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Our goal

Optimize traffic flow to reduce traffic related pollution while
maintaining the traffic flow. As it is hard to model the world, we'll use
Reinforcement Learning to optimize the traffic.

e Realistic simulated environment
e Simulated emissions
e Effect of the traffic on the emissions

e Traffic control for improving the emissions
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What is AI4EU?

AI4EU is a consortium established to build the first European Artificial
Intelligence On-Demand Platform and Ecosystem with the support of
the European Commission under the H2020 programme.

What are the goals of AI4EU?

Build an European Al platform and Ecosystem. Several activities to
foster this, including the implementation of industry-led pilots, and
application of research activities in those pilots.

IST is actively involved in the loT pilot, which gives the
motivation and scenario for this thesis
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2. Environment

2.1. Traffic Modelling
2.2. Pollution Modelling
2.3. Modular Framework



W 11580 Map Generation
e SUMO simulator used for traffic simulation

e Map generated from OpenStreetMap + manual cleanup

\

OSM Web Wizard view Generated SUMO Simulation Map



W 1/5R0A Grid System
e The map issplitinto a 77x16 grid cell
e A cellis composed of multiple roads

e Aroad may belong to two different cells

e Additionally each cell tracks the number of vehicles, the cell
state (open or closed), emission values, etc.
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e Data provided by Norwegian Public Roads Administration
e Data contains induction-loop detections by size
e Real induction-loops matched with the simulated ones

e Traffic generated to match the induction-loop count

Data Collection
Equipment
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W st Pollution Modelling

e HBEFA v3.1 emissions model was used

e Pollution data provided by Norwegian Institute for Air
Research

e Decay and dissipation manually fine-tuned to mimic the data
provided by the NILU

Aggregate
Emissions
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e A modular framework was created

e FEach experiment lists the modules it needs

e The framework takes care of the lifecycle of the modules

e Each module implements its own functionality
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e Cells Module: Represents the map cell matrix and keeps
track of all the roads that belong to each cell

e Emissions Module: Keeps track of the per cell emission
values. Applies emission decay and dissipation

e Induction Loops Module: Keeps track of how many vehicles
pass through each induction loop

e Tracking Module: Tracks statistical information about the
simulator

e Emissions Renderer Module: Creates a plot visualization of
the emission values

12
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Module
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3. Reinforcement Learning
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Reinforcement Learning

e Agent performs actions, experiences rewards

e Goalisto learn an optimal policy, which when given a state,

chooses the best action to maximize long-term reward

state
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Curse of dimensionality:

e In tabular reinforcement learning every state-action pair
needs to be visited enough times. In problems with a large
number of states, convergence is infeasible

16



W sty Reinforcement Learning

Curse of dimensionality:

e In tabular reinforcement learning every state-action pair
needs to be visited enough times. In problems with a large
number of states, convergence is infeasible

This is where Deep Reinforcement Learning comes in

17



ss0A  Deep Reinforcement Learning

W TECNICO

Deep Q-Learning:

States represented as features for a Deep Neural Network

The Network estimates the Q-value function

Experience Replay technique is used to reduce experience

prioritisation

Reward
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| Environment

action

parameter 0

Observe state

-
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e Uses actor-critic model

e Actor-critic can have parts of their networks in common to
guarantee the same feature correlation

e Parallelizable training
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4. Proposed Solution
4.1. Single Agent
4.2. Multi-agent
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W TuEscE'a\'o'io Problem Solution

e The agent iterates over each cell

e For each cell the agent decides if the cells should be
open or closed

e Problem: The agent doesn’t take the state of the
neighbouring cells into account

e Solution: Provide a general overview of all the cells

h 4
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st Multi-Agent Framework Proposal

e Split the map into 4 regions
e FEach region has its own agent

e The agents have to learn to cooperate
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W TECNICO

Matrix Input (17x16x4):

Cell Emissions (same for all cells)

Number of Vehicles (same for all cells)
Cell closing State (same for all cells)
Action Cell (different for each cell decision)

Categorical data (1x96):

Action number / Time of day

Actions:

Open the cell
Close the cell
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W 115804 Agent’'s Model
e Convolutional Layers are used to find correlation

between the cells

e Adding more than three convolutional layers increases
the training time but doesn't improve the performance

e The categorical data is added to a dense layer

Environment Feature Conv Conv Dense Dense
Map Layer 1 Layer 2 Layer 1 Layer 2

— — — —»m — 1(s)

Extra Input
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5. Results
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Agents description
Single agent vs Multi-agent

Multi-Agent RL vs Reactive Agent
Week Simulation
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e Goal: Minimize emissions + maintain number of arrived vehicles
e NOX thresholds: 50 & 100 (ug/m?)

e Reward:
(t —mce) av
reward =
vart 200 T eav
where:
t — emissions threshold
mce = current highest cell emission

eav expected step arrived vehicles
av = step arrived vehicles
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e NOXx thresholds: 100 (ug/m?3)
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e Multi-agent the emissions more than the single agent

e Multi-agent causes less waiting time



W st Reactive Agent

e Goal: Close cells that exceed the threshold
e NOX thresholds: 50 & 100 (ug/m?)

e Pseudocode:

procedure REACTIVE_AGENT(threshold, cells)
for cell in cells do
get cell emissions
if cell_emissions >= threshold then
Close cell
else
Open cell
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e Multi-agent 100 Threshold lowers the emissions more
than the respective Reactive Agent

e For 50 Threshold both agents behave similarly
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e NOX thresholds: 50 & 100 (ug/m?3)
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e Multi-agent has lower travel time compared to the
Reactive Agent

e Reactive Agent causes traffic jams
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e Rewrite in C++
e Replace the Tensorflow framework by PyTorch
e Improve emissions modelling

e Use Offline RL to improve the training
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Thank you!

Questions?



