
Learning Control Policies in Smart Cities from Physical Data

Mykhaylo Marfeychuk

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Dr. Tiago Santos Veiga
Prof. Pedro Manuel Urbano Almeida Lima

Examination Committee

Chairperson: Prof. Maria Luı́sa Torres Ribeiro Marques da Silva Coheur
Supervisor: Dr. Tiago Santos Veiga

Member of the Committee: Prof. João Paulo Salgado Arriscado Costeira

November 2020





Acknowledgments

I would like to thank my partner for their friendship, encouragement and caring over all these years,

for always being there for me through thick and thin and without whom this project would not be possible.

I would also like to thank my parents, for the opportunity to attend University and for their support

throughout all these years.

I would also like to acknowledge my dissertation supervisors Prof. Pedro Lima and Dr. Tiago Veiga

for their insight, support and sharing of knowledge that has made this Thesis possible.

Last but not least, to all my friends and colleagues that helped me grow as a person and were always

there for me during the good and bad times in my life. Thank you.

To each and every one of you – Thank you.

i





Abstract

Motor vehicle emissions are the primary contributors to the increase in ambient pollution levels. Rapid

urbanization and lack of a good solution to manage the traffic are forcing cities to take drastic measures

against the automotive industry. In this thesis, we build a case study of the Norwegian city of Trond-

heim’s traffic, and create a realist simulation based on real world data, that simulates the traffic and the

emissions. We then propose a Reinforcement Learning based solution that controls the access to the

different regions of the city to optimize the traffic given a desired metric. We also take a look at different

improvements, like using a multi-agent system and using pre-generated data for the training phase. We

compare the obtained results with the baseline and against a reactive agent. At the end we assess the

solution’s strengths and weaknesses, and propose possible future improvements.

Keywords

Deep Learning; Reinforcement Learning; Multi-Agent System;

iii





Resumo

As emissões dos veı́culos a motor são a principal contribuição para o aumento dos nı́veis da poluição

ambiente. A rápida urbanização e a falta de uma boa solução para gerir o trânsito está a forçar as

cidades a tirar medidas drásticas contra a indústria automóvel. Nesta dissertação, é feito um estudo de

caso do trânsito em Trondheim e é criada uma simulação realista, a partir de dados do mundo real, que

simula o trânsito e as emissões. Seguidamente, é proposta uma solução baseada em Aprendizagem

por Reforço que controla o acesso a diferentes regiões da cidade por forma a optimizar o trânsito,

dada uma métrica desejada. Também são vistos diferentes aperfeiçoamentos, como a utilização de um

sistema multi-agente e utilização de dados pré-gerados para a fase de treino. Os resultados obtidos

são comparados com o cenário base e contra um agente reactivo. No final, avaliam-se os pontos fortes

e fracos da solução, e propõem-se possı́veis futuras melhorias.

Palavras Chave

Aprendizagem Profunda; Aprendizagem por Reforço; Sistema Multi-agente;

v





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 SUMO: Multimodal Traffic Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Deep Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Advantage Actor-Critic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Related Work 17

3.1 Reinforcement Learning Based Traffic Control . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Multi-agent Based Road Traffic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Use Case: Traffic and Pollution in the City of Trondheim 25

4.1 Trondheim Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Traffic Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Real World based Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.3 Dynamic Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Pollution Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.1 Real World data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.2 Vehicle emissions model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.3 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Environment State Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.1 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.2 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



4.4.2.A Cells Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.2.B Emissions Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.2.C Emissions Renderer Module . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.2.D Induction Loops Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.2.E Tracking Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Solution Proposal 37

5.1 Proposed Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Environment Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 Observation State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.2 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.1 Deep Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.2 Multi-Agent Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Training Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Results 45

6.1 Experiment Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1.1 Vehicle Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1.2 Pre-generated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1.3 Reactive Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1.4 RL Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.1 Reactive Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.2 Vehicle throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.3 Pre-generated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.4 RL Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2.6 Week Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Conclusion 57

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

viii



List of Figures

2.1 Simulation of Urban Mobility (SUMO) simulation scenario generated by OSM Web Wizard

tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Neural Network Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Convolutional Neural Network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Mixed Neural Network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 MDP Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Cliff Walking problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Actor-Critic Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 Variations of actor-critic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 4 phases of traffic light, Straight(NS,SN), TurnLeft(NE,SW), Straight(WE,EW), TurnLeft(WN,ES)

in each intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 The traffic grid and corresponding formatted tensor . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Five-intersection, centrally connected vehicular traffic network . . . . . . . . . . . . . . . . 21

3.4 Proposed Neural Network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Environment Flow Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Comparison between the real map and the generated SUMO map . . . . . . . . . . . . . 28

4.3 Trondheim induction loop locations (blue spots on the image) . . . . . . . . . . . . . . . . 29

4.4 Example comparisons between real traffic and simulated . . . . . . . . . . . . . . . . . . 30

4.5 Trondheim Air Quality Sensor locations (blue spots on the image) . . . . . . . . . . . . . . 32

4.6 Modular Framework Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Used Network Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Map split into multi-agent regions. Each color corresponds to an agents actionable cells. . 42

5.3 Multi-Agent Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1 Reactive agent results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

ix



6.2 Cells that are not relevant for the traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3 Comparison between Single Agent and Multi-agent approaches . . . . . . . . . . . . . . . 52

6.4 RL agent results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.5 Results comparison between Reactive Agent, RL Agent and Baseline . . . . . . . . . . . 54

6.6 Agent acting on a 7 day simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

x



List of Tables

4.1 Measurements covered by different emission models . . . . . . . . . . . . . . . . . . . . . 32

4.2 Per-emissions type decay and dissipation values . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Neural Network Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Agent differences relative to the Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

List of Algorithms

2.1 Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Q-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 SARSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Deep Q-learning with Experience Replay . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.1 Reactive Agent Decision Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xi



xii



Acronyms

A2C Advantage Actor-Critic

A3C Asynchronous Advantage Actor Critic

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

CHs Hydrocarbons

CNN Convolutional Neural Network

CO Carbon Monoxide

CO2 Carbon Dioxide

CSV Comma Separated Values

DQN Deep Q-Networks

EEA European Economic Area

EFTA European Free Trade Association

GA Genetic Algorithm

GPU Graphics Processing Unit

GUI Graphical User Interface

HBEFA Handbook Emission Factors for Road Transport

ISR Institute for Systems and Robotics

LSTM Long Short-Term Memory

MDP Markov Decision Process

NEAT NeuroEvolution of Augmenting Topologies

NILU Norwegian Institute for Air Research

xiii



NOx Nitrogen Oxide

OSM OpenStreetMap

PM Particulate Matter

PPO Proximal Policy Optimization

ReLU Rectified Linear Unit

REST Representational State Transfer

RL Reinforcement Learning

SARSA State-Action-Reward-State-Action

SUMO Simulation of Urban Mobility

SWIG Simplified Wrapper and Interface Generator

TCP Transmission Control Protocol

TD Temporal Difference

TraCI Traffic Control Interface

XML Extensible Markup Language

xiv



1
Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1



2



1.1 Motivation

Motor vehicle emissions contribute to ambient pollution levels with carcinogen toxins. Exposure to these

toxins can also cause non-cancer health effects, such as neurological, cardiovascular, respiratory, repro-

ductive and/or immune system damage. Many of today’s traffic lights and road accesses, are controlled

by a timer or a predefined pattern. This solution may have a lot of overhead in situations where the traffic

doesn’t follow the pattern. This in turn has a direct correlation to the pollution increase within the city.

The rapid urbanization and traffic-related pollution are forcing cities to take drastic actions against

the motor industry. An example of this is Norway, where between 2009 and 2012 the air quality in a

number of Norwegian cities and densely populated areas was not in line with the European Economic

Area (EEA) rules. Due to this, the case was brought to the European Free Trade Association (EFTA)

court, which forced Norway to find solutions to limit the number of pollutant particles below a certain

threshold. Norway is not alone in having problems with the limit values. Air pollution is still a widespread

problem across the EEA, particularly in big cities, where emissions from vehicles are a major contributor

to poor air quality.

Recently there have been successful traffic control solutions that use statistical analysis to find a

more refined pattern of the traffic flow. Using these analyses it is possible to find more efficient algorithms

that control the traffic signals and city access. The main drawback of the statistical solutions is that they

have trouble acting on edge cases, and generally have trouble generalizing when the complexity of the

system increases.

Reinforcement Learning (RL) is a method of learning an optimal set of actions that maximize an accu-

mulated discounted reward, by simply giving positive and negative feedback. In reinforcement learning,

an agent applies an optimal action given an environment state. In some cases, the handcrafted state

features may not be enough to fully model the environment, thus a more sophisticated approach like

Deep Reinforcement Learning is used, which, when given a feature set, learns the necessary corre-

lations and reduces necessary feature space to a minimum. Deep Reinforcement Learning is based

on the same principle as RL but uses Deep Neural Networks to estimate the state-action values. With

this method it is possible to model the traffic pattern with all its intricacies without explicitly specifying

any predefined behaviour or the relation between features. The necessary criteria are the environment

state and the behavioral reward. By using RL, it is possible to develop better traffic control solutions that

perform better at reducing the pollution than existing solutions, while still maintaining the same amount

of traffic.

The AI4EU consortium was established to build the first European Artificial Intelligence On-Demand

Platform and Ecosystem. The platform will leverage industry-led pilots to demonstrate its capabilities,

and the resources and innovation produced by these pilot projects will enable real applications and foster

more innovation that will support the European AI community in the long run. The Institute for Systems

3



and Robotics (ISR) collaborates with one of the pilot projects, with the goal of implementing solutions

to better citizens lives by using Artificial Intelligence (AI) to improve pollution monitoring, prediction and

support decision-making in the city of Trondheim.

Trondheim was one of the cities with highest pollution level in Norway, before the implementation of

stricter regulation, but still to this day the city struggles with high pollution levels. Due to this and the

abundance of traffic and pollution data, the city was chosen as the main subject of the thesis case study.

1.2 Project Goals

As described by the pilot project, the goal is to develop a solution using Reinforcement Learning to

improve the citizens lives by reducing the pollution caused by traffic. It is also relevant to study the traffic

flow to better understand the primary culprits of the increased pollution levels. The understanding of the

traffic is necessary for providing a better traffic control, with the objective of optimizing for lower levels of

pollution.

The goal is to implement a solution that reduces the pollution in the area by optimizing the traffic flow,

using Deep Learning and Reinforcement Learning based algorithms. The solution, given the readings

from the air pollution sensors and the traffic density, needs to reduce the dimensionality of the feature

set, i.e. use only relevant features, and determine the current environment state. In many cases the

sensors data is plagued with noise and uncertainty, so the solution needs to compensate for that, and

it is also required to be able to work as desired with as little information as possible, as it is hard to

collect perfect knowledge from the real world. With the states, a Deep Neural Network needs to learn

an optimal policy, on how to control the traffic. The policy dictates which actions to be executed, in this

case, by opening and closing access to certain roads. The objective is to change the traffic flow in such

a way that it lowers the pollution levels caused by the traffic, without drastically impacting the traffic flow.

The implementation is going to be trained and tested on a simulation based on real traffic behaviour

in the city of Trondheim in Norway. One of the reason for selecting Trondheim for the simulation, is that

this is the home of the AI4EU partner in charge of this pilot, namely the company Telenor.

This project will support the existing research, possibly challenging the obtained results, bring new

insights to the topic and possibly new approaches on how to improve the city traffic and improve the

pollution problem.

4



2
Background

Contents

2.1 SUMO: Multimodal Traffic Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5



6



2.1 SUMO: Multimodal Traffic Simulator

Simulation of Urban Mobility (SUMO) [1] is an open source continuous road traffic simulation package

designed to handle large road networks. It is mainly developed by employees of the Institute of Trans-

portation Systems at the German Aerospace Center. The SUMO simulator was primarily developed to

support the traffic research community. By providing a high-level API for the simulation, SUMO lets the

researchers focus on the implementation of the research topic. SUMO simulator was primarily designed

with two major goals, to be fast and portable. As such, the simulator was developed into multiple com-

ponents, where not all are required to run the simulation. As an example, the visualization component is

not required. This approach allows for the simulator to be run without having to instantiate the simulators

interface. This allows to run automatically multiple parallel simulations.

SUMO’s key features are the Microscopic simulation, where the vehicles, pedestrians and public

transport are explicitly modeled, the Cross-Platform support and the supported import formats. Addi-

tionally SUMO provides multiple configurable emission models, which can be assigned to the simulated

vehicles. This tool is extremely relevant for this project.

A tool called OpenStreetMap (OSM) Web Wizard is provided, that based on the selection of an OSM

map excerpt automatically generates a SUMO simulation scenario. This tool drastically speeds up the

scenario generation.

(a) OSM Web Wizard (b) SUMO Simulation Scenario

Figure 2.1: SUMO simulation scenario generated by OSM Web Wizard tool

SUMO provides a Traffic Control Interface (TraCI), which allows to retrieve values of simulated objects

and to manipulate their behaviour. TraCI uses a Transmission Control Protocol (TCP) based client/server

architecture to provide access, and supports multiple simultaneous clients. To have a more efficient cou-

pling without the need for socket communication, the TraCI Application Programming Interface (API) is

provided as a C++ library, Libsumo. Libsumo provides pre-built language bindings for Java and Python,

and provides support for other programming languages via the Simplified Wrapper and Interface Gen-

erator (SWIG) software tool.

7



2.2 Deep Learning

Neural Networks [2] are a machine learning tool used to model an f(x) function to map x to y. This

approach is based on Connectionism Theory [3] that tries to explain mental phenomena using Artificial

Neural Networks (ANNs). A Neural Network consists of a large number of neuron units joined together

in a connectivity pattern. Units in an ANN are usually segregated into three classes: input, hidden, and

output.

Neural Networks are a collection of connected nodes called artificial neurons. Each neuron receives

an arbitrary number of weighted inputs, performs a mathematical operation on the aggregated sum of

the inputs, and passes the result to the next set of neurons. Some commonly performed operations are

the sigmoid function or the Rectified Linear Unit (ReLU) function, these act as a threshold, similar to

biological neurons. Typically these neurons are structured into layers, each layer connecting to the next,

and so on, as represented in Figure 2.2. The input layer, receives its inputs from an external source, and

is connected to a hidden layer which, in turn, is connected to the output layer. When there are multiple

hidden layers, these networks are called Deep Neural Networks. As mentioned, all the connections have

a respective weight, and these weights are the key feature that make these neural networks perform so

well. The success of the Neural Networks is due to the network being able to model non-linear functions.

Passing data from the input layer through the network, up to the output layer, is called forward propa-

gation. For the network to output the desired values, it needs to be trained. Training the network, means

changing the weights, for this the gradient descent optimization algorithm is used. The error between

the given output and the expected output is computed, and the weights for the output neurons are up-

dated using the gradient descent. This process is made sequentially for all the network’s neurons. This

process is called Backpropagation.

Another approach of training a Neural Network, is to use the NeuroEvolution of Augmenting Topolo-

gies (NEAT) [4] method. NEAT is a Genetic Algorithm (GA) for the generation of evolving artificial neural

networks developed by Ken Stanley in 2002. The algorithm generates a batch of Neural Networks, and

based on their performance, selects the best networks. Small variations to these networks are made,

which is called Mutation. These mutated networks represent the next batch. Over time, the networks

overfit on a semi-optimal solution. Usually this approach is slower and more resource intensive than the

backpropagation approach. The advantage of using NEAT, is that it allows to find a close to optimal

topology of the Neural Network.

2.2.1 Convolutional Neural Network

Another relevant variation of Neural Networks, are the CNNs [5], these are optimized to process input

structures like images or maps. These networks have two special types of layers, Convolutional Layers

8



Figure 2.2: Neural Network Representation

and Pooling Layers. Convolutional Layers perform a sliding window algorithm with what is called a

filter. These filters are a matrix of numbers, and represent functions like average, Sobel or Gaussian.

The Pooling Layers are used to down sample the number of inputs. A Pooling Layer is positioned after

each Convolutional Layer. The output of the last layer is then flattened into a one dimensional vector and

connected to a fully connected Neural Network. A general flow of a Convolutional Neural Network (CNN)

is represented in Figure 2.3.

Figure 2.3: Convolutional Neural Network model [6]

In some cases different data types may be added alongside the image to provide more relevant

information. For this a mixed-data neural network is used. This model is built by creating a separate

neural network for each data type and then, taking the output from the input branches, combining them

into a combined neural network, as shown in Figure 2.4. It is also important to make sure that the input

information is normalized the same way, and a similar activation function is used throughout the network.

9



Figure 2.4: Mixed Neural Network model

2.3 Markov Decision Process

A Markov Decision Process (MDP) [7] is a framework for modeling decision making in situations where

the outcomes of actions are uncertain. MDPs model the interaction between an agent and the environ-

ment, as represented in Figure 2.5.

Figure 2.5: MDP Framework [8]

A Markov Decision Process (MDP) model can be characterized by:

• States S: The set of all the possible states the environment could be in.

• Actions A: The set of actions that the agent can execute.

• Transition probability P (st+1 = s′|st = s, at = a): A success probability matrix of moving from

one state to another, by executing a certain action.

• Reward Rt: A positive reward received for executing the action that takes the agent from one state

to the next.

The Markov Decision Process’ solution is the optimal policy (or an approximation for complex models)

that maximizes the expected performance criteria, for the specific model.

In a state, taking into account the transition probability and a reward function the agent computes the

10



best action to take. The action can maximize the immediate reward or a long-term reward, based on the

Performance Criteria to Optimize that is used.

In the case where the agent knows all the states, the transition probability matrix and the reward

function, the problem is considered to be model-based. With those elements the policy, π(s), can be

computed even before ever taking any action. There are two model-based algorithms for solving an

MDP, policy iteration and value iteration.

The Policy iteration [9] algorithm starts with a random policy, then it calculates the value function

of that policy using (2.1). Then the algorithm calculates an improved policy based on the previous

value function using (2.2). The algorithm repeats this process until the optimal policy is reached. It is

guaranteed that each policy is a strict improvement over the previous one, unless it is already optimal.

V π(s) = Rt + γ
∑
s′

V π(s′)P (s′|s, a) (2.1)

π(s) = arg max
a

[
Rt + γ

∑
s′

V π(s′)P (s′|s, a)

]
(2.2)

where:
V π(s) = value function
π(s) = policy
Rt = reward obtained from moving from state s to s’
γ = discount factor

An algorithm for Policy Iteration is:

Algorithm 2.1 Policy Iteration
function POLICYITERATION(π0)

t← 0
repeat

Compute V πt

πt+1(s)← arg max
a

[
Rt + γ

∑
s′
V πt(s′)P (s′|s, a)

]
for all states s

t← t+ 1
until πt = πt−1

return πt

The value iteration [7] algorithm, starts with a random value function. This function is then improved

by an iterative process, using (2.3) until the optimal value function is achieved. After the optimal value

function is achieved, the policy is easily calculated using (2.4)

V ∗(s) = max
a

[
Rt + γ

∑
s′

V ∗(s′)P (s′|s, a)

]
(2.3)

11



π(s) = arg max
a

[Rt + γ
∑
s′

V ∗(s′)P (s′|s, a)] (2.4)

where:
V ∗(s) = value function of optimal policy
π(s) = policy
Rt = reward obtained from moving from state s to s’
γ = discount factor

An algorithm for Value Iteration is:

Algorithm 2.2 Value Iteration
function VALUEITERATION

t← 0
V0(s)← 0 for all states s
repeat

Vt+1(s)← max
a

[
Rt + γ

∑
s′
Vt(s

′)P (s′|s, a)

]
for all states s

t← t+ 1
until convergence

return Vt

2.4 Reinforcement Learning

There are situations where the model of the world isn’t known, the methods used in these situations are

known as model-free methods. For this, a Reinforcement Learning algorithm is used to solve the MDP,

where the agent tries to approximate a policy by interacting with the environment. This is useful when

the agent needs to be used in previously unseen environment, but it can also lead to the Cliff Walking

problem, where the agent is near a cliff and decides to take the action of walking off it which, in most

cases, is an undesirable action.

The goal of the agent is to maximize its expected total, future, reward. It does this by adding the

maximum reward attainable from future states to the reward for achieving its current state, effectively

influencing the current action by the potential future reward. This potential reward is a weighted sum of

the expected values of the rewards of all future steps starting from the current state. Off-policy learner

learns the value of the optimal policy independently of the agent’s actions. Q-Learning [10] is a greedy

algorithm, which means that it is going to try to maximize it’s cumulative reward, even if there is a high

negative risk to the agent.

12



Q(s, a)︸ ︷︷ ︸
new value

← (1− α) ·Q(s, a)︸ ︷︷ ︸
old value

+α ·

learned value︷ ︸︸ ︷Rt + γ · max
a

Q(s′, a′)︸ ︷︷ ︸
estimate of optimal

future value

 (2.5)

where:
Q(s, a) = quality of a state-action combination
α = learning rate
Rt = reward obtained from moving from state s to s’
γ = discount factor

An algorithm for Q-learning is:

Algorithm 2.3 Q-learning
function QLEARNING

t← 0
s0 ← initial state
Initialize Q
while Q is not converged do

Choose action at from st based on Q and the chosen exploration strategy
Execute action, observe new state, st+1, and reward, Rt
Q(s, a)← (1− α) ·Q(s, a) + α ·

[
Rt + γ ·max

a
Q(s′, a′)

]
t← t+ 1

return Q

State-Action-Reward-State-Action (SARSA) [11] works on the same principle as the Q-Learning al-

gorithm, but SARSA is more conservative. It uses the actual action taken to update Q instead of maxi-

mizing over all possible actions as done in Q-learning. If there is a risk of getting a large negative reward

close to the optimal path, Q-learning will tend to trigger that reward whilst exploring, whilst SARSA will

tend to avoid a dangerous optimal path and only slowly learn to use it, as shown in Figure 2.6.

Figure 2.6: Cliff Walking problem [12]

SARSA is also more exploratory than Q-Learning which means, in the long run, it can find more

13



efficient and safe routes for the agent to take.

Q(s, a)← (1− α) ·Q(s, a) + α · [Rt + γ ·Q(s′, a′)] (2.6)

where:
Q(s, a) = quality of a state-action combination
α = learning rate
Rt = reward obtained from moving from state s to s’
γ = discount factor

An algorithm for SARSA is:

Algorithm 2.4 SARSA
function SARSA

t← 0
s0 ← initial state
Initialize Q
Choose action at from st based on Q and the chosen exploration strategy
while Q is not converged do

Execute action, observe new state, st+1, and reward, Rt
Choose action at+1 from st+1 based on Q and the chosen exploration strategy
Q(s, a)← (1− α) ·Q(s, a) + α · [Rt + γ ·Q(s′, a′)]
t← t+ 1

return Q

2.4.1 Deep Q-Learning

Although Q-learning is a very powerful algorithm, its main weakness is lack of generality. The problem

is, that when there is a state that is not in the Q-learning table, the algorithm will have no clue which

action to take, and in many applications it is impractical to represent every possible state. To solve

this, DeepMind proposed a solution [13] to this problem by replacing the state-action matrix by a Neural

Network, to estimate the Q-value function. This Neural Network, given an input state, produces the Q-

value, meaning, the network acts as the policy. To train a Neural Network, desired outputs are required.

These are generated by a simplified version of the Q-learning update method, represented in (2.7). The

difference between the given and the desired outputs is calculated by using (2.8), which is then used by

the Backpropagation algorithm to update the network’s weights.

yj ← Rj + γmax
a′

Q̂(s′j , a
′) (2.7)

∆yj ← (Q(sj , a) − yj))
2 (2.8)

where:

14



yj = vector of the expected state-action value for transition j
Q̂(s′j , a

′) = target state-action value for transition j
Q(sj , a) = main state-action value for transition j
Rj = reward obtained from moving from state sj to s′j
γ = discount factor

When training, the network tends to prioritize the experience from the latest examples. This lowers

the ability of the network to generalize, as the experience from older examples is overwritten with the

latest experiences. To solve this, an Experience Replay technique is used, where a stack of examples

is saved. During the training, a random batch of these examples is selected and used to train along with

the latest examples. This has proven to improve the generalization while lowering the number of training

cycles.

An algorithm for Deep Q-Learning with Experience Replay is:

Algorithm 2.5 Deep Q-learning with Experience Replay
procedure DEEP Q-LEARNING(S, A, R, γ, ε)

Initialize replay memory D to capacity N
Initialize main network Q
Initialize target network Q̂
while not converged do

Select a random action a with probability ε
Select a = maxaQ(s, a) with probability 1− ε
perform a, observe reward R and next state s′

store experience (s, a, R, s′) in experience replay memory D
if enough experiences are stored in D then

sample random minibatch of N transitions from D
for every transition (sj , aj , Rj , s′j) in minibatch do

if transition j is terminal then
yj = Rj

else
yj = Rj + γmaxa′Q̂(s′j , a

′)

Compute the mean squared error loss L = 1
N

N−1∑
j=0

(Q(sj , aj)− yj)2

Update Q using the stochastic gradient descent algorithm by minimizing the loss L
Every C steps, copy weights from Q to Q̂

2.4.2 Advantage Actor-Critic

Although Deep Q-Learning achieved huge success in higher dimensional problems, the action space

is still discrete. However, in many applications, especially physical control tasks, the action space is

continuous. If the action space is discretized too finely, it becomes massive. Thus, a new approach was

introduced, Actor-Critic, which aims to merge both value-based and policy-based methods.

Advantage Actor-Critic (A2C) [14] is an algorithm that uses the actor-critic architecture, represented

in Figure 2.7, where the main idea is to split the model in two: one for computing an action based on

15



a state and another one to produce the Q values of the action. The actor takes as input the state and

outputs the best action. It essentially learns the optimal policy (policy-based). The critic, on the other

hand, evaluates the action by computing the value function (value-based).

Figure 2.7: Actor-Critic Architecture

There are two variations for the actor-critic architecture, to be seen in Figure 2.8, which affect the

way the models get trained. The first variation is where the networks share a common network layer.

This helps the models to learn similar initial patterns. Another approach is to separate the models and

train them independently. It is important to notice that the update of the weights happens at each step

(Temporal Difference (TD) Learning) and not at the end of the episode, as opposed to policy gradients,

and it is independent of the variation of the architecture.

(a) Shared networks (b) Separate networks

Figure 2.8: Variations of actor-critic approach

A2C expands upon the architecture, by introducing the advantage value, which the critic learns in-

stead of the Q values. The advantage value is derived from the Q value, as shown in (2.9), and it helps

to reduce the high variance of policy networks and stabilize the model.

Q(s, a) = V (s) +A(s, a) => A(s, a) = Q(s, a)− V (s) => A(s, a) = r + γV (s′)− V (s) (2.9)

16



3
Related Work

Contents

3.1 Reinforcement Learning Based Traffic Control . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Multi-agent Based Road Traffic Control . . . . . . . . . . . . . . . . . . . . . . . . . . 21

17



18



Traffic control optimization has been an active field of research since the time when cars started to be

introduced massively into our lives, and implementations using AI, especially Reinforcement Learning,

have been an active field of research for the last 20 years. Due to the limitations of computational power,

however, effective solutions couldn’t be implemented in the early days. However, in the recent years,

with the big technological advancements and improvements in learning algorithms created a new spark

for this field research, and the exponential increase of vehicles on the road increases the need of better

solutions.

In this chapter we’ll take a look at existing solutions to the problem. We’ll also take a look at their

implementations, results and limitations.

All the insights gathered from the published works are relevant for this project. This project will

improve upon the published work, and challenge the solutions and the results.

3.1 Reinforcement Learning Based Traffic Control

Lin et al proposed [15] Deep RL based approach to optimize the traffic flow by better controlling the traffic

lights. The proposed approach is to act on the intersections which are a superset of four traffic lights.

Each intersection has four possible phases which have a specific order of transition, which represent the

traffic direction and subsequently the traffic light states, as shown in the Figure 3.1.

Figure 3.1: 4 phases of traffic light, Straight(NS,SN), TurnLeft(NE,SW), Straight(WE,EW), TurnLeft(WN,ES) in
each intersection [15]

The approach uses an A2C based deep learning model. The model receives as input a 3D tensor,

as shown in 3.2, that represents the entire traffic grid. The model’s output is a simplified discrete action

space, in a shape of < Ntls, 2 >, where 2 indicates the number of the discrete probabilities of choices,

either maintaining or switching to the next phase for each intersection, and Ntls is the number of traffic

lights.

In the paper, the agent’s reward was divided into two parts. One part is a global reward that leads

19



the agent to optimize a global behaviour of the whole network. For this, the net outflow of the whole

network was used. The net outflow is calculated by subtracting the input vehicles ||V eh(in)
t || from the

output vehicles ||V eh(out)
t || within the selected area at each time step t (3.1). When a congestion or

collision occurs, the simulator often teleports the vehicles to the position where the vehicle should have

been. Because of this only the vehicles that weren’t teleported are counted for the net outflow.

rGlobalt = ||V eh(out)
t || − ||V eh(in)

t || (3.1)

The other part is a local reward, that helps the agent learn a local behaviour relative to the intersect-

ing. It is defined as the absolute negative difference between queue length (3.2).

rTLSit = −|max qWE
t −max qNSt | (3.2)

For each intersection TLSi, qWE
t is the number of halting vehicle in lanes from west to east or vice

versa.

The complete hybrid reward function is formed by summing both the global and local rewards (3.3).

rt = βrGlobalt + (1− β)
1

NTLS

NTLS∑
i

rTLSit (3.3)

Figure 3.2: The traffic grid and corresponding formatted tensor [15]

The solution was trained on randomly generated traffic. Multiple simultaneous simulations were ran

during each episode, with each simulation having its own actor to maximize sampling.

The agent was able to increase the throughput by 25.19% and 37.81% compared with fixed-time

20



and vehicle-actuated controllers, while the average waiting time reduces by 18.68% and 28.54% at the

same time. The problem that was encountered that when the traffic system becomes over-saturated,

the performance gets close to the fixed-time controller.

The team faced exactly the same challenge as this thesis, scalability. The proposed model has

< Ntls, 2 > outputs. With each added new traffic light the number of possible combinations grows

exponentially. Running simulations on a city wide simulations would have billions of combinations. The

model should increase in size, as the proposed model wouldn’t be able to generalize, which in turn

would require more training data. The team had great success while testing on randomly generated

simulations scenarios. An interesting study would to test the solution on real world based simulations.

3.2 Multi-agent Based Road Traffic Control

Arel et al [16] introduced a control system where the model-based reinforcement learning approach is

utilized to optimize traffic signal in a network aiming at minimizing travel time.

The team proposes a multi-agent approach, where in a five-intersection system, Figure 3.3, each

intersection has an agent deciding the traffic light state. There are two types of agents where the only

difference is the type of information they receive. The outbound intersection agents only have access to

the local traffic statistics, while the central intersection agent has access to all states of its neighbouring

intersections. Each intersection follow a two-ring structure. Each ring has four phases giving a total of

eight combinational actions. In a multi-intersection network, each intersection agent individually selects

an action among the available eight-phase combinations.

Figure 3.3: Five-intersection, centrally connected vehicular traffic network

21



The outer intersection agents employ the longest-queue-first algorithm, while the inner intersection

agent uses the RL based approach. When arrival rates are low, the longest-queue-first scheduling

algorithm performs slightly better than the multi-agent Q Learning system.

For the reward, the traffic delay difference between the current and previous timesteps was used,

this may be positive or negative (3.4). Dnew and Dcurrent are the previous and current intersection total

delays.

r =
Dlast −Dcurrent

max[Dlast, Dcurrent]
(3.4)

The authors state that the current solution is scalable, although the paper only shows a single ex-

ample with only one RL agent. It would be interesting to see how the solution behaves on a city wide

simulation. Also the method is less flexible as the disturbances (e.g., lane changing) are ignored.

Alegre [17] implemented a multi-agent approach using RLlib and SUMO to control Traffic Lights. In

the approach, each traffic light has it’s own independent agent. Each agent receives the states of the

neighboring lanes, which includes the amount of cars, density, waiting time, and the traffic lights current

state. At every few steps the agents have to decide to which phase they should change the Traffic Light.

Given the flexibility of the RLlib library, he also created a variation where only a single agent is used

to control all the traffic lights. RLlib having many RL algorithms already implemented, allows easily to

easily change the used algorithm with minimal changes.

Being this project implemented in SUMO and RLlib, the project will acts as an example on how to

create a RL SUMO wrapper. It can’t act as a starting point, as the goal of our implementation is to be

modular.

Chu et al [18] propose a Multi-agent RL scalable approach for the adaptive traffic control problem.

The proposed approach uses a synchronous multi-agent A2C algorithm to train the agents, where

each intersection has an agent which decides the red-green combinations of the traffic lights. The agent

receives the wait which measures the cumulative delay of the first vehicle, wave which measures the

total number of approaching vehicles, and the neighbor policies [19]. The deep learning model also

contains an Long Short-Term Memory (LSTM) layer, as shown in Figure 3.4, which stores information

that is relevant for learning long-term dependencies.

22



Figure 3.4: Proposed Neural Network model [18]

For the reward the authors propose to optimize for the queue which measures the queue length along

each incoming lane, the wait and a which is the trade-off coefficient (3.5). This reward only contains a

local reward, and not a global reward like other proposed approaches.

rt,i = −
∑

ji∈E,l∈Lji

(queuet+∆t[l] + a · waitt+∆t[l]) (3.5)

The approach was compared to a Deep Q-Networks (DQN) [20] based and single A2C agent based

approaches. The DQN wasn’t able to converge, and the multi-agent approach converged faster than a

single agent. To test the scalability of the solution, the mentioned approaches were tested on a Monaco

based simulation, where the multi-agent outperformed the other two approaches.

23



24



4
Use Case: Traffic and Pollution in the

City of Trondheim

Contents

4.1 Trondheim Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Traffic Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Pollution Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Environment State Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

25



26



SUMO provides many necessary features, such as traffic flow simulation, traffic lights control and

vehicle emissions, which are necessary for this case study.

A major drawback of the SUMO simulator is the city wide pollution simulation. The simulation only

provides instantaneous emissions of the vehicle, thus, extra work is required to simulate the pollution

propagation throughout the simulated environment.

To guarantee the credibility of the simulation, real world sampled data is used to tune the simulation

for it to be as close as possible to the real world. The general overview of the simulation creation is

shown on Figure 4.1.

Figure 4.1: Environment Flow Overview

4.1 Trondheim Map

OSM is an open source collaborative project to create a free editable map of the world. The project

tracks the topology of the environment, geocoding of addresses, place names, and route planning.

OSM also provides a Representational State Transfer (REST) API that can be used to programmatically

download the desired information. SUMO provides a variety of tools to process OSM maps, although

the functionality is limited only to the topology. OSM Web Wizard is the tool that was used to create

the maps, as it provides an intuitive Graphical User Interface (GUI) to select the desired area and its

conditions, like imported information, and pre-generated traffic.

Multiple, differently sized maps were created to test the capabilities of the simulator and for rapid

prototyping. The larger the map the more computationally expensive it is to run the simulation. The

final map size, shown in Figure 4.2, was created based on the primary routes, and the available sensor

information. Increasing the size beyond this point will only add unnecessary complexity and introduce

more error to the simulation.

SUMO also provides various components, like footpaths, waterway, roads, house and garden deco-

rations, etc. By default the tools used to generate the map, also include many unnecessary components.

27



(a) OSM Web Wizard view (b) Generated SUMO Simulation Map

Figure 4.2: Comparison between the real map and the generated SUMO map

For this work they were removed from the map for simulation purposes, as these increase the simula-

tion’s complexity without adding any benefit.

The cleaned up map consists of lanes, edges, and intersections. An edge corresponds to a road,

which is composed of multiple lanes. Furthermore, multiple edges are used to create roundabouts. By

default the generated map has connection issues between the edges, as such the vehicles can perform

illegal moves. To solve this, many of the edges needed to be curated manually.

A grid system was used on the map to track the environment state and simplify the interactability

with the environment components. The map is split into 17×16 cells, where each cell is 200 m2 and is

composed of multiple edges. Furthermore the cell tracks the number of vehicles present in it at any

current simulation step, as well as the pollution values, and the travel and waiting times. Another state

of the cell is related to the action that may be performed on the cell. A cell may be open or closed, which

propagates the state to the edges. If a cell is closed, the vehicles are prohibited to travel on the edges

that lay inside of the cell.

4.2 Traffic Modelling

Poor traffic management and traffic jams in a city are two of the primary contributors to bad air quality.

The set goal for this project is to study the behaviour of the traffic and implement a solution that improves

the traffic flow. Ideally the experiments would be conducted in the real world, to guarantee the fidelity of

the results, but unfortunately this is not possible, so a simulation will be used. The simulated traffic should

match the real world traffic as much as possible to guarantee the trustworthiness of the experiments. To

do this, the generated traffic flow is done based on real world samples.

28



4.2.1 Sensors

An inductive-loop traffic detector is a detection system which uses the principle of electromagnetic in-

duction to detect or measure objects. It is widely used in cities to detect passing vehicles or to control

traffic signals at an intersection of roads. An induction loop is usually embedded in the road and the

circuit connected to this loop can detect changes in its inductance when a vehicle passes over or stops

on the loop. This type of system can be used to detect vehicles as well as to tune the timing of traffic

signals.

The Norwegian Public Roads Administration1 hosts a variety of induction-loop detectors located in

relevant entry points of the city of Trondheim, as can be seen in Figure 4.3. The sample rate is per

hour basis and counts how many vehicle passed through the sensors, and logs the estimated size of

the vehicle. The size distinction is relevant, as differently sized vehicles represent different emission

categories. The relevant information included in the dataset is:

• Timestamp of the sampled hour

• Location of the sensor

• Road name

• Direction of the sensor road

• Number of vehicles measured to be shorter than 5.6 m.

• Number of vehicles measured to be greater than or equal to 5.6 m

Figure 4.3: Trondheim induction loop locations (blue spots on the image)

1Norwegian Public Roads Administration website, https://www.vegvesen.no/

29

https://www.vegvesen.no/


An alternate option would be to use the data from the OSM. OSM is a community driven reporting

project, thus the data is questionable and may be unreliable.

4.2.2 Real World based Traffic

By having the number of vehicles passing through each induction loop, and the relative location of the

induction loop in the simulated environment, we can use tools such as DFrouter to generate the traffic.

DFrouter is a tool that tries to create traffic where the simulated induction-loop vehicle count matches

the desired vehicle count. Shown in Figure 4.4 is a comparison between the real vehicle count and

the simulation. The variation in some cases is due to small anomalies and modifications made in the

generated map.

(a) Søndre Ilevollen Sensor, Sentrum Direction (b) Brattørbrua Sensor, Kjøpmannsgata Direction

(c) Nye Ilsvikøra Sensor, Flakk Direction (d) Søndre Ilevollen Sensor, Byåsen Direction

Figure 4.4: Example comparisons between real traffic and simulated

30



4.2.3 Dynamic Traffic

The vehicle routes are originally set up based on the real world data. When the environment state

changes, for example when a road is closed, the vehicles need to react to the change and generate a

different route to guarantee the arrival at the destination.

By default the dynamic routing is not enabled, and the simulator manually adds and removes vehicles

to maintain the specified induction-loop count. When enabled, at each simulation step all the vehicles

check if all the edges in their route are reachable, if not then a new route is calculated. By default SUMO

uses A* to deduce a new route instead of Dijkstra, as it is often faster. A* uses the metric in (4.1) for

bounding travel time to direct the search.

h(x) =
euclidean distance

maximum vehicle speed
(4.1)

In some instances there may be a synchronization issue where two vehicles may try to enter the same

junction at the same time. This causes a grid lock, which is solved only if one of the vehicles gives way

to the other. By default the SUMO simulator removes these vehicles to ensure that the original induction

loop counts are met. This functionality was disabled as it doesn’t represent real world behaviour, and

the behaviour may be exploited.

During a grid-lock, the traffic jam may extend onto the roads where the vehicles are initially created.

When this happens, new vehicles are not able to be introduced into the simulation.

4.3 Pollution Modelling

In many areas, vehicle emissions have become the dominant source of air pollutants, including Carbon

Monoxide (CO), Carbon Dioxide (CO2), Hydrocarbons (CHs), Nitrogen Oxide (NOx), and Particulate

Matter (PM). Many of the particles are affected heavily by the external environment sources, and some

don’t have any data available, so the primary focus of the simulation will be to study and simulate the

NOx particles.

The simulator provides an accurate vehicle emissions values for the particles previously mentioned,

but these are instantaneous emissions, so an extra step is added to the simulation pipeline which tries

to simulate the emission propagation throughout the environment based on real world samples.

4.3.1 Real World data

The Norwegian Institute for Air Research (NILU)2 is an independent, nonprofit institution that focuses

on researching and making society aware of the causes and consequences of climate change and pol-

2Norwegian Institute for Air Research website, https://www.nilu.com/

31

https://www.nilu.com/


lution. NILU hosts a variety of air quality sensors located throughout Norway, including three located

in Trondheim, as can be seen in Figure 4.5. The amount of sensors is not enough to create an ac-

curate simulated model of the pollution, as the pollution is not only affected by the traffic, but also by

many environmental factors, but they can be used to roughly approximate the propagation of emissions

throughout the environment. NILU provides the sensor coordinates, Air Quality index and direct sensor

samples through a REST API.

Figure 4.5: Trondheim Air Quality Sensor locations (blue spots on the image)

4.3.2 Vehicle emissions model

Each vehicle emits different pollutants which vary in type and quantity. These emissions depend on the

model of the vehicle, type, fuel, wear down, and travel speed. As such, a vehicle emissions model which

is able to fit different vehicle variations is required.

SUMO simulator provides various open source and commercial models, as shown in Table 4.1. The

Handbook Emission Factors for Road Transport (HBEFA) [21] v3.1 model is used, as it is the latest more

accurate open source model available.

Table 4.1: Measurements covered by different emission models

model CO CO2 CHs NOx PM fuel consumption electricity consumption
HBEFA v2.1-based x x x x x x -
HBEFA v3.1-based x x x x x x -

PHEMlight x x x x x x -
Electric Vehicle Model - - - - - - x

32



4.3.3 Modelling

The SUMO simulator only provides instantaneous emissions for the vehicle and the road, meaning that

the values are only available for the last step of the simulation. Because of this, we need to implement

our own emission tracker and simulation. To model the environment, we’ll use the same methodology of

splitting the map into cells, where each cell represents a section of the map, but in this case it tracks the

multiple pollutants present in each section. At each time step the vehicle contributes to the emissions of

the cell it’s located in, by concatenating the vehicle pollution values to the current cell value.

To make the emission behaviour more realistic, two extra features are used, pollution propagation

and decay. At each step the pollution values are reduced by a certain amount, to simulate the particle

settling down and decaying. Because the real world is a dynamic environment where the particles

aren’t bound to a specific area, a Gaussian Blur is also applied to simulate the propagation through the

neighboring cells. So at each step for each cell, the pollution values are multiplied by the decay value

and the Equation (4.2) is applied where the σ corresponds to the dissipation. Ideally, the weather and

wind dynamics would be needed to make a more realistic emission simulation but this goes beyond the

scope of this thesis.

G(x, y) =
1

2πσ
e−

x2+y2

2σ2 (4.2)

The per pollutant decay and dissipation values can be seen in Table 4.2. These values were selected

by performing an iterative search with the goal of minimizing the error between the real world emissions

and the simulation emissions.

Table 4.2: Per-emissions type decay and dissipation values

CO CO2 CHs NOx PM
Decay 0.9999 0.8 0.999914 0.996 0.995

Dissipation 0.3 0.4 0.3 0.3 0.3

4.4 Environment State Tracking

The SUMO simulator only handles the traffic simulation and provides TraCI API to interact with the

simulation. However this is only the most basic functionality, so it doesn’t have the functionality that is

needed. To solve this, an environment was created that wraps the SUMO simulation and adds extra

functionality. The built environment follows a modular methodology, where a core system exists, and

optional modules can be provided to augment and provide more functionality. This was primarily done

because different experiments require different requirements, and adding more complexity may increase

the simulation time and provide functionality that may not be needed for the specific use case. The core

structure and modules implemented can be seen in Figure 4.6.

33



Figure 4.6: Modular Framework Structure

4.4.1 Core

The core of the environment is called BaseEnv, and it is responsible for handling the SUMO simulation

and optional modules. BaseEnv receives the simulation map, start/stop time steps, update frequency,

logging directory, and additional modules. When a BaseEnv is created, it initializes and runs a sumo

simulation. Depending on the parameters, the SUMO GUI version may be used, which provides a

graphical interface of the simulation. At every simulation step, all of the module’s update functions are

called. It is the responsibility of each module to implement the desired functionality. BaseEnv also

exposes a reset function, which when called, resets the simulation and the modules.

The goal of the project is to create an RL based agent that acts upon the environment. The used

RL library requires a gym environment which needs to provide certain functions and parameters, so that

the library can interact with the environment. Because of this, another Class was created BaseRLEnv

which wraps the BaseEnv and implements the Gym.Env interface. The BaseRLEnv is also a core

Class, meaning that for each experiment, a custom environment needs to be created that implements

the BaseRLEnv abstract methods.

4.4.2 Modules

As previously mentioned the project work behaves in a modular manner, where each module imple-

ments a desired functionality and should be only used when needed. During the simulation environment

creation, a list of modules are passed as one of the parameters. These modules must implement spe-

cific methods. The environment takes care of calling the module base functions, but it is the module’s

responsibility to have the desired functionality implemented. The modules implemented for the project

are the following:

34



4.4.2.A Cells Module

Cells module creates the cell matrix of the map, where each cell corresponds to each region of the map.

The module keeps track of certain information like, all the roads that belong to the cell, the number of

vehicles, the travel and waiting time, and the current state. The module provides functions which are

used by the agents to change the state of the cells to open or closed. Other modules keep the reference

of the Cells module, as they are dependant on the cell matrix.

4.4.2.B Emissions Module

Emission module keeps track of the per cell emission values. For each emission type, the module

creates a cell grid matrix which contain the emission type values. At every step it gets the current step

emission values of all the vehicles and adds them to the corresponding matrix position. To simulate the

propagation emission a decay and Gaussian Blur is applied, as explained in Section 4.3.3.

4.4.2.C Emissions Renderer Module

Emissions renderer module plots the emission grid for each emission type. For every step the renderer

gets the emission values from the Emissions module and plots them highlighting the areas that have the

most pollutants. This module is an alternative to the in-built SUMO renderer, which requires to run the

simulation in GUI mode.

4.4.2.D Induction Loops Module

Induction loops module keeps track of how many vehicles pass through every induction loop for every

hour. At the end of the simulation the module writes the vehicle count to a CSV file. There are two

versions of the module. One that reads the values directly from TraCI, but this one is inaccurate because

of the timestep rounding. And another that gets the vehicle count from a temporary XML file that the

SUMO simulator generates.

4.4.2.E Tracking Module

Tracking module tracks general statistical information about the simulator, like the number of closed

cells, aggregated emission values, max emission value, wait and travel times, number of created and

arrived vehicles. This module samples the information every 15 minutes and writes them to a CSV file.

Optionally the module can create plots of the data. The data writing is done on a separate thread to not

add extra delay to the simulation. Additionally no other module interacts with this module.

35



36



5
Solution Proposal

Contents

5.1 Proposed Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Environment Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Training Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

37



38



The proposed approach uses an RL agent which learns an optimal solution by interacting with the

environment. This chapter will cover the details of the proposed solution, which includes how the problem

is modelled, the proposed approach and the environment, including different training tactics.

5.1 Proposed Approach Overview

The primary goal is to create an RL agent that acts upon the environment. Following the traditional RL

practices, the number of action outputs would be the combination of possible cell states, which for this

problem where with 82 cells would be 282 actions, which is extremely computationally expensive. The

proposed approach treats each cell as an independent state. The agent then chooses an action for

each cell. The number of possible combinations still remains the same, but the problem becomes more

manageable.

Every 15 minutes of the simulation, the agent has to perform actions on the environment. The agent

goes over every cell of the map and decides if the cell should stay open or closed. After this, a binary

grid map is generated which represents which cells should be closed or open.

Every cell has a state, if the agent acts only by using the cell state, it will be blind to the surrounding

cells and will act poorly. This will happen because the state of one road affects the future state of another

road. To solve this, the agent will always have access to the state of all the cells. This way the agent

can find correlation between different cells. Another important property passed in the state is on which

cell the agent is acting, if this is not passed, the agent will learn to always perform the same action on

all the cells.

5.2 Environment Representation

Reinforcement Learning algorithms require for the environment to be represented in a specific manner.

At each step the environment should provide the observation, the available actions, and the reward.

As previously stated, the agent will interact with each cell independently meaning that each cell has

its own observation, reward, and available actions.

5.2.1 Observation State

The observation represents the current state of the environment, and is provided to the agent at every

action step. At each step, the agent needs to decide the action to perform for each cell. The way the

problem is formulated, each cell will have its own observation, action and reward.

There are two ways to represent the observation. One way is for each cell interaction to provide only

information about the cell that is being interacted with. The problem is that the agent won’t be able to

39



take the neighboring cells into account. Another way is to provide information about all the cells. The

issue is that for each cell action the observation will be the same, meaning that the agent will overfit on

a specific action, and always choose the same action for all the cells.

The proposed observation has a mix of both, the state of all the cells as well as the current action

cell’s specific information. This way the agent will choose the best action for the current cell while taking

into account the state of all the surrounding cells.

Due to the fact that the city is represented as a m×n grid, and that the state of one road may

directly affect the state of another, a CNN is proposed for the initial layers of the model. The primary

reason for this is that the model receives a matrix input, and the Convolutional Layers are ideal to find

correlations in multi-dimensional represented data. The defined observation is a m×n×p matrix which

contains information about the map, and an extra vector input which represents general information like

the current time of day. The time of day is important, as the traffic differs throughout the day.

The matrix input is comprised of the following data:

• Emissions: Represents the current per cell emission values.

• Number of Vehicles Contains the number of the vehicles that are present in each cell.

• Cell Closing State: Is a binary matrix that represents the currently closed cells.

• Action Cell: This matrix represents on which cell the agent is acting upon. One value is set to 1

and the rest is set to 0. This matrix changes for each acting cell.

Extra input is provided in the form of a one-hot encoded vector. The vector represents the action

number of the day and is calculated by (5.1). In the future more information could be provided, like

weather information, current date, etc.

action number = d current day minutes

action every n minutes
e (5.1)

5.2.2 Actions

For each cell, the agent can perform one of two actions, open or close the cells. Changing the cell state

also changes the state of all the roads inside the cell. There are some cells on which the agents can’t

act, and in some cells the road is not changed. For example a cell that also includes a road where the

cars are created. If the cell is closed, all the roads except the car spawning road are closed. This is

because the agents tend to exploit certain features of the simulation.

Another situation to take into account, is that some roads will belong to two different cells simultane-

ously. This is because the SUMO simulator doesn’t allow to define which section of the road should stay

40



open or closed, only the state of the entire road. This may lead to some undesired behaviours, where

one cell may close the road, and another one will open it. It is the job of the agent to learn this behaviour.

5.3 Implementation

An agent is taught a policy by interacting with the environment. This policy is then used to choose which

action to perform at a specific state. There are a variety of RL algorithms that can be used to train

the agent, like DQN, Proximal Policy Optimization (PPO) [22], A2C/A3C. The algorithm used for this

project is A2C. The primary reason for using A2C model is that it is parallelizable, meaning that it can

run multiple simulations simultaneously. Furthermore, A2C was chosen over Asynchronous Advantage

Actor Critic (A3C) as in practice A2C converged faster.

Each agent has a neural network that when given a state, produces a action. The primary reason for

using a neural network is that the current problem can’t be represented as a Q-table. For each cell, the

environment state is passed through the network, which outputs the action that should be performed.

5.3.1 Deep Learning Model

There is no clear way of finding the optimal performing network structure without trial and error. The

proposed model is comprised of two consecutive convolutional layers. The task of these layers is to find

spatial correlation between the input data. After each of the convolutional layers, there is a Max Pooling

layer which performs down-sampling, which helps to reduce the dimensionality of the data. After this,

the max pooling layer connects to a fully connected network, with an additional input. This extra input

contains categorical data about the general state of the environment. The fully connected network is

comprised of two dense layers and a Softmax layer. For each dense layer a Dropout regularization

technique is used, which randomly disables certain neurons from training.

The model uses ReLU as the primary activation function, this is because the input data can have

abstract data ranges, meaning that activation functions like Sigmoid or tanh would perform poorly. The

generated neurons are initialized with a normal distribution.

The model overview is shown in Figure 5.1, and the detailed layer parameters are shown in Table 5.1.

Figure 5.1: Used Network Pipeline

41



Table 5.1: Neural Network Parameters (f=filters, k=kernel, s=stride)

Layer Name Activation Shape Activation Size # Parameters
Input Layer 1 (16, 17, 4) 0 0

Convolutional Layer 1(f=16, k=[3,3], s=1) (16, 17, 16) 4352 592
Max Pooling 1 (15, 16, 16) 3840 0

Convolutional Layer 2(f=32, k=[4,4], s=1) (15, 16, 32) 7680 8224
Max Pooling 2 (14, 15, 32) 6720 0
Input Layer 2 (96, 1) 96 0

Fully Connected Layer 1 (144, 1) 144 981648
Fully Connected Layer 2 (64, 1) 64 9280

Softmax (2, 1) 2 130

5.3.2 Multi-Agent Framework

Even though the action space is greatly reduced, the amount of information present is still too vast for

a single agent to learn. Ideally each cell would have it’s own agent which would learn a policy only

applicable to that cell, and not a global one. Taking this approach would require a lot of computational

power as, for example, where a single model required 400 Megabytes of Graphics Processing Unit

(GPU) memory, 82 agents would require on average 32 Gigabytes of GPU memory.

Taking into account the hardware limitation, a compromised approach is proposed where the map is

split into 4 regions, represented in Figure 5.2. Each region has its own agent that acts upon the cells

in that region, as represented in Figure 5.3. Each agent has its own network which needs to be trained

independently. For each step, each agent iterates over the cells in its region and decides if the cell

should be open or closed. All the agents receive the same input where the only variation is the location

of the cell. This is so the agent has information about the global state of the map, and the behaviour of

the other agents.

Figure 5.2: Map split into multi-agent regions. Each color corresponds to an agents actionable cells.

42



This approach introduces a new challenge, cooperation. The agents will have to learn to increase a

global reward by cooperating. This approach should also decrease the number of required simulations

and the size of the models, as there is less information to be learned per agent.

Figure 5.3: Multi-Agent Approach

5.4 Training Environment

The training simulation is performed on a single day for a period of 24 hours, where every 15 minutes

the agents has to perform an action. During the simulation the agent will have to decide an action for

each cell for each action step, which during a period of 24 hours, 4 times an hour and 82 cells gives

a total of 7872 actions. It is important, during a simulation, to provide many interactions for the agent,

because of how long a simulation takes. On average to simulate a day takes around 80 seconds, and

the simulation needs to be performed hundreds of times for an agent to be able to learn a valid policy.

Another proposal is to use pre-generated data. Here the simulations are run with random actions,

and their state is stored. The agent is then trained with the saved data. The issue is that the data is

static, but the agent will keep generating actions. To solve this, an action mask is added to the model

which forces the agent to take the desired action, which in this case is the action that is specified in

the generated data. By using this method, the training is faster, as the environment doesn’t need to be

simulated again.

43



44



6
Results

Contents

6.1 Experiment Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

45



46



In this chapter we’ll take a look and discuss the results from the testing of the solution proposed in

Chapter 5. We’ll also take a look at the findings discovered during the development and the reason why

certain development decisions were made. Baseline is a simulation where there are no agents acting

upon. All the results will be primarily compared to the baseline.

6.1 Experiment Description

Most of the days showed little variation between one another. The training was performed on a single

day, and tested on a different one. This is to test the agents ability to generalize. The training is limited

to a single day because of the time a training sessions takes.

The training wasn’t limited to a specific number of episodes, this is because different rewards func-

tions require different amount of data. In general, the more complex a reward function is, the longer it

takes to learn. The training was stopped only when the agents behaviour was the same for the last few

episodes.

6.1.1 Vehicle Throughput

To test the ability of the vehicles to dynamically change their route and test if the agent is able to learn a

simple reward function, a throughput experiment was devised. In this experiment a single agent is used

and the goal is to learn a policy that maximizes the traffic flow in the city. The agent is able to close and

open any given cell. The reward function is the percentage of the vehicles that successfully arrive to

their destination. The wait and travel time were not used, as they introduce a more complex behaviour

to learn and easily can be exploited, like for example, closing all the cells reduces the travel and wait

time.

6.1.2 Pre-generated Data

A day simulation is generally slow, and to train an RL, requires hundreds or in some cases thousands

of simulations. A solution proposed is to run hundreds of simulations with random actions and save the

information like the closed cells, emission values, number of vehicles for each step. The agents are then

to be trained on this data. During the training the agent will try to make actions, but because the data is

static, it’s not possible. To solve this, an action layer is added to the end of the network. This forces the

agent to always select the predefined action.

To test this approach, a single agent is trained with the goal of maximizing the throughput as in the

previously described experiment. The reason for this is that we then can compare both results.

47



6.1.3 Reactive Agent

To test the efficacy of the RL agent, it needs to be compared with other solutions. As there are no

available implementations that run on the same environment, an ad hoc agent is proposed. The proposal

in question is a reactive agent. The only functionality that the agent has, is to check the pollution levels

in each cell and close the ones that exceed a specific threshold, as represented in the Algorithm 6.1.

The reason for such an agent is because every city in Europe has a limitation of pollution that an area in

any given time cannot surpass. Two tests are performed, one where the threshold is 100 NOx (µg/m3)

per cell, and the other where the threshold is 50.

Algorithm 6.1 Reactive Agent Decision Flow
procedure REACTIVE AGENT(threshold, cells)

for cell in cells do
get cell emissions
if cell emissions >= threshold then

Close cell
else

Open cell

6.1.4 RL Agent

The goal is to develop an RL agent that reduces the pollution in the city. For this an adequate reward

function needs to be found. For this an iterative search was performed, until the correct reward parame-

ters were found.

If the reward is just the max cell emissions, meaning the value of the cell that has the highest emis-

sions value, the agent learns to exploit an obvious behaviour, which is closing all the cells. The logic

behind this, is that if there are no cars circulating, there are no emissions. The reason why total emis-

sions weren’t used as a reward is because it is a global reward, and the agent has trouble optimizing for

it. Ideally a mix of global and local rewards is needed.

When the reward is the travel time or waiting time, a similar behaviour as to max cell emissions is

found. If there are no vehicles, the value is always at 0. Because this reward has a similar behaviour as

the max cell emissions, they can’t be used as a compound reward.

The only reward that can be mixed with the emissions, is the number of vehicles that arrived, as they

have an opposite behaviour. This way the agent tries to minimize the pollution while guaranteeing that

the vehicles reach the destination. Minimizing the emissions is also not ideal, as it will try to minimize

the value to 0 and in some cases may penalize heavily the traffic. Solution to this is to try to maintain

the emissions between a desired threshold. The final reward function is as shown in (6.1).

48



reward =
(t−mce)

200
+

av

eav
(6.1)

where:
t = emissions threshold
mce = current highest cell emission
eav = expected step arrived vehicles
av = step arrived vehicles

Having a reward function, the final experiments can be conducted. First, a experiment is done to test

the performance of a single agent against a multi-agent system. The best approach will then be used

for the further experiments. Two additional experiments are conducted where the only variation is the

threshold value, one with 100 and 50 NOx.

6.2 Results

In this chapter the results of each experiment will be presented with a respective explanation for the

agents behaviour. The results show the agents direct effect on the environment, and not the training

performance of the model.

6.2.1 Reactive Agent

As shown in Figure 6.1, the 100 limit agent performs well in maintaining the max emissions under the

threshold, with minor reduction in arrived vehicles. On the other hand, the 50 limit agent has trouble in

achieving the max emissions threshold, and it reduces drastically the number of arrived vehicles. This

is because the agent takes drastic actions, closing too many cells and reducing the effectiveness of

the traffic. Another interesting side effect can be seen, is when a cell is closed all the vehicles in it

get stuck. The vehicles are prohibited from circulating, but they still produce emissions which increase

the cell emissions, which make the agent keep the cell closed. This is also the reason why the waiting

time is constantly increasing, because more and more vehicles get stuck in closed cells. The problem

of the vehicles being stuck in the cell could be easily solved by modifying the simulation and removing

the vehicles from the closed cells. This wasn’t done because in the tests the RL agent exploited this

behaviour and closed all the cells, which in turn inhibits any vehicle from entering the city.

49



(a) Max Cell Emissions Value (b) Arrived Vehicles to Destination

(c) Travel Time (d) Waiting Time

Figure 6.1: Reactive agent results

6.2.2 Vehicle throughput

While testing the agent for the arrived vehicles optimization, in some cases the agent learned a different

pattern of behaviours. In general the agent learned that opening all the cells maximizes the traffic

throughput, but in some cases, the agent learned that some cells are irrelevant for the traffic, and keeping

them closed doesn’t affect the traffic flow. This is because, when those cells are closed, there is always

a different route that the vehicles could take. The cells in question can be seen in Figure 6.2.

50



Figure 6.2: Cells that are not relevant for the traffic

6.2.3 Pre-generated Data

Training the agent on pre-generated data sped up the training drastically, which in turn allowed more

testing and rapid prototyping. This unfortunately didn’t work, as the agents always overfitted on a wrong

solution or didn’t learn a solution at all, compared to a normally trained agent. This may be due to the

lack of training data, as the agent would require more examples because of the lack of exploration.

6.2.4 RL Agent

A test was made comparing a single agent, against a multi-agent system. As shown in the Figure 6.3,

the multi-agent approach was able to learn a better policy compared to a single agent. With different

reward functions, the multi-agent approach was able to converge faster on a solution compared to a

single agent. Because of this, all of future trainings were performed on the multi-agent system.

51



(a) Max Cell Emissions Value (b) Vehicles arrived to Destination

(c) Travel Time (d) Waiting Time

Figure 6.3: Comparison between Single Agent and Multi-agent approaches

The agents were trained with two different threshold values, 100 and 50 NOx (µg/m3), the same as

the reactive agent. The test results can be seen in Figure 6.4. The agents with the 100 limit threshold

are able to learn correctly the policy and act accordingly. The agents are able to reduce the pollution

below the threshold with minimal traffic impact. There is a spike where the value goes over the threshold,

this is due to accumulation of cars in a closed cell. Training more the agents and with more varied data

will solve the issue. The travel time was impacted as the vehicles have to find alternative longer routes.

Contrary, the 50 limit threshold agents are not able to minimize the value below the threshold. This

is because, to achieve lower emissions, the number of vehicles needs to be reduced. Currently there

is no way to directly control the number of vehicles that are created. What happens is the agent closes

cells which cause a traffic jam that extends to the roads where the cars are created. When this happens

52



new cars can’t be introduced into the simulation, and this explains the lower number of vehicles. The

agents are able to find an equilibrium between both rewards, emissions and the number of arrived cars.

The waiting time also increases because the vehicles get stuck in closed cells, or in roads without any

alternative routes due to the closed cells.

(a) Max Cell Emissions Value (b) Vehicles arrived to Destination

(c) Travel Time (d) Waiting Time

Figure 6.4: RL agent results

6.2.5 Comparison

Taking a look at the Figure 6.5, we can see some interesting patterns. Looking at the agents with 100

NOx (µg/m3) threshold, we can see that the RL agent is able to reduce the emissions more than the

reactive agent. This is because the RL agent leverages the emissions more than the arrived vehicles,

thus a small decline in arrived vehicles.

53



(a) Max Cell Emissions Value (b) Vehicles arrived to Destination

(c) Travel Time (d) Waiting Time

Figure 6.5: Results comparison between Reactive Agent, RL Agent and Baseline

For the 50 NOx (µg/m3) threshold, both agents struggle to maintain the below the threshold. The

reactive agent can’t lower the emissions more due to the poor management of the cells, while the RL

agent is due to the emissions-arrived equilibrium. It is also relevant to notice, that with this threshold,

the agents prioritize lowering the emissions more than maintaining vehicle flow. In general both agents

have similar results, except for the waiting time. The Reactive agent closes the cells with the vehicles,

blocking them from moving, this in turn increases the waiting time, while the RL agent tries to avoid this

behaviour. The RL agent is able to learn this behaviour because of the arrived vehicles reward part.

When the vehicles are stuck in a cell, they are not able to arrive to the destination, in turn lowering the

reward.

54



It may seem counter-intuitive that vehicles taking longer routes don’t increase the pollution. This is

because when the vehicles take longer routes, they in fact produce more emissions, but they produce

the emissions in less concentrated areas which allows for the emissions to dissipate faster.

The Table 6.1 shows a more statistical results comparison.

Table 6.1: Agent differences relative to the Baseline

Avg. Max Avg. Arrived Avg. Travel Avg. Waiting
Emissions Vehicles Time Time

Reactive Agent Limit 100 -19.13% -8.21% 15.69% 192.40%
Reactive Agent Limit 50 -47.39% -37.67% 28.14% 9073.79%

RL Agent Limit 100 -36.97% -10.53% 11.51% 275.15%
RL Agent Limit 50 -45.99% -31.07% 31.70% 1195.48%

6.2.6 Week Simulation

To test the generalization of the approach, the system was trained on a single day and tested on an

entirely different week. As seen in the Figure 6.6, the agent is able to generalize and act accordingly

even though that the agent wasn’t trained on those days. This shows that the agent can act on previously

unforeseen data and with more training, the performance can improve.

Figure 6.6: Agent acting on a 7 day simulation

55



56



7
Conclusion

Contents

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

57



58



In this chapter, we’ll take a look at the solution, reflecting on the results, and presenting suggestions

for future work.

7.1 Conclusions

Vehicle are some of the primary environment pollutant. Rapid urbanization and poor traffic are starting

to create health hazards in big cities. Because of this tougher regulations are being imposed on cities

and car industry. One of the primary issues, is the poor management of the city traffic, as for example

sub-optimal traffic light times which cause huge accumulation of vehicles in one area. Currently these

are controlled by manually crafted models, which in many cases are not adapting to the traffic behaviour

change.

Since it’s not possible to test a solution on the real world, a simulator is required. A simulation based

on SUMO was created that generates traffic based on real world sampled data. Additionally vehicle

emission propagation was modelled based on real data. The simulator was also extended to implement

the OpenAI Gym format which is a common RL practice. Using a Gym environment allows to use existing

RL frameworks.

We provide an RL solution to reduce the city level emissions by managing the access to specific

areas of the city. The proposed approach splits the map into a cell grid and uses multiple agents that

assess the state of each of the cells. Each of the agents is responsible for managing a specific region

of the city, which are comprised of multiple cells. Each of the agents contains a Convolutional Neural

Network which is used to find the patterns on the input data, and learn a desired policy.

An approach using pre-generated data was proposed. Here multiple simulations with random ac-

tions were run and the intermediate states were stored. The agents were then trained on this data.

This approach would allow a more controlled environment and faster training. Unfortunately the agents

were not able to learn a valid policy and overfitted on a specific behaviour. Although the poor agent’s

behaviour, it doesn’t eliminate the possibility of using such approach in the future.

Ideally each map cell would have its own policy as this would allow to have a more optimal behaviour,

but this would require a lot of computational resources. A compromised solution was introduced, where

the map was split into four regions and each region had it’s own policy. The agents then had to cooperate

together to maximize a global reward. This approach was compared with a single policy approach.

The multi-agent approach performed better than a single agent. This is because a single agent can’t

generalize well on so many actionable spaces. A solution would be to increase the complexity of the

model, but this would require more resources and more training compared to just using a multi-agent

approach.

The agents were trained on different reward functions and compared with a reactive agent and the

59



baseline. The RL agents perfomed better than the reactive agent at minimizing the emissions below the

threshold. When more weight was given to minimizing the emissions, a bigger reduction in number of

vehicles was seen. The RL agents also showed that some regions of the city are not necessary to the

traffic throughput, as there are alternative routes that the vehicles could take.

With more training and improvements the agents could perform even better and be reused for other

cities.

7.2 Future Work

For future work, the simulation could be improved by providing additional information, like weather, day

type, etc. This would allow the agents to better understand the behaviour of the traffic and the effect that

the weather has on the emissions. Additionally the emissions simulation could be improved to better

model the real world behaviour where for this the environment details like the environment topology and

weather needs to be taken into account. With more computational power and time, the agents could be

trained on more days, which would make the behaviour to be more robust and prone to outliers.

The simulation speed could be improved, as there are multiple bottlenecks like emissions simulation

and garbage collection. Some parts could also be rewritten in C++ as in some cases it is in order of

magnitude faster than Python. Another reason is that the SUMO simulator originally is written in C++,

thus a communication layer between C++ and Python is required which adds extra latency. Additionally,

PyTorch could also be used instead of TensorFlow, as in limited tests, it showed to perform better on

consumer grade hardware. Switching to PyTorch would also require to replace RLlib by a different

framework as there is some functionallity that is not yet implemented for PyTorch.

The current implementation will also be dockerized and hosted as a component based experiment on

the AI4EU Experiments platform. The simulator and the agent will have its own Docker [23] containers

which will be able to be used to build a pipeline and be deployed as an online service.

60



Bibliography

[1] P. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich, L. Lücken,

J. Rummel, P. Wagner, and E. Wießner, “Microscopic traffic simulation using sumo,” in The

21st IEEE International Conference on Intelligent Transportation Systems. IEEE, 2018. [Online].

Available: https://elib.dlr.de/124092/

[2] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,

ser. Cornell Aeronautical Laboratory. Report no. VG-1196-G-8. Cornell University, New York,

1962. [Online]. Available: https://apps.dtic.mil/dtic/tr/fulltext/u2/256582.pdf

[3] D. Hebb, The Organization of Behavior: A Neuropsychological Theory, ser. A Wiley book

in clinical psychology. John Wiley & Sons Inc., New York, 1949. [Online]. Available:

http://s-f-walker.org.uk/pubsebooks/pdfs/The Organization of Behavior-Donald O. Hebb.pdf

[4] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting topologies,”

Evolutionary Computation, vol. 10, no. 2, pp. 99–127, 2002. [Online]. Available: http:

//nn.cs.utexas.edu/?stanley:ec02

[5] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–44, May 2015.

[6] S. Team, “Convolutional neural networks (cnn): Summary,” 2018, online; ac-

cessed December 6, 2020. [Online]. Available: https://www.superdatascience.com/blogs/

convolutional-neural-networks-cnn-summary/

[7] R. Bellman, Dynamic Programming. Princeton University Press, Princeton, New Jer-

sey, 1957, ch. XI. [Online]. Available: https://www.gwern.net/docs/statistics/decision/

1957-bellman-dynamicprogramming.pdf

[8] D. Kolmas, “Markov decision processes,” 2019, online; accessed December 6, 2020. [Online].

Available: http://www.damiankolmas.com/rl/Marcov-Decission-Process/

[9] R. Howard, Dynamic Programming and Markov Processes. The Technology Press of

Massachusetts Institute of Technology and John Wiley & Sons, Inc., New York .

61

https://elib.dlr.de/124092/
https://apps.dtic.mil/dtic/tr/fulltext/u2/256582.pdf
http://s-f-walker.org.uk/pubsebooks/pdfs/The_Organization_of_Behavior-Donald_O._Hebb.pdf
http://nn.cs.utexas.edu/?stanley:ec02
http://nn.cs.utexas.edu/?stanley:ec02
https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-summary/
https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-summary/
https://www.gwern.net/docs/statistics/decision/1957-bellman-dynamicprogramming.pdf
https://www.gwern.net/docs/statistics/decision/1957-bellman-dynamicprogramming.pdf
http://www.damiankolmas.com/rl/Marcov-Decission-Process/


London, 1960, ch. 4. [Online]. Available: https://www.gwern.net/docs/statistics/decision/

1960-howard-dynamicprogrammingmarkovprocesses.pdf

[10] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, King’s College,

Cambridge, UK, May 1989. [Online]. Available: http://www.cs.rhul.ac.uk/∼chrisw/new thesis.pdf

[11] G. A. Rummery and M. Niranjan, “On-line q-learning using connectionist systems,” Cambridge

University Engineering Department, Tech. Rep., 1994.

[12] S. Exchange, “Convergence of q-learning and sarsa,” 2017, online; accessed De-

cember 6, 2020. [Online]. Available: https://stats.stackexchange.com/questions/317636/

convergence-of-q-learning-and-sarsa

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing

atari with deep reinforcement learning,” 2013.

[14] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in SIAM Journal on Control And

Optimization. MIT Press, 2001, pp. 1008–1014. [Online]. Available: https://papers.nips.cc/paper/

1786-actor-critic-algorithms.pdf

[15] Y. Lin, X. D. andLi Li, and F.-Y. Wang, “An efficient deep reinforcement learning

model for urban traffic control,” CoRR, vol. abs/1808.01876, 2018. [Online]. Available:

http://arxiv.org/abs/1808.01876

[16] I. Arel, C. Liu, T. Urbanik, and A. G. Kohls, “Reinforcement learning-based multi-agent system for

network traffic signal control,” IET Intelligent Transport Systems, vol. 4, no. 2, pp. 128–135, 2010.

[17] L. N. Alegre, “Sumo-rl,” https://github.com/LucasAlegre/sumo-rl, 2019.

[18] T. Chu, J. Wang, L. Codecà, and Z. Li, “Multi-agent deep reinforcement learning for large-scale

traffic signal control,” IEEE Transactions on Intelligent Transportation Systems, 2019.

[19] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, “Multiagent reinforcement learning for integrated

network of adaptive traffic signal controllers (marlin-atsc): Methodology and large-scale application

on downtown toronto,” IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 3, pp.

1140–1150, 2013.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller,

“Playing atari with deep reinforcement learning,” DeepMind Research, December 2013. [Online].

Available: https://arxiv.org/pdf/1312.5602v1.pdf

[21] “The handbook of emission factors for road transport,” Jan 2010. [Online]. Available:

https://www.hbefa.net/e/index.html

62

https://www.gwern.net/docs/statistics/decision/1960-howard-dynamicprogrammingmarkovprocesses.pdf
https://www.gwern.net/docs/statistics/decision/1960-howard-dynamicprogrammingmarkovprocesses.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
https://stats.stackexchange.com/questions/317636/convergence-of-q-learning-and-sarsa
https://stats.stackexchange.com/questions/317636/convergence-of-q-learning-and-sarsa
https://papers.nips.cc/paper/1786-actor-critic-algorithms.pdf
https://papers.nips.cc/paper/1786-actor-critic-algorithms.pdf
http://arxiv.org/abs/1808.01876
https://arxiv.org/pdf/1312.5602v1.pdf
https://www.hbefa.net/e/index.html


[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization

algorithms,” OpenAI Research, 2017. [Online]. Available: https://arxiv.org/pdf/1707.06347.pdf

[23] D. Merkel, “Docker: lightweight linux containers for consistent development and deployment,” Linux

journal, vol. 2014, no. 239, p. 2, 2014.

63

https://arxiv.org/pdf/1707.06347.pdf

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Project Goals

	2 Background
	2.1 SUMO: Multimodal Traffic Simulator
	2.2 Deep Learning
	2.2.1 Convolutional Neural Network

	2.3 Markov Decision Process
	2.4 Reinforcement Learning
	2.4.1 Deep Q-Learning
	2.4.2 Advantage Actor-Critic


	3 Related Work
	3.1 Reinforcement Learning Based Traffic Control
	3.2 Multi-agent Based Road Traffic Control

	4 Use Case: Traffic and Pollution in the City of Trondheim
	4.1 Trondheim Map
	4.2 Traffic Modelling
	4.2.1 Sensors
	4.2.2 Real World based Traffic
	4.2.3 Dynamic Traffic

	4.3 Pollution Modelling
	4.3.1 Real World data
	4.3.2 Vehicle emissions model
	4.3.3 Modelling

	4.4 Environment State Tracking
	4.4.1 Core
	4.4.2 Modules
	4.4.2.A Cells Module
	4.4.2.B Emissions Module
	4.4.2.C Emissions Renderer Module
	4.4.2.D Induction Loops Module
	4.4.2.E Tracking Module



	5 Solution Proposal
	5.1 Proposed Approach Overview
	5.2 Environment Representation
	5.2.1 Observation State
	5.2.2 Actions

	5.3 Implementation
	5.3.1 Deep Learning Model
	5.3.2 Multi-Agent Framework

	5.4 Training Environment

	6 Results
	6.1 Experiment Description
	6.1.1 Vehicle Throughput
	6.1.2 Pre-generated Data
	6.1.3 Reactive Agent
	6.1.4 RL Agent

	6.2 Results
	6.2.1 Reactive Agent
	6.2.2 Vehicle throughput
	6.2.3 Pre-generated Data
	6.2.4 RL Agent
	6.2.5 Comparison
	6.2.6 Week Simulation


	7 Conclusion
	7.1 Conclusions
	7.2 Future Work

	Bibliography

