the remainder of the table at the site with
uniform distributed access. This is in fact what happens: 10 hot spots and 10 frag-
ments.

Test case 6: A basic premise in our approach is that future accesses will be
similar to recent accesses. With sequential access, this is not true. We therefore
experience some minor overhead from wrongful migrations.

Test case 7: Similar to test case 1. The first time the algorithm runs, the 10 %
overlap is noticed and the table fragmented accordingly. Only one migration so the
situation is very stable.

Test case 8: Minor overhead from detecting the change in overlap. This over-
head is larger than for test case 1 simply because at the time the workload changes,
the recent history is filled with the old workload and it takes a while for the new
workload to dominate.

Test case 9: Similar to test case 5 with extra overhead as for test case 8.
Test case 10: Similar to test case 4 with extra overhead as for test case 8.

7.5 Workload involving more sites

This section presents the results from a more comprehensive workload involving
more than just two sites. The workload is illustrated in Fig. 8. It consists of five
sites: two ”readers” and three ”writers”. Each of the writers accesses to a limited
value interval of the fragmentation attribute, with uniform distribution and constant
rate (3000 accesses per minute). They could, e.g., represent the writing of results
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Figure 9: Comparative results from five site workload.

from a simulator distributed to three sites. The two readers access the whole table
with uniform distribution. The first has a constant low rate of 1500 accesses per
minute, while the second only starts after 50 % of the accesses have been made and
then reads at a rate of 3000 accesses per minute.

The optimal fragmentation for this workload would be to fragment the table
into five fragments: three for each of the sections accessed by the writers. The
remaining two fragments should initially be allocated to S0, but then be migrated
to S1 as soon as that reader starts (since it has higher rate than the reader on S0).
The results from the simulation of our dynamic fragmentation algorithm applied
to this workload is shown in Fig. 9. For each simulation run, the sites accessed
160 000 tuples and the run was completed 60 times. While no fragmentation has
300 % higher network cost than optimal fragmentation, our algorithm was only
27 % higher than optimal. Some of this overhead is unavoidable as it takes a
little while to detect access patterns (remember that the optimal algorithm assumes
perfect knowledge about the future.)

For this workload we also tested how the size of the access history and the inter-
val between fragment evaluations affect the results. Since histogramReorganize()
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(see Algorithm 5) is executed every time the fragmentation algorithm runs, the ac-
cess data is used two times. Once as part of the current histogram and once in
the old histogram. In other words, a fragmentation algorithm interval of 30 sec-
onds means that 60 seconds of access history is evaluated each time. We tested
algorithm intervals between 5 and 60 seconds and the results are shown in Fig. 10.

From these results, we can see that using a limited history means more mi-
grations (instability). This makes sense as the access history then becomes more
prone to random fluctuations in the access patterns. We also see that running the
algorithm with longer intervals leads to more remote writes as new access patterns
are not acted upon as quickly.

8 Conclusions and further work

In distributed database systems, tables are frequently fragmented over a number of
sites in order to reduce access costs. How to fragment and how to allocate the frag-
ments to the sites are challenging problems that has previously been solved either
by static fragmentation and allocation, or based on query analysis. In this paper
we have presented DYTAF, a decentralized approach for dynamic table fragmen-
tation and allocation in distributed database systems, based on observation of the
access patterns of sites to tables. To our knowledge, no previous work exists that
do dynamic refragmentation based on both reads and writes in a distributed setting.

Results from simulations show that for typical workloads, our dynamic frag-
mentation approach performs close to optimal fragmentation with respect to com-
munication costs. Especially the ability to detect and adapt to workload changes
show promise.

Future work include exploring adaptive adjustment of the cost function weights
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as well as better prediction of workload based on control theoretical techniques. We
also intend to use a variant of our approach to detect parts of fragments that have
only read accesses, so that these parts can be extracted and replicated in order to
improve global read performance.
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