
Exploiting Time-based Synonyms in Searching Document
Archives

Nattiya Kanhabua
Dept. of Computer Science

Norwegian University of Science and Technology
Trondheim, Norway

nattiya@idi.ntnu.no

Kjetil Nørvåg
Dept. of Computer Science

Norwegian University of Science and Technology
Trondheim, Norway

noervaag@idi.ntnu.no

ABSTRACT
Query expansion of named entities can be employed in order to
increase the retrieval effectiveness. A peculiarity of named enti-
ties compared to other vocabulary terms is that they are very dy-
namic in appearance, and synonym relationships between terms
change with time. In this paper, we present an approach to ex-
tracting synonyms of named entities over time from the whole his-
tory of Wikipedia. In addition, we will use their temporal patterns
as a feature in ranking and classifying them into two types, i.e.,
time-independent or time-dependent. Time-independent synonyms
are invariant to time, while time-dependent synonyms are relevant
to a particular time period, i.e., the synonym relationships change
over time. Further, we describe how to make use of both types of
synonyms to increase the retrieval effectiveness, i.e., query expan-
sion with time-independent synonyms for an ordinary search, and
query expansion with time-dependent synonyms for a search wrt.
temporal criteria. Finally, through an evaluation based on TREC
collections, we demonstrate how retrieval performance of queries
consisting of named entities can be improved using our approach.

Categories and Subject Descriptors
H.3.3 [[Information Storage and Retrieval]]: :Information Search
and Retrieval

General Terms
Algorithms, Experimentation, Measurement

Keywords
Temporal Search, Synonym Detection, Query Expansion

1. INTRODUCTION
In recent years, an enormous amount of information has been

stored in the form of digital documents. Examples of easily avail-
able resources include web pages stored by search engines, and har-
vested web pages stored by web archives, e.g., the Internet Archive,
national libraries, and news archives, such as The Times Online.

Much of the content in the resources mentioned is strongly time-
dependent. As have been observed by a number of researchers [2,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JCDL’10, June 21–25, 2010, Gold Coast, Queensland, Australia.
Copyright 2010 ACM 978-1-4503-0085-8/10/06 ...$10.00.

13], extending keywords with a creation or update date of docu-
ments (called temporal criteria) can increase precision of search.
In that way, a system narrows down a set of results by retrieving
documents according to both keywords and temporal criteria, e.g.,
temporal text-containment search [2, 13]. Two ways of obtaining
temporal criteria relevant to a query are 1) having them provided
by users [13], or 2) determined by the system [8].

One way of increasing recall is to perform query expansion. A
particular case of query expansion is when search terms are named
entities (i.e., name of people, organizations, locations, etc.) which
constitute a major fraction of queries [4, 14]. In this case, recall
can be increased by also searching for synonyms1 of the named en-
tities. A problem of query expansion using synonyms is the effect
of rapidly changing synonyms of named entities over time, e.g.,
changes of roles or alterations of names. To illustrate the problem,
we give as examples two search scenarios.

First, a student studying the history of the Roman Catholic wants
to know about the Pope Benedict XVI during the years before he
became the Pope (i.e. before 2005). Using only the query “Pope
Benedict XVI” and temporal criteria “before 2005” is not sufficient
to retrieve documents about “Joseph Alois Ratzinger”, which is the
birth name of the current Pope.

Second, a journalist wants to search for information about the
past career of Hillary Rodham Clinton before becoming the 67th

United States Secretary of State in January 2009. When searching
with the query “Hillary R. Clinton” and temporal criteria “before
2008”, documents about “United States Senator from New York”
and “First Lady of the United States” are also relevant as her roles
during the years before 2008.

The above examples indicate an inability of retrieving relevant
documents composed of the synonyms of query terms in the past.
This can be considered as semantic gaps in searching document
archives, i.e., a lack of knowledge about a query and its synonyms,
which are semantically equivalent/related to a query wrt. time. We
denote those synonyms as time-dependent synonyms.

A peculiarity of named entities compared to other vocabulary
terms is that they are very dynamic in appearance, every day new
named entities are indexed and searched for, and at the same time
existing named entities disappear from interest. This implies that
if query expansion techniques for named entities should have good
performance, time has to be taken into account, and continuously
evolving named entities and synonyms have to be maintained.

In this paper, we describe an approach to automatically creating
entity-synonym relationships based on the contents of Wikipedia.

1In general, synonyms are different words with very similar mean-
ings. However, in this paper, synonyms are words used as another
name for an entity.

Evolving relationships are detected using the most current version
of Wikipedia, while relationships for particular time in the past are
discovered through the use of snapshots of previous Wikipedia ver-
sions. In this way, we can provide a source of time-based entity-
synonym relationships from 2001 until today, and using our ap-
proach also future relationships with new named entities can be
discovered simply by processing Wikipedia as new contents are
added. Further, we employ the New York Times Annotated cor-
pus in order to extend the covered time range as well as improve
the accuracy of time of synonyms.

The main contributions of this paper are: 1) formal models for
Wikipedia viewed as a temporal resource and for classification of
time-based synonyms, 2) an approach to discovering time-based
synonyms using Wikipedia and improving the time of synonyms,
3) a study on how to perform query expansion using time-based
synonyms, and 4) an extensive evaluation of our approaches to ex-
tracting and improving time of synonyms, as well as of query ex-
pansion using time-based synonyms.

The organization of the rest of the paper is as follows. In Sec-
tion 2, we give an overview of related work. In Section 3, we briefly
describe the assumed document model and Wikipedia features. In
Section 4, we introduce formal models for Wikipedia viewed as a
temporal resource and for time-based synonyms. In Section 5, we
describe our approach to discovering time-based synonyms from
Wikipedia. In Section 6, we describe how to use time-based syn-
onyms to improve the retrieval effectiveness. In Section 7, we eval-
uate our proposed synonym detection and query expansion. Finally,
in Section 8, we conclude and outline our future work.

2. RELATED WORK
In recent years, several attempts have been made in using the

semi-structured contents of Wikipedia for information retrieval pur-
poses. The ones most relevant to our work are [4, 10, 12, 16, 19,
20]. For a thorough overview of the area of Wikipedia mining, we
refer to the survey by Medelyan et al. [11].

In [4], Bunescu and Paşca study how to use Wikipedia for de-
tecting and disambiguating named entities in open domain texts in
order to improve search quality. By recognizing entities in the in-
dexed text, and disambiguating between multiple entities sharing
the same proper name, the users can access to a wider range of re-
sults as today’s search engines may easily favor the most common
sense of an entity, making it difficult to get a good overview of the
available information for a lesser known entity.

An initial approach for synonym detection based on [4] in a non-
temporal context was described in [3]. As far as we know, all pre-
vious approaches to synonym detection from Wikipedia have been
based on redirects only (i.e., [6, 17, 18]) and no temporal aspects
are considered.

There is some work that exploits Wikipedia for query expan-
sion. In [10], they proposed to improve the retrieval effectiveness
of ad-hoc queries using a local repository of Wikipedia as an ex-
ternal corpus. They analyzed the categorical information in each
Wikipedia article, and select terms from top-k articles to expand a
query. Then, a second retrieval on the target corpus is performed.
Results show that Wikipedia can improve the effectiveness of weak
queries while pseudo relevance feedback is unable to improve.

Milne et al. [12] proposed an approach to help users to evolve
queries interactively, and automatically expand queries with syn-
onyms using Wikipedia. The experiments show an improvement
in recall. The recent work by Xu et al. [19] tackled with a prob-
lem of pseudo-relevance feedback that one or more of the top re-
trieved documents may be non-relevant, which can introduce noise
into the feedback process. The proposed approach in [19] classifies

queries into 3 categories (entity, ambiguous, and broader queries)
based on Wikipedia, and use a different query expansion method
for each query category. Their experiments show that Wikipedia
based pseudo-relevance feedback improves the retrieval effective-
ness, i.e., Mean Average Precision.

To our knowledge, query expansion using synonyms for a tem-
poral search has not been previously described. However, some
work related to temporal search exists, including [1, 5, 7, 13, 15],
where a user can explicitly specify time as a part of query (called
temporal query). Typically, a temporal query is composed of search
keywords and temporal criteria, which can be a time point or a time
interval. Documents are retrieved by their relevance wrt. the key-
words and corresponding temporal criteria.

3. PRELIMINARIES
In this section, we first briefly outline our document and text

stream models. Then, we will give a brief overview of Wikipedia
articles and the New York Time Annotated corpus.

3.1 Models of Documents and Text Streams
In our context, a document collection contains a number of doc-

uments defined as C = {d1, . . . , dn}. A document can be seen
as bag-of-word (an unordered list of terms, or features) with its
associated time interval (from it was created until replaced by a
new version or deleted): di = {{w1, w2, w3, . . . , wn} , [ti, ti+1]}
where [ti, ti+1] is a time interval of the document, i.e., a time pe-
riod that di exists, and ti < ti+1. T ime(di) is a function that gives
a creation date of the document and must be valid within the time
interval, and T ime(di) ∈ [ti, ti+1].

Document collections where their contents appear in a temporal
order can be viewed as text streams, e.g. personal emails, news
articles and blogs. In such domains, terms in the text streams are
temporally dynamic in pattern, e.g., rising sharply in frequency,
growing in intensity for a period of time, and then fading away.

3.2 Wikipedia
Wikipedia is a freely available source of knowledge. Each ed-

itable article in Wikipedia has associated revisions, i.e., all previous
versions of its contents. Each revision (or a version) of an article
is also associated with a time period that it was in use before being
replaced by the succeeding version. In other words, the time of a
revision is a time period when it was a current version.

There are four Wikipedia features that are particularly attractive
as a mining source when building a large collection of named enti-
ties: article links (internal links in one Wikipedia article to another
article), redirect pages (send a reader to another article), disam-
biguation pages 2 (used by Wikipedia to resolve conflicts between
terms having multiple senses by either listing all the senses for
which articles exist), and categories (used to group one or more
articles together, and every article should preferably be a member
of at least one category although this is not enforced).

3.3 New York Time Annotated Corpus
The New York Times Annotated corpus is used in the synonym

time improvement task. This collection contains over 1.8 million
articles covering a period of January 1987 to June 2007. 1.5 mil-
lion articles are manually tagged of vocabulary of people, organi-
zations and locations using a controlled vocabulary that is applied
consistently across the collections. For instance, if one article men-
tions “Bill Clinton” and another refers to “President William Jeffer-

2Note that the meaning of the term disambiguation in Wikipedia
context is slightly different from how it is used in computational
linguistics.

Table 1: NYT collection statistics of tagged vocabulary
Tagged

#Tagged Documents
#Tagged Documents

Vocabulary (%)
People 1.32M 72
Locations 0.6M 32
Organizations 0.6M 32

son Clinton”, both articles will be tagged with “CLINTON, BILL”.
Some statistics of tagged documents are given in Table 1.

4. TEMPORAL MODELS OF WIKIPEDIA
In this section, we will present temporal models of Wikipedia,

i.e., synonym snapshots. The models will be later used for detecting
synonyms over time. Finally, we will give a formal definition of
four different classes of synonyms, and how to classify them using
temporal patterns of occurrence as a feature.

4.1 Synonym Snapshots
In our context, a document collection is Wikipedia W that con-

sists of a set of articles or pages, P = {p1, . . . , pn}. There are
mainly two types of pages in P : 1) those that describe a named en-
tity, e.g., a concept about people, companies, organizations, coun-
tries, etc., and 2) those that do not describe a named entity, e.g.,
user talk pages, category pages, etc. We call a page in the first
type a named entity page pe. For simplicity, we will use the term
“entity” and “named entity” interchangeably. An entity ei is repre-
sented by terms constituting the title of an entity page pe. We define
Entity(pe) as a function that gives the title of an entity page pe,
i.e., ei = Entity(pe).

Each page pi ∈ P consists of: 1) terms {w1, . . . , wn} where
each wi ∈ V and V is the complete set of terms or a vocabulary in
the collection, and 2) a time interval [ta, tb], i.e., a time period that
pi exists in the collection: pi = {{w1, . . . , wn} , [ta, tb]}.

We define TInterval(x) as a function that gives a time interval
associated to x, i.e., a time period of existence [ty , tz]. We also
define TStart(x) as a function that gives the starting time point of
x, i.e., the smallest time point ty from the time interval [ty, tz] of
x, and TEnd(x) as a function that gives the ending time point of x,
i.e., the largest time point tz from the time interval [ty , tz] of x.

A page pi is composed of a set of its revisions {rj |rj ∈ Ri}.
A revision rj consists of 2 parts: 1) terms {w1, . . . , wm}, and 2)
a time interval [tc, td), or TInterval(rj). Thus, a revision rj =
{{w1, . . . , wm} , [tc, td)}. Note that a time interval of any rj ex-
cludes its last time point, [tc, td) = [tc, td]− {td}.

A revision rj exists at a different time interval in TInterval(pi),
and TInterval(rj) ⊂ TInterval(pi) and ∩TInterval(rj) = ∅. An
intersection of TInterval(rj) of each revision rj is an empty set be-
cause at any time point t in TInterval(pi), only one revision rj can
exist for pi. Time intervals of two adjacent revisions are defined in
term of each other as TInterval(rj) = [TStart(rj), TStart(rj+1)),
and TInterval(rj+1) = [TEnd(rj), TEnd(rj+1)).

By partitioning W wrt. a time granularity g, we will have a set
of snapshots of Wikipedia W = {Wt1 , . . . ,Wtz}. In our work, we
only use the 1-month granularity. Hence, if we have the history of
Wikipedia for 8 years and g = month, the number of snapshots
will be |W| = 8∗12 = 96, i.e., W =

{
W03/2001 , . . . ,W03/2009

}
.

Each snapshot Wtk consists of the current revision rc of every page
pi at time tk, i.e.,
Wtk = {rc|∀pi : rc ∈ Ri ∧ tk ∈ TInterval(rc) ∧ ∩TInterval(rc) 	= ∅}
Because all revisions are current at time tk, an intersection of their
time intervals, ∩TInterval(rc), is not an empty set. Figure 1 depicts
a snapshot Wtk of Wikipedia and current revisions at time t = tk.

Let S be a set of synonyms of all entities in W , S = {s1, . . . , sm}

Figure 1: Wikipedia snapshot at time tk and its current revi-
sions

where each synonym sj ∈ V . An entity ei is composed of a
set of synonyms {s1, . . . , su} associated to it. We define ξi,j as
a relationship between an entity ei and its synonym sj , that is
ξi,j = (ei, sj). Instead of referring to a synonym sj alone, we have
to always refer to an entity-synonym relationship ξi,j , because sj
can be a synonym of one or more entities. Each entity-synonym
relationship ξi,j has an associated time interval [tα, tβ], i.e., a time
period that sj is a synonym of ei. We can also determine [tα, tβ],
tα and tβ from using functions TInterval(ξi,j), TStart(ξi,j), and
TEnd(ξi,j) respectively. We define Stk as a synonym snapshot as
a set of entity-synonym relationships at a particular time t = tk.
Stk = {ξ1,1, . . . , ξn,m} where tk ∈ TInterval(ξi,j).

In the following subsection, we will explain how to define dif-
ferent classes of synonyms based on occurrence patterns over time.

4.2 Time-based Classes of Synonyms
In this section, we give the definition of time-based classes of

synonyms. The intuition behind the synonyms classes is that, syn-
onyms occur differently over time, so they should be employed dif-
ferently as well. Consequently, we will classify synonyms into dif-
ferent classes based on their occurrence patterns over time.

Let twα be the starting time point and twβ be the last time point of
the document collection, i.e., Wikipedia. Hence, twα = TStart(W)
and twβ = TEnd(W). For every entity-synonym relationship ξi,j ,

let t
ξi,j
α be the first time point we observe ξi,j and t

ξi,j
β be the last

time point we observe ξi,j , so t
ξi,j
α = TStart(ξi,j) and t

ξi,j
β =

TEnd(ξi,j). Figure 2 depicts occurrence patterns of different syn-
onym classes over time.

Definition 1. An entity-synonym relationship ξi,j is classified as
time-independent (Class A) if all of the following conditions hold:

(i) t
ξi,j
α ∈ [twα , t

w
α + δ1] where δ1 > 0

(ii) t
ξi,j
β = twβ

The idea of Class A is to detect synonyms that exist for a long
time interval, as long as that of Wikipedia. These synonyms are
robust to change over time and can represent good candidates of
synonyms. For example, the synonym “Barack Hussein Obama II”
is a time-independent synonym of the entity “Barack Obama”. We
use δ1 to relax a condition of starting time because there are not
many pages created at the beginning of Wikipedia. For example,
δ1 can be 24 months after Wikipedia was created.

Definition 2. An entity-synonym relationship ξi,j is classified as
time-dependent (Class B) if all of the following conditions hold:

(i) t
ξi,j
α , t

ξi,j
β ∈ [

twα + δ1, t
w
β − δ2

]
where δ2 > 0, t

ξi,j
α > t

ξi,j
β

(ii) λ1 ≤ t
ξi,j
β − t

ξi,j
α ≤ λ2 where λ1, λ2 > 0, λ2 > λ1

The idea of Class B is to detect synonyms that are highly related
to time, for example, “Cardinal Joseph Ratzinger” is a synonym
of “Pope Benedict XVI” before 2005. We interest in using this
synonym class for query expansion to handle the effect of rapidly
changing synonyms over time as explained in Section 1. δ2 indi-
cates that synonyms are no longer in use, and it can be 12 months.
λ1, λ2 represents minimum, maximum values of a time interval of
synonym respectively. For example, λ1 and λ2 can be 2 months and
24 months. If a time interval is less than 2 months, it is a noise or
junk synonym, and if it is greater than 24 months, it is less specific
to time.

In addition to Class A and B, we also observe that there are syn-
onyms that cannot be classified into the two classes above because
of their temporal characteristics. Thus, we introduce the fuzzy-
membership classes as follows.

Definition 3. An entity-synonym relationship ξi,j is classified as
gaining synonymy (Class C) if all of the following conditions hold:

(i) t
ξi,j
α ∈ [twα + δ1, t

w
α + δ1 + ε] where ε > 0

(ii) t
ξi,j
β = twβ

The idea of Class C is to detect synonyms that exist for a long
time interval, but not as long as that of Wikipedia. These synonyms
can be considered good candidates of synonyms as they are tenta-
tive to robust to change over time. However, it is not confident to
judge if they are time-independent or not. This class of synonyms is
actually a special type of Class A that lacks of data in early years.
For example, the synonym “Pope” has occurred as a synonym of
the entity “Pope Benedict XVI” in 04/2005. Hence, this synonym
will be classified to Class C instead of Class A because of its time
interval. ε is a parameter for the missing data of early years, e.g., ε
can be 24 months.
Definition 4. An entity-synonym relationship ξi,j is classified as
declining synonymy (Class D) if all of the following conditions
hold:

(i) t
ξi,j
α ∈ [twα , t

w
α + δ1]

(ii) t
ξi,j
β ∈ [

twβ − θ − δ2, t
w
β − δ2

]
where θ > 0

The idea of Class D is to detect synonyms that are stopped using
as synonyms for some time ago, i.e., not in use at the moment.
We can consider this class of synonym as out-of-date synonyms.
For example, for the entity “Bill Clinton”, the synonym “President
Clinton” is less popular nowadays and it is very rare to be used.
Thus, this synonym will belong to Class D. Synonyms in this class
can be viewed as a special type of Class B. They are equivalent to
synonyms in the past, but their time intervals are not too specific
to particular time, i.e., greater than a certain period of time. The
period of time is determined by θ that can be 12 months.

5. TIME-BASED SYNONYM DETECTION
In this section, we will present our approach to find time-based

entity-synonym relationships. The algorithm is divided into three
main steps: 1) named entity recognition and synonym extractions,
2) improving time of synonyms using a model for temporal dynam-
ics of text streams, and 3) synonym classification.

5.1 Named Entity Recognition and Synonym
Extraction

First, we partition the Wikipedia collection according to the time
granularity g = month in order to obtain a set of Wikipedia snap-
shots W = {Wt1 , . . . ,Wtz}.

Figure 2: Temporal patterns of time-based classes of synonyms

For each Wikipedia snapshot Wtk , we identify all entities in a
snapshot Wtk . A result from this step will be a set of entities Etk

at a particular time tk. After that, we determine a set of synonyms
for each entity ei ∈ Etk in this snapshot Wtk . A result from this
process is a set of entity-synonym relations, that is a synonym snap-
shot Stk = {ξ1,1, . . . , ξn,m}. We repeat this process for every
Wikipedia snapshot Wtk in W. The final result will be a union of
all synonym snapshots S = {St1 ∪ . . . ∪ Stz}. S will be input of
the time-based synonym classification step.

Step 1: Recognizing named entities. Given a Wikipedia snap-
shot Wtk , we have a set of pages existing at time tk, that is Wtk =
{pi|∀pi : tk ∈ TInterval(pi)}. In this step, we only interest in an
entity page pe. In order to identify an entity page, we use the ap-
proach described by Bunescu and Paşca in [4] which is based on
the following heuristics:

• If multi-word title with all words capitalized, except preposi-
tions, determiners, conjunctions, relative pronouns or nega-
tions, consider it an entity.

• If the title is a single word, with multiple capital letters, con-
sider it an entity.

• If at least 75% of the occurrences of the title in the article
text itself are capitalized, consider it an entity.

After identifying an entity page pe from a snapshot Wtk , we will
have a set of entity pages Pe,tk = {pe|pe ∈ Wtk}. From this set,
we will create a set of entities Etk at time tk by simply extracting
a title from each entity page pe ∈ Pe,tk . A result from this step is
a set of entities Etk = {e1, . . . , en}, which will be used in step 2.

Step 2: Extracting synonyms. After identifying a set of entities
Etk , we want to find synonyms for each entity ei ∈ Etk . Owing to
its richness of semantics structure, it is possible to use article links
and redirect pages in Wikipedia for finding synonyms. However,
we will not use redirect pages in this paper because it is problematic
to define a temporal model of redirect pages. Hence, we will find
synonyms by extracting anchor texts from article links. For a page
pi ∈ Wtk , we list all internal links in pi but only those links that
point to an entity page pe ∈ Pe,tk are interesting. In other words,
the system extracts as synonyms all anchor texts for the associated
entity, and these synonyms are weighted by their frequencies of
occurrence. We then obtain a set of entity-synonym relationships.
By accumulating a set of entity-synonym relationships from every
page pi ∈ Wtk , we will have a set of entity-synonym relationships
at time tk, i.e., a synonym snapshot Stk = {ξ1,1, . . . , ξn,m}.

Step 1 and 2 are processed for every snapshot Wtk ∈ W. Finally,
we will obtain a set of entity-synonym relationships from all snap-
shots S = {St1 , . . . , Stz}, and a set of synonyms for all entities
S = {s1, . . . , sy}. Table 2 depicts examples of entity-synonym re-
lationships and their time periods extracted from Wikipedia. Note

Table 2: Entity-synonym relationships and time periods
Named Entity Synonym Time Period

Pope Benedict XVI
Cardinal Joseph Ratzinger 05/2005 - 03/2009
Joseph Ratzinger 05/2005 - 03/2009
Pope Benedict XVI 05/2005 - 03/2009

Barack Obama
Barack Hussein Obama II 02/2007 - 03/2009
Sen. Barack Obama 07/2007 - 03/2009
Senator Barack Obama 05/2006 - 03/2009

Hillary Rodham Clinton
Hillary Clinton 08/2003 - 03/2009
Sen. Hillary Clinton 03/2007 - 03/2009
Senator Clinton 11/2007 - 03/2009

that, time periods of some relationships in Table 2 are incorrect. For
example, the synonym “Cardinal Joseph Ratzinger” of the entity
“Pope Benedict XVI” should associates with a time period before
2005. Consequently, in order to improve time periods, the results
from this step will be input to the next subsection.

5.2 Improving Time of Entity-synonym Rela-
tionships

The time periods of entity-synonym relationships do not always
have the desired accuracy. The main reason for this is that the
Wikipedia history has a very short timespan of only 8 years. That
is, the time periods of synonyms are timestamps of Wikipedia arti-
cles in which they appear, not the time extracted from the contents
of Wikipedia articles. Consequently, the maximum timespan of
synonyms has been limited by the time of Wikipedia. In order to
discover the more accurate time, we need to analyze a document
corpus with the longer time period, i.e., the New York Time Anno-
tated corpus (NYT).

There are a number of methods for extracting the more accurate
time of synonyms. The easiest method is to find the starting time
and the ending time, or the first point and the last point in the cor-
pus, at which a synonym is observed with its frequency greater than
a threshold. However, the problems with this method are that 1) it
cannot deal with sparse/noisy data, or 2) it cannot find multiple,
discontinuous time intervals of a synonym.

Alternatively, we can apply the method called “burst detection”,
proposed in [9] for detecting the time periods of synonyms from
the corpus. Bursts are defined as points where a frequency of term
increases sharply, and the frequency may oscillate above and be-
low the threshold, resulting in a single long interval of burst or a
sequence of shorter ones. Consequently, burst periods can formally
represent periods that synonyms are “in use” over time.

The advantage of this method is that it is formally modeled and
capable of handling sparse/noisy data. In addition, it can identify
multiple, discontinuous time intervals for all terms in the document
corpus. Due to the limited space in this paper, readers can refer to
[9] for detailed description of the algorithm for burst detection.

We propose to improve the time period of each entity-synonym
relationship ξi,j ∈ S by analyzing the NYT corpus (with the longer
timespan of 20 years) using the burst detection algorithm. The pro-
cess of detecting entity-synonym relationships from the NYT cor-
pus is as follows. First, we have to identify a synonym sj from
document streams. Note the difference between an entity-synonym
relationship ξi,j and a synonym sj , the first one refers to a tuple of
synonym sj and its associated named entity ei, while the latter one
refers to a synonym sj only.

Second, we have to find a named entity ei associated to the iden-
tified synonym sj because sj can be a synonym of more than one
named entity. We call this process synonym disambiguation. Fi-
nally, after we disambiguate synonyms, we will then obtain bursty
periods of each entity-synonym relationship ξi,j that can be repre-
sented more accurate time periods of ξi,j .

Table 3: Synonyms and corresponding named entities
#Named Entity #Synonym

1 2,524,170
2 14,356
3 2,797
4 994
5 442
6 259
7 155
8 94
9 58
10 37

Table 4: Synonyms with different n-grams
N-gram Synonym

2 Jospeh Ratzinger
3 Senator Barack Obama
5 George III of Great Britain
6 United Nations Commission on Human Rights
8 Society for the Prevention of Cruelty to Animals

13
Queen Elizabeth II of the United Kingdom of
Great Britain and Northern Ireland

5.2.1 Identifying and Disambiguating Synonyms us-
ing the NYT corpus

To identify a synonym sj from the text streams of the NYT cor-
pus is not straightforward, because a synonym sj can be ambiguous
(i.e., a synonym may be associated with more than one named enti-
ties as Table 3 shows the number of synonyms associated with the
different number of named entities). For example, there are more
than 19,000 synonyms associating with more than one named en-
tities, while 2.5 million synonyms associate with only one named
entities. In order to disambiguate a named entity ei for a synonym
sj , we can make use of a controlled vocabulary of the NYT corpus
described in Section 3.

Recall that input of this step is a set of all synonyms of all enti-
ties S obtained from Subsection 5.1. The algorithm for identifying
a synonym sj from the text streams is given in Algorithm 1 and
Algorithm 2. An explanation is as follows. Algorithm 1 finds a
synonym sj from each document dn where sj can have the maxi-
mum size of n-grams of, or w called the window size of synonym.
In this case, a synonym that its size is greater than w is not inter-
esting. Table 4 shows synonyms with different n-grams.

First, read a term sj with the maximum size w from a document
dn starting at the index pointer ptr = 0 as in Algorithm 2 (line
7). Check whether sj is a synonym (sj ∈ S), and retrieve all as-
sociated named entities for sj as in Algorithm 2 (line 9). Next,
check if sj has only one associated named entity, then sj is not
ambiguous, as in Algorithm 2 (line 10-11). If sj is associated with
more than one named entities, disambiguate its named entities as in
Algorithm 2 (line 13-15). After disambiguating the named entities
for sj , insert an entity-synonym relationship (ei, sj) plus the times-
tamp of dn, i.e., T ime(dn), in the output set and move the index
pointer by the size of sj , that is ptr = (ptr+w) in Algorithm 1(line
11-12).

If sj cannot be disambiguated, sj will be ignored and we con-
tinue identifying another synonym, i.e., reading a term with the
maximum size w from dn by increasing the index pointer to the
next word ptr = (ptr + 1) as in Algorithm 1 (line 14). On the con-
trary, if a term sj is not a synonym (sj /∈ S), decrease a window
size by 1 as in Algorithm 1 (line 20), and consider a prefix string
of sj with a size of (w − 1), or sj+1. If sj+1 is not a synonym,
repeat the same process until a window size w is equal to 0 as in
Algorithm 2 (line 4). This means, if no any prefix substring of sj

Algorithm 1 IdentifyEntitySynonymInNYT(DN)

1: INPUT: DN is a set of documents in the NYT corpus.
2: OUTPUT: A sequence of ξi,j or (ei, sj) and its timestamp.
3: C ← ∅ // A set of entity-synonyms relationships and a time point.
4: for each {dn ∈ DN } do
5: lend ← |dn| // lend is the number of words in dn.
6: ptr ← 0 // ptr is an index pointer in dn, default is 0.
7: w ← c // w is the window size of synonym, default is c.
8: while ptr ≤ lend do
9: (ei, sj)← FindSynonym(dn , ptr, w)

10: if (ei, sj) �= null then
11: C ← C ∪ {(ei, sj), T ime(dn)} // Output (ei, sj) and

timestamp of dn
12: ptr ← (ptr + CountWords(sj)) // Move ptr by the number

of words in sj .
13: else
14: ptr ← (ptr + 1) // Move ptr to the next word.
15: end if
16: end while
17: end for
18: return C

Table 5: Tuples of entity-synonym relationships
Timestamp Entity Synonym Frequency

01/1987 President Reagan Ronald Reagan 54
01/1989 President Reagan Ronald Reagan 34
10/1990 President Reagan Ronald Reagan 12
05/2002 Senator Clinton Hillary Rodham Clinton 121
11/2004 Senator Clinton Hillary Rodham Clinton 61
01/2005 Senator Clinton Hillary Rodham Clinton 359

has been recognized as a synonym, continue to read the next term
with the maximum size w from the text streams by increasing the
index pointer to the next word ptr = (ptr + 1) as in Algorithm 1
(line 14).

After identifying sj as a synonym, it is necessary to determine
whether sj is ambiguous or not. Note that we retrieve the set of
all entities Ej associated with sj as in Algorithm 2 (line 9). If
there is only one entity in Ej , sj is not ambiguous and that entity
will be assigned to sj as in Algorithm 2 (line 10-11). However,
if there are more than one entity, sj have to be disambiguated by
using controlled vocabulary Vn tagged in the document dn as in
Algorithm 2 (line 13).

The algorithm for disambiguating named entities for a synonym
is given in Algorithm 3. For each entity ek ∈ Ej , if ek is in a set
of tagged vocabulary Vn of dn, add ek into a list of disambiguated
entities Etmp as in Algorithm 3 (line 7-8). Continue for all entities
in Ek. If Etmp contains only one entity, sj is disambiguated. If Etmp

has more than one entity, sj cannot be disambiguated.
The final results will be tuples of disambiguated entity-synonym

relationships associated with timestamps of documents where they
occur. Table 5 illustrates results from this step of the synonyms
“President Reagan” and “Senator Clinton” of the named entities
“Ronald Reagan” and “Hillary Rodham Clinton” respectively. Each
tuple is composed of an entity-synonym relationship, the timestamp
of a document where it occurs, and its frequency. Note that, one
entity-synonym relationship can be associated to different times-
tamps. This is equivalent to the statistics of a entity-synonym rela-
tionship over time extracted from text streams of documents. The
results from this step will be input to the next subsection.

5.2.2 Improving Time of Synonyms using Burst De-
tection

In this step, we will find the correct time of a entity-synonym re-
lationship ξi,j by using the burst detection algorithm described in

Algorithm 2 FindSynonym(dn , ptr, w)

1: INPUT: A document dn, a pointer ptr, a size of synonym w.
2: OUTPUT: An entity-synonym relationship (ei, sj) or ξi,j .
3: (ei, sj)← null // Set a tuple result to null.
4: if w = 0 then
5: return (ei, sj)
6: else
7: sj ← ReadString(dn , ptr, w) // Read sj from dn at index ptr.
8: if sj ∈ S then
9: Ej ← GetAssocEntities(sj) // All entities associated to sj .

10: if |Ej | = 1 then
11: ei ← Ej .firstElement()
12: else
13: ek ← Disambiguate(dn , Ej) // Disambiguate Ej .
14: if ek �= null then
15: ei ← ek
16: end if
17: end if
18: return (ei, sj)
19: else
20: FindSynonym(dn , ptr, (w − 1)) // Find a synonym with a size

(w − 1).
21: end if
22: end if

Algorithm 3 Disambiguate(dn, Ej)

1: INPUT: A document dn, and a set of associated entities Ej .
2: OUTPUT: A disambiguated entity.
3: Etmp ← ∅ // A temporary list of entities.
4: ei ← null // An output entity.
5: Vn ← GetVocabulary(dn) // Tagged vocabulary of dn.
6: for each ek ∈ Ej do
7: if ek ∈ Vn then
8: Etmp ← Etmp ∪ {ek}
9: end if

10: end for
11: if |Etmp| = 1 then
12: ei ← Etmp.firstElement()
13: end if
14: return ei

[9]. The algorithm takes the results from the previous step as input,
and generates bursty periods of ξi,j by computing a rate of occur-
rence from document streams. An output produced in this step is
bursty intervals and bursty weight, which are corresponding to pe-
riods of occurrence and the intensity of occurrence respectively, as
showed in Table 6.

Detected bursty periods are mostly composed of discontinuous
intervals because the algorithm depends heavily on a frequency of
ξi,j in the text streams. The disconnect of time intervals prevents us
from classifying ξi,j as time-independent since a time-independent
synonym should have a long and continuous time interval. A solu-
tion to this problem is to combine two adjacent intervals and inter-
polate their bursty weight. However, interpolation for ξi,j will be
performed only if a synonym of ξi,j has no other candidate named
entities according to the fact that the relationship of a named entity
and its synonym can change over time. A result from this step is a
set of entity-synonym relationships, that is S = {ξ1,1, . . . , ξn,m}
and more accurate time.

5.3 Time-based Synonym Classification
To classify an entity-synonym relationship ξi,j based on time is

straightforward. The starting time point t
ξi,j
α and the ending time

point t
ξi,j
β of ξi,j will be used to determine synonym classes as

defined in Subsection 4.2. In this work, we are only interested in
using time-independent and time-dependent synonyms for query

Table 6: Results from burst-detection algorithm
Synonym Entity Burst Weight

Time
Start End

President Reagan Ronald Reagan 5506.858 01/1987 02/1989
President Ronald Ronald Reagan 100.401 01/1989 03/1990
President Ronald Ronald Reagan 67.208 07/1990 02/1993

Senator Clinton Hillary Rodham Clinton 18.214 01/2001 10/2001
Senator Clinton Hillary Rodham Clinton 17.732 05/2002 01/2003
Senator Clinton Hillary Rodham Clinton 172.356 06/2003 11/2004

expansion because synonyms from the other two classes might not
be useful in this task. In the next section, we will explain how can
we actually make use of time-based synonyms in improving the
retrieval effectiveness.

6. QUERY EXPANSION USING TIME-BASED
SYNONYMS

In this section, we will describe how to use time-based synonyms
(time-independent and time-dependent synonyms) to improve the
retrieval effectiveness. The use of synonyms will be divided into
two different search scenarios.

The first scenario is to use time-independent class of synonyms
in an ordinary search, for example, searching with keywords only
(no temporal criteria explicitly provided). The usefulness of time-
independent synonyms is that they can be viewed as good candidate
synonyms for a named entity. For example, the synonym “Barack
Hussein Obama II” is better than “Senator Barack Obama” as a
synonym for the named entity “Barack Obama” in this case. Con-
sequently, a query containing named entities can be expanded with
their time-independent synonyms before performing a search.

Another case is when performing a temporal search, we must
take into account changes in semantics. For example, searching
documents about “Pope Benedict XVI” written “before 2005”, doc-
uments written about “Joseph Alois Ratzinger” should also be con-
sidered as relevant because it is a synonym of the named entity
“Pope Benedict XVI” at the years “before 2005”. In this case, a
time-dependent synonym wrt. temporal criteria can be used to ex-
pand a query before searching.

In the rest of this section, we will describe how we actually ex-
pand a query with time-based synonyms.

6.1 Query Expansion using Time-independent
Synonyms

Before expanding a query and performing an ordinary search,
synonyms must be ranked according to their weights. We define
a weighting function of time-independent synonyms as a mixture
model of a temporal feature and a frequency feature as follows:

TIDP(sj) = μ · pf(sj) + (1− μ) · tf(sj) (1)

where pf(sj) is a time partition frequency or the number of time
partitions (or time snapshots) in which a synonym sj occurs. tf(sj)
is an averaged term frequency of sj in all time partitions, tf(sj) =∑

i tf(sj,pi)

pf(sj)
. μ underlines the importance of a temporal feature and

a frequency feature. In our experiments, 0.5 is a good value for μ.
Intuitively, this function measures how popular synonyms are

over time. The popularity of synonym over time is measured us-
ing two factors. First, synonyms should be robust to change over
time as defined in 4.2. Hence, the more partitions synonyms occur,
the more robust to time they are. Second, synonyms should have
high usages over time. This corresponds to having a high value of
averaged frequencies over time.

We intend to use time-independent synonyms in order to improve

the effectiveness of an ordinary search, i.e., search without tempo-
ral criteria. In this paper, we will perform an ordinary search using
Terrier search engine developed by University of Glasgow.

Given a query q, first we have to identify a named entity in query.
Note that, we could not rely on state-of-the-art named entity recog-
nition because queries are usually very short (i.e., 2-3 words on av-
erage), and lacked of standard form, e.g., all words are lower case.
In addition, we need to identify a named entity corresponding to
a title of Wikipedia article since our named entities and synonyms
are extracted from Wikipedia.

We do this by searching Wikipedia with a query q, and q is a
named entity if its search result exactly matches with a Wikipedia
page. Besides, a more relax method is to select the top-k related
Wikipedia pages instead. Now, we obtain a set of named enti-
ties Eq = {eq,1, . . . , eq,n} of q. Subsequently, time-independent
synonyms of q are all synonyms corresponding to a named entity
eq,i ∈ Eq . Next, we will rank those synonyms by their TIDP scores
and select only top-k synonyms with highest scores for expansion.
Query expansion of time-independent synonyms can be performed
in three ways as follows:

1. Add the top-k synonyms to an original query q, and search.

2. Add the top-k synonyms to an original query q, and search
with pseudo relevance feedback.

3. Add the top-k synonyms to an original query q plus TIDP
scores as boosting weight, and search with pseudo relevance
feedback.

Boosting weight is a weight of term as defined in Terrier’s query
language. Note that, if synonyms are duplicated with an original
query q, we will remain the original query q unchanged, and add
those duplicated synonyms with TIDP scores as boosting weight.

6.2 Query Expansion using Time-dependent
Synonyms

In order to rank time-dependent synonyms, we first have obtain a
set of synonyms from time tk and weight them differently accord-
ing to the following weighting function.

TDP(sj , tk) = tf(sj , tk) (2)

where tf(sj , tk) is a term frequency of a synonym sj at time tk.
Note that, a time partition frequency is not counted because syn-
onyms from the same time period should be equal wrt. time. Thus,
only a term frequency will be used to measure the importance of
synonym.

Time-dependent synonyms will be used for a temporal search, or
a search taking into account a temporal dimension, i.e. extending
keyword search with a creation or update date of documents. In that
way, a search system will retrieve documents according to both text
and temporal criteria, e.g., temporal text-containment search [13].

Given a temporal query (q, tk), we will recognize named entities
in a query q using the same method as explained in 6.1. After
obtaining a set of named entities Eq = {eq,1, . . . , eq,n} of a query
q, we will perform two steps of filtering synonyms. First, only
synonyms which their time overlaps with time tk will be processed,
that is, {sj |Time(sj) ∩ tk 	= ∅}. Second, those synonyms will be
ranked by their TDP scores and select only top-k synonyms with
highest scores for expansion.

Using time-dependent synonyms in a temporal search is straight-
forward. A set of synonyms will be add into an original temporal
query (q, tk). In the following subsection, we will explain how to
automatically generate temporal queries that will be later used in
temporal search experiments.

7. EXPERIMENTS
In this section, we will evaluate our proposed approaches (ex-

tracting and improving time of synonyms, and query expansion us-
ing time-based synonyms). Our experimental evaluation is divided
into three main parts: 1) extracting entity-synonym relationships
from Wikipedia, and improving time of synonyms using the NYT
corpus, 2) query expansion using time-independent synonyms, and
3) query expansion using time-dependent synonyms. In this sec-
tion, we will describe the setting for each of the main experiments,
and then the results.

7.1 Experimental Setting
We will now describe in detail the experimental setting of each

of the experiments.

7.1.1 Extracting and Improving Time of Synonyms
To extract synonyms from Wikipedia, we downloaded the latest

complete dump of English Wikipedia from the Internet Archive3.
The dump contains all pages and revisions from 03/2001 to 03/2008
in XML format, and the decompressed size is approximately 2.8
Terabytes. A snapshot was created for every month resulting in
85 snapshots (03/2001, 04/2001, . . ., 03/2008). In addition, we
obtained 4 more snapshots (05/2008, 07/2008, 10/2008, 03/2009),
where 2 of them were downloaded from
http://sourceforge.net/projects/wikipedia-miner/files/. So, we have
89 (85+4) snapshots in total.

We used the tool called MWDumper4 to extract pages from the
dump file, and stored the pages and revisions of 89 snapshots in
databases using Oracle Berkeley DB version 4.7.25. We then cre-
ated temporal models of Wikipedia from all of these snapshots.

To improve time of synonyms, we used the burst detection al-
gorithm implemented by the author in [9] and the NYT corpus de-
scribed in Section 3.3. An advantage of this implementation is that
no preprocessing is performed on the documents. Parameter for
burst detection algorithm were set as follows: the number of states
was 2, the ratio of rate of second state to base state was 2, the ratio
of rate of each subsequent state to previous state (for states > 2)
was 2, and gamma parameter of the HMM was 1. We use accuracy
to measure the performance of our method for improving time of
synonyms.

7.1.2 Query Expansion using Time-independent Syn-
onyms

To perform an ordinary search, the experiments were carried out
using the Terrier search engine. Terrier provides different retrieval
models, such as divergence from randomness models, probabilistic
models, and language models. In our experiments, documents were
retrieved for a given query by the BM25 probabilistic model with
Generic Divergence From Randomness (DFR) weighting. In addi-
tion, it provides flexible query language that allows us to specify a
boosting weight for a term in query. Given an initial query qorg , an
expanded query qexp with top-k synonyms {s1, . . . , sk} plus TIDP
scores as boosting weight can be represented in Terrier’s query lan-
guage as follows.

qexp = qorg s1
∧w1 s2

∧w2 . . . sk
∧wk

where wk is a time-independent weight of a synonym sk, and com-
puted using the function TIDP(sk) defined in Equation 1.

We conducted an ordinary search using the standard Text Re-
trieval Conference (TREC) collection Robust2004. Robust2004 is
3http://www.archive.org/details/enwiki-20080103
4http://www.mediawiki.org/wiki/Mwdumper

Table 7: Examples of temporal queries and synonyms
Temporal Query

Synonym
Named Entity Time Period

American Broadcasting Company 1995-2000 Disney/ABC
Barack Obama 2005-2007 Senator Obama
Eminem 1999-2004 Slim Shady
George H. W. Bush 1988-1992 President George H.W. Bush
George W. Bush 2000-2007 President George W. Bush
Hillary Rodham Clinton 2001-2007 Senator Clinton
Kmart 1987-1987 Kresge
Pope Benedict XVI 1988-2005 Cardinal Ratzinger
Ronald Reagan 1987-1989 Reagan Revolution
Tony Blair 1998-2007 Prime Minister Tony Blair
Virgin Media 1999-2002 Telewest Communications

the test collection for the TREC Robust Track containing 250 top-
ics (topics 301-450 and topics 601-700). The Robust2004 collec-
tion statistics are given in Table 8. The retrieval effectiveness of
query expansion using time-independent of synonyms is measured
by Mean Average Precision (MAP), R-precision and recall. Recall
in our experiments is the fraction of relevant documents Terrier re-
trieves and all relevant documents for a test query.

7.1.3 Query Expansion using Time-dependent Syn-
onyms

To perform a temporal search, we must identify temporal queries
used for a search task. We do this in an automatic way by detecting
named entities that can represent temporal queries for performing
temporal search experiments. Thus, named entities of interesting
should have many time-dependent synonyms associated to them.
To automatically generate temporal queries is composed of two
steps as follows.

Given entity-synonym relationships S = {ξ1,1, . . . , ξn,m}. First,
we find temporal query candidates by searching for any named en-
tity ei which the number of its synonyms is greater than a thresh-
old ϕ. Nevertheless, in this case, most of synonyms may be time-
independent, and named entities become less appropriate to repre-
sent temporal queries.

Then, we must take into account a TIDP of each synonym. The
intuition is that the lower TIDP weight a synonym has, the better
time-dependent it is. So, named entities with an average of TIDP
weight less than a threshold φ probably associate with many time-
dependent synonyms. This makes them good candidate for tem-
poral queries. In our experiment, the threshold of the number of
synonyms ϕ and a threshold of the average of TIDP weight φ are
30 and 0.2 respectively.

The temporal searches were conducted by human judgment us-
ing 3 users. Some examples of temporal queries are shown in Ta-
ble 7. Each tuple contains a temporal query (a named entity and
time criteria), and its synonym wrt. time criteria. We performed a
temporal search by submitting a temporal query to the news archive
search engine (http://www.newslibrary.com). We com-
pared the results of top-k retrieved documents of each query with-
out synonym expansion, and those of the same query with synonym
expansion. A retrieved document can be either relevant or irrele-
vant wrt. temporal criteria. According to the lacking of a standard
test set (with all relevant judgments available), we could not evalu-
ate temporal search using recall as we intended. Thus, performance
measures are the precision at 10, 20 and 30 documents, or P@10,
P@20, and P@30 respectively.

7.2 Experimental Results
First, we will show the results of extracting synonyms, and im-

proving time of synonyms. Then, the results of query expansion us-

Table 8: Robust2004 collection
Source #Docs Size Time Period

Financial Times 210,158 0.56GB 1991-1994
Federal Register 55,630 0.4GB 1994
FBIS 130,471 0.47GB 1996
Los Angeles Times 131,896 0.48GB 1989-1990
Total Collection 528,155 1.9GB 1989-1994, 1996

Table 9: Statistics of entity-synonym relationships extracted
from Wikipedia

NER Method #NE #NE-Syn.
Max. Syn. Avg. Syn.

per NE per NE
BP-NERW 2,574,319 7,820,412 631 3.0
BPF-NERW 2,574,319 3,199,115 162 1.2
BPC-NERW 473,829 1,503,142 564 3.2
BPCF-NERW 473,829 488,383 148 1.0

Table 10: Accuracy of improving time using the NYT corpus

NER Method #NE-Syn. Accuracy
Disambiguated (%)

BPF-NERW 393,491 12.3(%) 51
BPCF-NERW 73,257 15.0(%) 73

ing time-independent synonyms and the results of query expansion
using time-dependent synonyms will be presented respectively.

7.2.1 Extracting and Improving Time of Synonyms
To our knowledge, extracting synonyms over time has not been

done before. Thus, we could not compare our approach with previ-
ous work. However, the statistics obtained from extracting syn-
onyms from Wikipedia are in Table 9. BP-NERW is Bunescu
and Paşca’s named entity recognition of Wikipedia titles described
in Section 5.1. BPF-NERW is similar to BP-NERW, but we ap-
plied filtering criteria for synonyms: 1) the number of time inter-
vals is less than 6 months, and 2) the average frequency (the sum
of frequencies over all intervals divided by the number of inter-
vals) is less than 2. The filtering aims to remove noise synonyms.
BPC-NERW is based on BP-NERW, but filtered out named enti-
ties that their categories are none of “people”, “organization” or
“company”. BPCF-NERW is BPC-NERW with filtering criteria
for synonyms.

In Table 9, Columns 2-3 are the total number of named entities
recognized, and the total number of entity-synonym relationships
extracted from Wikipedia, respectively. Column 4 is the maximum
number of synonyms per named entity. Column 5 is the average
number of synonyms per named entity.

The results from improving time of synonyms using the NYT
corpus are in Table 10. Note that, only entity-synonym relation-
ships without noise synonyms are interesting, i.e., recognized by
the methods BPF-NERW and BPCF-NERW. In Table 10, Column
2 is the number of entity-synonym relationships that can be iden-
tified and assigned time from the NYT corpus using the method
in Section 5.2. The percentage of the number of entity-synonym
relationships identified and assigned time is shown in Column 3.

In order to evaluate the accuracy of the method for improving
time of entity-synonym relationships, we randomly selected 500
entity-synonym relationships and manually assessed the accuracy
of time periods assigned to those entity-synonym relationships. The
accuracy of the method for improving time of entity-synonym re-
lationships is shown in Column 4. The accuracy of the method for
improving time of entity-synonym relationships in a case of BPCF-
NERW is better than that of BPF-NERW because named entities

recognized by BPF-NERW is too generic, and it is rare to gain high
frequencies in the NYT corpus.

7.2.2 Query Expansion using Time-independent Syn-
onyms

The baseline of our experiments is the probabilistic model (PM)
without query expansion. In addition, we also consider two clas-
sical expansion models: reweighing an original query (RQ) and
pseudo relevance feedback using Rocchio algorithm (PRF). Our
three proposed expansion methods are: 1) add the top-k synonyms
to an original query before search (SQE), 2) add the top-k syn-
onyms to an original query and search with pseudo relevance feed-
back (SQE-PRF), and 3) add the top-k synonyms to an original
query plus their TIDP scores as boosting weight, and search with
pseudo relevance feedback (SWQE-PRF). Pseudo relevance feed-
back was performed by selecting 40 terms from top-10 retrieved
documents, and those expansion terms were weighted by DFR term
weighting model, i.e., Bose-Einstein 1.

Test queries were selected from the Robust2004 test set using
named entities in a query described in Section 6.1. Note the dif-
ference between Bunescu and Paşca’s named entity recognition for
Wikipedia page (BP-NERW), and named entity recognition in a
query (NERQ). The first method recognizes whether a Wikipedia
document is a named entity or not, and it needs to analyze the con-
tent of the Wikipedia document. For the second method, we have
only a set of short queries (without a document) and we need to
identify named entities in those queries. Recall that there are two
methods for recognizing named entities in queries described in Sec-
tion 6.1: 1) exactly matched Wikipedia page (MW-NERQ), and
2) exactly matched Wikipedia page and top-k related Wikipedia
pages (MRW-NERQ). We used k = 2 in our experiments because
k greater than 2 can introduce noise to the NERQ process.

The number of queries from the Robust2004 test set recognized
using two methods are shown in Table 12. There are total 250
queries from Robust2004. MW-NERQ can recognize 42 named
entity queries while MRW-NERQ can recognize 149 named entity
queries. Note that, 42 and 149 queries are the number of queries
found as Wikipedia article, and recognized as named entities. For
example, there are actually 58 queries from Robust2004 found as
Wikipedia article, but only 42 are named entity queries.

Named-entity queries recognized using two NER methods are
shown in Table 11. Each row represents different retrieval results
of each retrieval method, and two main column represents two dif-
ferent methods for NERQ. Different retrieval results are composed
of Mean Average Precision (MAP), R-precision and recall. As seen
in Table 11, our proposed query expansion methods SQE-PRF and
SWQE-PRF performs better than the baselines PM, RQ and PRF
in both MAP and recall for MW-NERQ. However, there is only
SWQE-PRF outperforming the baselines in R-precision. Also note
that, SQE-PRF has better recall than SWQE-PRF, while the oppo-
site seems to hold for precision. In the case of MRW-NERQ, our
proposed query expansion methods have really worse performance
than in the case of MW-NERQ due to the accuracy of the recogni-
tion method.

7.2.3 Query Expansion using Time-dependent Syn-
onyms

The baseline of our experiments is to search using a temporal
query (TQ), i.e., a keyword wq and time tq . Our propose method is
to expand an original query with synonyms wrt. time tq and search
(TSQ). Experimental results of P@10, P@20 and P@30 of 20 of
temporal query topics are shown in Table 13. The results show
that our query expansion using time-dependent synonyms TSQ per-
formed significantly better than temporal searches without expan-

Table 11: Performance comparisons using MAP, R-precision, and recall for named entity queries, * indicates statistically improve-
ment over the baselines using t-test with significant at p < 0.05

Method MW-NERQ MRW-NERQ
MAP R-precision Recall MAP R-precision Recall

PM 0.2889 0.3309 0.6185 0.2455 0.2904 0.5629
RQ 0.2951 0.3266 0.6294 0.2531 0.2912 0.5749
PRF 0.3469 0.3711 0.6944 0.3002 0.3227 0.6761
SQE 0.3046 0.3360 0.6574 0.2123 0.2499 0.5385
SWQE 0.3054 0.3399 0.6475 0.2399 0.2820 0.5735
SQE-PRF 0.3608* 0.3652 0.7405* 0.2507 0.2665 0.5932
SWQE-PRF 0.3653* 0.3861* 0.7388* 0.2885 0.3080 0.6504

Table 12: Number of queries using two different NER
Type MW-NERQ MRW-NERQ

Named entity 42 149
Not named entity 208 101
Total 250 250

Table 13: Performance comparisons using P@10, P@20 and
P@30 for temporal queries * indicates statistically improve-
ment over the baseline using t-test with significant at p < 0.05

Method P@10 P@20 P@30
TQ 0.1000 0.0500 0.0333
TSQ 0.5200* 0.3800* 0.2800*

sion TQ. Our observation is that TQ retrieved zero to a few relevant
documents (less than 10) for most of temporal queries, while TSQ
could retrieve more relevant documents as a result of expanding
temporal queries with time-dependent synonyms.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have described how to use a Wikipedia to dis-

cover time-dependent and time-independent synonym. These clas-
sified synonyms can be employed in a number of application ar-
eas, and in this paper we have described how to perform query
expansion using the time-based synonyms. The usefulness of this
approach has been demonstrated through an extensive evaluation,
which have showed significant increase in retrieval effectiveness.

Future work include combining time-dependent synonyms and
temporal language models in order to provide temporal search us-
ing named entity query expansion without having to provide ex-
plicitly the time in the query. We will also integrate our approach
for time-dependent synonym discovery with information extraction
techniques that can find additional information in Wikipedia (for
example names of presidents at particular points in time). Finally,
we also intend to use the detected relationships in order to improve
performance of temporal text-clustering.

9. REFERENCES
[1] K. Berberich, S. Bedathur, T. Neumann, and G. Weikum.

Fluxcapacitor: efficient time-travel text search. In
Proceedings of the 33rd VLDB, 2007.

[2] K. Berberich, S. J. Bedathur, T. Neumann, and G. Weikum.
A time machine for text search. In Proceedings of
SIGIR’2007, 2007.

[3] C. Bøhn and K. Nørvåg. Extracting named entities and
synonyms from Wikipedia. In Proceedings of AINA’2010,
2010.

[4] R. C. Bunescu and M. Pasca. Using encyclopedic knowledge
for named entity disambiguation. In Proceedings of
EACL’2006, 2006.

[5] D. Efendioglu, C. Faschetti, and T. Parr. Chronica: a
temporal web search engine. In Proceedings of the 6th
ICWE, 2006.

[6] J. Hu, L. Fang, Y. Cao, H.-J. Zeng, H. Li, Q. Yang, and
Z. Chen. Enhancing text clustering by leveraging Wikipedia
semantics. In Proceedings of SIGIR’2008, 2008.

[7] A. Jatowt, Y. Kawai, and K. Tanaka. Temporal ranking of
search engine results. In Proceedings of WISE, 2005.

[8] N. Kanhabua and K. Nørvåg. Improving temporal language
models for determining time of non-timestamped documents.
In Proceedings of ECDL’2008, 2008.

[9] J. Kleinberg. Bursty and hierarchical structure in streams. In
Proceedings of SIGKDD’02, 2002.

[10] Y. Li, W. P. R. Luk, K. S. E. Ho, and F. L. K. Chung.
Improving weak ad-hoc queries using Wikipedia as external
corpus. In Proceedings of SIGIR’2007, 2007.

[11] O. Medelyan, D. N. Milne, C. Legg, and I. H. Witten.
Mining meaning from Wikipedia. Int. J. Hum.-Comput.
Stud., 67(9):716–754, 2009.

[12] D. N. Milne, I. H. Witten, and D. M. Nichols. A
knowledge-based search engine powered by Wikipedia. In
Proceedings of CIKM’2007, 2007.

[13] K. Nørvåg. Supporting temporal text-containment queries in
temporal document databases. Journal of Data & Knowledge
Engineering, 49(1):105–125, 2004.

[14] M. Sanderson. Ambiguous queries: test collections need
more sense. In Proceedings of SIGIR’2008, 2008.

[15] N. Sato, M. Uehara, and Y. Sakai. Temporal ranking for fresh
information retrieval. In Proceedings of the 6th IRAL, 2003.

[16] R. Schenkel, F. M. Suchanek, and G. Kasneci. YAWN: A
semantically annotated Wikipedia XML corpus. In
Proceedings of BTW’2007, 2007.

[17] P. Wang, J. Hu, H.-J. Zeng, L. Chen, and Z. Chen. Improving
text classification by using encyclopedia knowledge. In
Proceedings of ICDM’2007, 2007.

[18] F. Wu and D. S. Weld. Autonomously semantifying
Wikipedia. In Proceedings of CIKM’2007, 2007.

[19] Y. Xu, G. J. Jones, and B. Wang. Query dependent
pseudo-relevance feedback based on Wikipedia. In
Proceedings of SIGIR’2009, 2009.

[20] T. Zesch, I. Gurevych, and M. Mühlhäuser. Analyzing and
accessing Wikipedia as a lexical semantic resource. In
Proceedings of Biannual Conference of the Society for
Computational Linguistics and Language Technology, 2007.

