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Abstract. Ontologies are becoming increasingly more popular tools for
many tasks, such as information integration, information retrieval, knowl-
edge management and extraction etc. The cost and complexity of devel-
oping good ontologies is high, and therefore it is important to be able
to verify the ontology and detect flaws early. In this paper we propose
an approach to expose desirable properties of ontological structures. The
approach is based on an ontological profile which is an ontology extended
with a vector of weighted terms describing the semantics of each concept
of the ontology. We describe four hypotheses for the relations among
the classes of the ontology and perform experiments to verify them. Our
initial findings are that the experiments support the hypotheses.

1 Introduction

With the emergence of the Semantic Web [2] and Semantic Web related tech-
nologies, ontologies are becoming steadily more important. This also means that
the quality aspect of ontologies is becoming even more important. Ontologies
are formal specifications of shared conceptualizations [3] and are used for a wide
range of tasks, such as information integration, information retrieval, knowledge
management and extraction etc. Designing ontologies is an expensive and time
consuming task, and adding to the complexity is the problem of modelers not
being appropriately familiar with the domain, requiring domain experts which
are not expert modelers to chip in. On the other hand, there has been quite a
lot of work done on automatic ontology building. However, the task of ontol-
ogy development is complex, and automatic ontology building is a hard task.
Therefore it is important to be able to verify the consistency of the ontology
and find mistakes as early as possible. We thus present in this paper a method
for exposing desirable properties in the hierarchical structure of the ontology
with respect to subsumption. The proposed approach is based on the concept
of ontological profile, which is an ontology extended with term vectors for each
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concept. The term vector describes the semantics of the concept with respect
to an underlying text collection. The objective of our approach is to be able to
specify and verify desirable properties of ontological structures. Our initial ex-
periments show encouraging results towards the objective. The rest of the paper
is structured as follows; Section 2 gives a short introduction to some of the most
important related work on the field of ontology taxonomy verification, while Sec-
tion 3 gives a short introduction to the concept of ontological profiles. Section
4 gives an overview of the approach, and specifies hypotheses about structure
properties. Details about the experiment are found in Section 5, while the re-
sults are reported and commented in Section 6. Finally the paper is concluded
in Section 7.

2 Related Work

Guarino et al. presents in [4] the methodology OntoClean for validating taxo-
nomic relations in ontologies. The methodology is based on philosophical concep-
tions like essence, identity, and unity. These conceptions are used as metaprop-
erties on the taxonomic structure describing the classes ([4] uses the term prop-
erty about classes). The metaproperties described by the authors are Rigidity
(R), Unity (U), Dependence (D), and Identity (I). The taxonomic structure of
the ontology is verified by first tagging the concepts with metaproperties, and
next the tags in the subsumption hierarchy are analyzed. The methodology im-
poses constraints on the subsumption of concepts with certain combinations
of metaproperties. By removing subsumption relations that violate these con-
straints, relationships that were ill-defined from the designers part are avoided.
Highly related to the work of Guarino et al. is the work of Völker et al. [9],
which describes a tool, AEON, to automatically tag a RDF/OWL ontology with
metaproperties. The authors use positive and negative evidence found in a large
corpus (the Web) as basis for tagging classes with metaproperties. For each
metaproperty the authors use a set of patterns to gather positive and negative
evidence by querying the Google API. The patterns are in the form of a natural
language string with a variable that is replaced by the concept in question. One
example of such a pattern is “is no longer (a|an)? x”[9]. By replacing the vari-
able x with the concept in question (e.g. “student”) this specific pattern provides
negative evidence for the Rigid metaproperty (a class is considered Rigid when
an instance can not stop being an instance of that class, e.g. a human can not
stop being a human, on the other hand, a student can stop being a student).
The results from Google are analyzed by part-of-speech tagging the result to
remove results that give false match for the pattern. Finally they use a classifier
to decide whether or not a metaproperty is applicable to the concept based on
the evidence.
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3 Ontological Profiles

An ontological profile is an ontology extended with vectors of terms for each
concept of the ontology. These terms are regarded as semantic descriptions of
the concept at hand, based on an underlying document collection. Moreover, the
terms are weighted to reflect the strength of the relation between the concept
and the term. By using a document collection as the basis for the ontological
profile, both the terms and their weights are reflections of the real world usage
of the ontology concepts. For a definition of concept vector see Definition 1.

Definition 1. Concept Vector. The definition given here is adapted from Su[8].
Let T be the set of n terms in the document collection used for construction
of the ontological profile. ti ∈ T denotes term i in the set of terms. Then the
concept vector for concept j is defined as the vector Cj = [w1, w2, . . . , wn] where
each wi denotes the semantic relatedness weight for each term ti with respect to
concept Cj.

The method of constructing an ontological profile is systematic, in that we
have defined a way of assigning documents to and creating vectors from these
documents to represent concepts of the ontology. For a more detailed description
of ontological profiles, see [7].

We have done (and are still doing) research on using ontological profiles for
information retrieval (IR) purposes, for an introduction to the use of ontological
profiles for IR see for example [7]. Further, ontological profiles have been used
for ontology alignment purposes [8].

4 Approach

Our approach of using vectors of weighted terms associated with ontological
concepts, gives us a sort of semantic description of the notions used in real world
texts describing the concept. The terms contained in the vectors are restricted to
stemmed versions of certain word classes (part-of-speech tagging), with certain
frequent words removed (details described in Section 5). The main objective of
our approach is to compare these text based descriptions of concepts, concept
vectors, with each other. The comparison is used as a basis to define and verify
desirable properties in the subsumption hierarchy of the ontology.

To give the reader a real example of the vectors created from the DNV
ontology, we can take a look at the concept careers which has the following
phrase vector definition (only top 5 terms are shown with weights in subscript):

Ccareers = [“high ambitions”5.9, “extra dimension”5.9, “profiling film”5.9,
“vacant positions”5.2, “dnv uk”3.3]

As we see from the vector these terms are quite reasonable for what you
would expect from a recruitment page. Another example from the ontology is



4

the concept maritime which is an import business area for DNV. The phrase
vector is represented as follows:

Cmaritime = [“ship classification”3.5, “maritime industry”3.1,
“strong base”2.9, “printed editions”2.9, “ships life”2.9].

Since the vector representation carries a semantic description of the concept,
we should be able to find interesting properties that should hold for hierarchical
relations of good quality by comparing the vectors of super classes and sub
classes. We use two different approaches for the comparison of the vectors. The
first is cosine similarity [1], and the second is reducing the vectors to sets (by
disregarding the weights of the vectors) and performing set operations on the
resulting sets. The cosine similarity is calculated as in Equation 1, where Ci and
Cj are the concept vectors for concept i and j respectively, wn,l is the weight
for term n in concept vector l, t the total number of terms, and sim(Ci, Cj) is
the cosine similarity between Ci and Cj .

sim(Ci, Cj) =
∑t

n=1 wn,i × wn,j√∑t
n=1 w2

n,i ×
√∑t

n=1 w2
n,j

(1)

The approach does not consider the semantics of separate words other than
removing words that are stop words, and words that are not tagged as nouns
using part-of-speech-tagging. There is one exception to the last point, we include
adjectives that are parts of noun phrases (described in Section 5). Moreover, we
do not consider the implicit relations between words, only how the words sum
up to describe the concepts of the ontology.

We have proposed four different hypotheses about properties of the hierarchi-
cal relations in the ontologies based on the two measures just described (cosine
similarity and set relations).

4.1 Hypotheses

We will in this subsection describe our four hypotheses and argue for why they
seem reasonable. For the sake of making the explanation of the hypothesis sim-
pler, we will use the notation described below. A concept C of the ontology
has n sub classes, Ci. All concepts Ci (under C) are then said to be siblings
at the same abstraction level of the ontology. Further, the super concept’s vec-
tor representation is given by S, and its corresponding set representation (by
disregarding the weights of S) is given by S

′
. Likewise, for the sub classes, the

vector representation of sub class Ci is given by Ui and the corresponding set
representation is given by U

′

i .

Hypothesis 1. The relationship between super and sub class is stronger than
between the sub classes.
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In other words, Hypothesis 1 states that we expect to find that the relation-
ship between a class and its subsumer is stronger than the relationship between
the class and its siblings on the same level of the hierarchy. Put in terms of
the ontology relations, evidence supporting this hypothesis should be for each
S and all its corresponding sub vectors Ui, Uj : sim(S, Ui) > sim(Ui, Uj) and
sim(S, Uj) > sim(Ui, Uj). The argument for this is that the sub-super relation
carries some commonalities that we should be able to observe. On the other hand
the commonalities of the sibling relations are mainly carried by the relationship
with the super class relation, and should thus not be as prominent.

Hypothesis 2. Characterizations of super class and sub class overlap semanti-
cally, but refer to different levels of abstraction

Hypothesis 2 expresses that although there is a relation between the super
class and its sub class, the set representation of the two should be different.
The motivation for this is that while the super class has a broader definition,
touching some of the relevant aspects of the sub class, the sub class should
have its own, narrower description, fleshing out on the more detailed aspects.
Evidence supporting this hypothesis should be found in the form S

′ \ U
′

i 6= ∅
and U

′

i \ S
′ 6= ∅ thus signaling that neither set contains fully of the other set.

Hypothesis 3. Commonalities among subclasses are defined by their super class.

By Hypothesis 3 we mean that the super class, being the more general class
in the hierarchy, defines some least common set that should be found amongst
the sub classes. In other words, we expect that the super class has a partitioned
terminology, one describing abstract features, and one describing more specific
features of the concept. For this hypothesis to be true, we would expect to
find a common terminology amongst the sub classes that also would be found
in the super class’ terminology. Specifically, we would expect to find that the
specific part of the super class’ description is shared with the intersection of the
sub classes. In terms of set relation we can say that evidence supporting this
hypothesis should be (

⋂n
i=1 U

′

i ) \ S
′

= ∅.

Hypothesis 4. There are abstract features of a super class that are not shared
by any subclass.

Hypothesis 4 states that the super class is defined at a higher level of ab-
straction using terminology that is not directly applicable to the lower level of
abstraction of the sub class. Using the same argumentation as in Hypothesis 3,
we can say that the terminology is partitioned. Whereas Hypothesis 3 tests the
commonalities between the super class and sub classes (specific features of the
super class), we are here interested in the abstract features of the super class.
The super class should describe the concept at a higher level, and thus contain
terminology that is not interesting to deal with on the more detailed level of the
sub class. Evidence supporting this hypothesis should thus be S

′ \ (
⋃n

i=1 U
′

i ) 6= ∅
and |S′ \ (

⋃n
i=1 U

′

i )| < |S′ |.
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Fig. 1. Overview of vector construction.

5 Experiment

The data set we have based our experiments on is the web site of a large cor-
poration, DNV3, which has activities spanning globally. The web site for this
company has been downloaded for two separate temporal snapshots, namely
2004 and 2008. We made a simple parser application that uses the site map of
the site as a basis, all pages listed in the site map were attempted downloaded.
The site map for 2004 contained 207 files of which we successfully downloaded
all, while the site map for 2008 contained 424 files, which we also managed to
successfully download. However, only 369 of the files from 2008 contained con-
tent (the rest were subject to ”http 404 file not found” or internal server errors
at the company). As the actual data source for the files we used the web site of
the Internet Archive 4 and their Wayback Machine.

Further we have used this site and its hierarchy as a ontology, using the
structure of the site to create a subclass hierarchy. This is not considered an
actual ontology by many, but our main purpose in this experiment is to look at
the hierarchical relationships between concepts, so for our use this will suffice.
Furthermore, we assume that the ontology of DNV is good with respect to
subsumption, as it has been developed over many years and is continuously
updated. Thus we deem that the results we get from our experimental results
should be valid for concluding about how a good ontology is structured.

Figure 1 shows the overall techniques used during construction of the concept
vectors, discussed in more detail below. For each node in the ontology (web page)
we created a concept vector. As we regard each of the web pages in the hierarchy
as a single ontology concept, it is quite straight forward to assign documents to
each concept. We simply view the single document found at the concept as its
textual description.

Preprocessing and cleaning of the html documents is the first step for cre-
ating a concept vector for each concept in the ontology. First, we remove any

3 http://www.dnv.com
4 http://www.archive.org



7

html tags, script tags, common structures (such as menus) etc. from the doc-
uments, leaving us with clean text files. Since html tagging is mainly a layout
formatting, authors are not always very good at writing grammatically correct
pages with respect to the textual content, which hampers the results of the next
step in the process, part-of-speech (POS) tagging . This lead us to apply the
following solution. Assuming that any text within certain types of tags is either
a sentence/paragraph or a stand-alone collection of words (e.g. the entry in a
bullet point), we inserted extra punctuations (”.”) into the html before the html
was removed. By not applying this solution we could in the worst case end up
with a whole table as a full sentence.

For POS-tagging we used the Stanford Tagger v1.6 5. The POS tags were
further used to remove words of unwanted word-classes, and recognize phrases
in the text. As a basis for the phrase extraction we use a set of POS tag patterns
slightly different than the ones suggested by Justeson and Katz [5]. The tag pat-
terns we use are shown in Table 1, where N is a noun (we have not differentiated
between words within the noun class), and J is an adjective (also here we do not
differentiate between words within the adjective class).

Table 1. Part-of-speech tag patterns for phrase recognition, based on the patterns
suggested in [5].

Length Pattern

2 NN, NJ

3 NNN, NJN , JNN, JJN

4 NNNN

All phrases found by the tag patterns were added to the concept vector
without any frequency filtering. This will of course result in some noise, but we
found that filtering on a frequency of 2 would disqualify a large number of good
phrases found in the text. Thus the benefit of adding more good phrases was
considered to be higher than the disadvantage of the small amount of noise that
was added. In addition to the phrases found based on the tag patterns in Table
1, we also added single nouns (NN, NNS, NNP, NNPS) that appear in more
than two documents to the concept vectors.

Next the phrases were split into its sub terms, and all these were added
to the concept vectors (using the frequency of the phrase). We note that in
the step of breaking up the phrases, there are still some terms that can be
adjectives, although we specified that only nouns (single terms) should be added
to the vector. The argumentation we use is that the adjectives present in a noun
phrase are more important for the semantic description of the concept than other
”stand-alone” adjectives, and thus are added to the vector.

5 http://nlp.stanford.edu/software/tagger.shtml
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To make sure that the vectors are containing only the most meaning bearing
terms, we next remove the stop words (if any, since the POS-filtering should
have removed a substantial portion). The final processing of the terms is to
apply stemming using the Porter stemming algorithm [6]. This ensures that
terms having the same general meaning are collapsed to a single term. Finally,
the weight of the terms are calculated based on the familiar tf × idf score[1]
depicted in Equation 2, where wi,j is the weight of term i in concept vector j,
freqi,j is the frequency of term i in the concept vector j, maxlfreql,j is the
frequency of the most frequent term l in concept vector j, N is the number of
concept vectors, and ni is the number of concept vectors containing term i.

wi,j =
freqi,j

maxlfreql,j
× log

N

ni
(2)

To compute the set operations needed for Hypothesis 2-4, we disregard the
weight information for the terms, and regard each vector as a set, adding access
methods to perform set operations on the resulting set. The cosine similarity
calculations were performed according to Equation 1.

6 Results

We will in this section present and comment upon the results obtained from our
experiments. The experiment consisted of running two tests for each of the four
hypotheses. For all the tests we located all the classes that had two or more sub
classes. For the 2004 collection this left us with 26 super classes, and for the
2008 collection we were left with 60 super classes. Please refer to the example
from Section 4.1 for the notation used to describe the classes/vectors/sets.

The first part of the experiment was concerning Hypothesis 1 (which deals
with the strength of the sub-super relation in contrast to the sibling relations).
We specified the success criteria for the hypothesis to be sim(S, Ui) > sim(Ui, Uj)
and sim(S, Uj) > sim(Ui, Uj). We had a total of 26 (2004) and 60 (2008) classes
with 2 or more sub classes, and for the sub-super relation analysis we examined
the cosine similarity between the super class and each of its sub classes (total-
ing 172 relations for 2004 and 344 for 2008). For each of the super classes we
examined the sibling relation (according to how sibling relations were defined in
Section 4.1) for each pair of sub classes. The number of sibling relations analyzed
totaled 744 for the 2004 collection, and for the 2008 collection 1482. Looking at
the results from Table 2 we see that the mean cosine similarity between su-
per and sub concepts is higher than the similarity between siblings. This seems
to support the hypothesis, and we see that the results seem to agree for both
collections.

Next, we look at the part of the experiment concerning Hypothesis 2 (super
class and sub class are different). Recall that we specified the success criteria
for the hypothesis to be S

′ \ U
′

i 6= ∅ and U
′

i \ S
′ 6= ∅. Looking at the results

in Table 3 we can see that this indeed seems to be the case. We see that both
result sets are quite large, meaning that there is some partial overlap between
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Table 2. The results of the experiment for Hypothesis 1.

Variable 2004 2008

Mean sub-super similarity 0.347 0.348

Mean sibling similarity 0.197 0.219

Number of concepts having a mean
sibling similarity larger than 5 6
mean sub-super similarity

the two, and that both concepts seem to have their own specificities. The super
class should have some general more abstract terms which are more appropriate
at a more abstract level, while the sub class should contain some terms that are
more specialized and appropriate at a more detailed level. It is however not an
easy task to analyze what an optimal result for this test is. Very large result sets
would indicate little overlap, while small result sets indicates a high degree of
overlap. The optimal size of the result set remains an open issue.

Table 3. The results of the experiment for Hypothesis 2.

Variable 2004 2008

Mean number of terms in S
′

65.5 71.3

Mean number of terms in U
′
i 65.8 71.4

Mean number of terms in S
′
\ U

′
i 43.3 44.8

Mean number of terms in U
′
i \ S

′
41.7 46.6

The third part of the experiment concerns whether commonalities among
the sub classes are defined by their super class (refer to Hypothesis 3). Fur-
ther we specified the evidence criterion for supporting this hypothesis as being
(
⋂n

i=1 U
′

i )\S′
= ∅. From the results in Table 4 we can see that this indeed seems

to be the case. For 2004 we have 18 (out of 26) empty result sets, while we have
for 2008 28 (out of 60) empty result sets. Further we note that the mean size
of the result sets is quite low, 0.7 and 3.7 for 2004 and 2008, respectively. The
interpretation of this result is that there is some commonality between the sub
classes that is also defined by the super class. The result in our opinion is quite
clear, as supported by both collections

The last part of the experiment was concerning Hypothesis 4. The test run
was based on subtracting the super class from the union of the sub classes
(S

′ \ (
⋃n

i=1 U
′

i )), and the evidence criteria were specified as S
′ \ (

⋃n
i=1 U

′

i ) 6= ∅
and |S′ \ (

⋃n
i=1 U

′

i )| < |S′ |. The results are depicted in Table 5 and we can see
that for each of the collections there is a single empty result set, meaning that
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Table 4. The results of the experiment for Hypothesis 3.

Variable 2004 2008

Mean number of terms in S
′

65.5 71.3

Mean number of terms in (
⋂n

i=1
U

′
i ) 13.7 18.4

Mean number of terms in (
⋂n

i=1
U

′
i ) \ S

′
0.7 3.7

Empty result sets 18 28

the entire super vector is contained in the union of the sub vectors. This result
shows that the super set does not contain any specific semantics not carried in
the sub sets. On the other hand, for the remaining sets we see that the result set
contains on average 15.3 and 23 terms for 2004 and 2008, respectively. We see
that the results (both for 2004 and for 2008) agree quite well with the evidence
criterion given. We interpret this as that the semantics of the super concept
can be split in two; one general (abstract) part most appropriate for the higher
level, and one more specific part that is also shared with the lower level (the sub
classes).

Table 5. The results of the experiment for Hypothesis 4.

Variable 2004 2008

Mean number of terms in S
′

65.5 71.3

Mean number of terms in (
⋃n

i=1
U

′
i ) 222.2 223.7

Mean number of terms in S
′
\ (

⋃n

i=1
U

′
i ) 15.3 23.0

Empty result sets 1 1

7 Conclusion

In this paper we have presented an approach for describing properties in a sub-
sumption hierarchy of an ontology, and run tests that verify that our hypotheses
seem reasonable. We have used as basis the DNV ontology defining the structure
of the www.dnv.com web site. Since this ontology has been developed for several
years and is subject to continuous update, we deem it as a good ontology for
our evaluation. The first thing we can note from the results is that there seems
to be a stronger relation between a class and its subsumer, than between a class
and its siblings on the same level of abstraction. This is a nice result pointing
out how the relations should be between sub/super class and siblings in the
ontology. Further, we found that there is indeed a difference between the super
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class and the sub class, while they still retain some similarity. We interpret this
as the super class having a broader definition, and carrying a vocabulary more
suited for the higher level of abstraction, while the sub class has a more detailed
vocabulary geared towards the lower level of abstraction. This may point out
that classes in a subsumption hierarchy that overlap to a high degree possibly
should not have the subsumption relation.

We also found that the commonalities between the sub classes (represented
as the intersection of the sub classes) defines a common set that also can be
found in the super class. If the commonalities were not found in the super class
this could possibly be a indication that the relation is inappropriate, or that we
really are dealing with concepts that should be even further down the hierarchy
(a missing class between the super and sub classes). Finally we found that the
super class and the sub classes overlap partially semantically. The super class
contains one part specifying its more abstract semantics (not shared by the sub
classes), while the sub classes contain one part specifying their more detailed
nature.

All of these findings are supported both in the 2004 and the 2008 version of
the ontology, even though the ontology itself has evolved over the time period.
This indicates that the ontology has been updated by sound principles.

There are however some weaknesses in our approach. First, we do not look at
the semantic relations between the words in the sets/vectors. Second, and this
is more of a concern towards the validity of our experiments, the amount of text
used to construct the sets/vectors is limited. It would thus be an interesting point
for further work to do a more thorough analysis of the approach with a larger
data set. Lastly, our approach does not specify what the classes mean, rather
how they are defined by words. Guarino [4] using the OntoClean methodology
tries in contrast to define the semantics of the classes.
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