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Preface

I am pleased to present the Workshop Proceedings of the Eighth International
Conference on Case-Based Reasoning (ICCBR-09) which is held in Seattle in
July 2009.

This year the workshop programme includes four workshops, two of which
are workshops in well recognised CBR research areas continuing the well es-
tablished, successful workshops on Case-Based Reasoning in the Health Sciences
and on Uncertainty, Knowledge Discovery and Similarity. Along with these I am
pleased to present two new workshops which explore developing areas of CBR
research, namely Reasoning from Experiences on the Web (WebCBR) and Case-
Based Reasoning for Computer Games. In addition, our workshop programme
this year includes the papers from the finalists of the second Computer Cookery
Competition, the follow-on from the very successful competition held at ECCBR
in Trier, Germany in 2008.

I would like to thank all who contributed to the success of this workshop
programme, including the presenters and authors of the workshop papers for
their contributions along with the programme committees for the quality and
timeliness of their reviews. In particular, my thanks goes to the workshop organ-
isers for their support and co-operation in the organisation of this programme,
especially to Kerstin Bach and to Derek Bridge whose skill in LaTeX helped me
considerably.

I very much appreciate the support of the conference chairs Lorraine McGinty
and David Wilson and value the opportunity to organise the workshops. My
special thanks goes to the local chair Isabelle Bichindaritz for her help with the
production of the proceedings book.

I sincerely hope that the participants enjoy this year’s workshop programme
and that this collection of papers will inspire and encourage more CBR-related
research in the future.

Sarah Jane Delany July 2009
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Preface

We are pleased to present the proceedings of the Workshop in Reasoning
from Experiences on the Web (WebCBR), which was held as part of the Eighth
International Conference on Case-Based Reasoning in Seattle, July 2009.

Advances in web technology have led to vast amounts of user generated
web content in the form of blogs, emails, reviews and opinions. Increasingly
people search and browse other people’s experiences on travel, medicine, retail,
entertainment, etc. While they can be treated as documents, we take the view
that they are more appropriately seen as a rich source of untapped experience
data, a valuable asset that can be used to generate web experience bases through
Case-Based Reasoning (CBR) technology.

Proliferation of web content invariably also means significant increases in web
usage. Typically many users will have similar searching and browsing needs and
should ideally benefit from this commonality. Currently user behaviour remains
mostly un-captured but the potential to facilitate reuse of web usage experiences
also creates an exciting opportunity for CBR research.

This workshop promotes CBR as a means to advance web technology in
two ways: firstly by enabling better capture and representation of explicit yet
unstructured experiential web content, and secondly by harnessing web usage
experiences to improve browsing and searching.

The workshop was a forum for intense discussion of this research direction,
provoked by the presentation of eight papers, which are collected in these pro-
ceedings. The papers include Web2.0 applications in resource sharing, content
generation and visualisation. Importantly papers also addressed the opportuni-
ties and challenges for CBR when harnessing experience on the web.

We wish to thank all who contributed to the success of this workshop, es-
pecially the authors, the Programme Committee, the additional reviewers, the
panelists and Sarah-Jane Delany (the ICCBR Workshop Chair).

Derek Bridge July 2009
Enric Plaza
Nirmalie Wiratunga
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There and Back Again: 

Building Web-Scale CBR 

Larry Birnbaum and Kristian J. Hammond 

Northwestern University 

Intelligent Information Laboratory 

Evanston, Illinois USA 

{birnbaum, hammond}@infolab.northwestern.edu 

A Story 

We open this paper on a personal note.  The two of us practically cut our teeth as re-

searchers during the early days of CBR, and we remain very proud of the work we did 

at that time (see, for example, Hammond, 1989; Birnbaum and Collins, 1989).  The 

core insight of CBR—that effective human and machine reasoning must proceed on 

the basis of specific prior experiences—seems to us as true today as ever.  And the 

semantic analyses of language and planning we developed in building systems based 

on this idea still seem to us not just true, but actually quite beautiful. 

 

For more than a decade now, however, our work has been focused elsewhere, on 

technologies for intelligent information systems.  These systems are aimed at deliver-

ing information in the broadest possible sense, including media, services, and connec-

tions to other people, on the basis of a user’s current context, including task, location, 

and the content of the documents or media with which he is engaged.  They are user-

centric, context-aware, “frictionless” and proactive.  We have built a score or more of 

such systems based on the technologies we’ve developed.  Most importantly, these 

technologies, and so the systems built upon them, are robust and scalable, because 

they are built on top of a robust and scalable substrate: information retrieval. 

 

And this gets to the nub of why we moved our research in the direction that we did.  

Case-based reasoning is based on the appealing idea that situation understanding and 

problem-solving can leverage specific prior experiences in large, already-organized 

“chunks”—in other words as narratives or stories in one form or another.  This idea is 

intuitively appealing because we all experience being reminded of relevant stories by 

situations or problems, and because we regularly communicate with other people us-

ing them.  It is computationally appealing because it provides a possible alternative to 

models based on logical reasoning “from scratch,” with their well-known issues in 

terms of both scalability and robustness.  So scalability and robustness were part of 

the original motivation for CBR in the first place. 

 

Unfortunately, in its “classic” form, CBR did not seem to meet this promise.  It still 

required a large corpus of highly-structured, well-represented cases, and the construc-

tion of such case libraries, like the construction of large logically-represented knowl-
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edge bases, remains a continued barrier to scalability.1  And it has proven extremely 

difficult to construct robust and scalable methods for adaptation (or “tweaking”), 

which were a core part of the original CBR vision. 

 

CBR has surely made progress on both these fronts since that time.  Nevertheless, 

the chief lessons we drew from these experiences seem to us uncontrovertible: First, 

scalability is critical, and must be built in from the beginning.  The notion of scaling 

up methods after the fact rarely works, if ever.  Second, scalability is only possible by 

building on an inherently robust and scalable substrate.  Using these lessons, we 

would like to propose an approach to constructing CBR systems built, like our web-

scale intelligent information systems, on top of information retrieval (IR).  In these 

systems, the determination of relevance, utility, and interestingness, is under the con-

trol of explicit, context-sensitive rules.  However, these rules “bottom out” not in 

logic or structured representations, but in standard term-based queries and filters, in 

turn executed by standard IR technology.  The result is a set of intelligent information 

technologies that are powerful in scope yet responsive to human need.  Perhaps it’s 

time to take these technologies, originally inspired by our work in CBR, back to the 

development of the next generation of robust and scalable CBR systems. 

From Similarity to Utility 

We start with a brief description of one of our first intelligent information systems, 

Watson, to set the context.  Watson (Budzik and Hammond, 2000; Budzik, 

Hammond, and Birnbaum, 2001) is a proactive information assistant that automati-

cally finds information relevant to the document a user is currently reading or writing 

in a variety of application settings (including word processing and web browsing), 

and then presents this information to the user.  Watson, in other words, takes the 

document a user is manipulating as an indicator of the user’s task context, and tries to 

find information relevant to that context.  The system works by analyzing the current 

document statistically and heuristically, using the resulting context model to auto-

matically formulate queries, directing these queries to relevant online information 

sources (including web search engines), and then filtering, ranking, and presenting the 

results to the user in a “sidebar” as shown below. 

 

Watson’s results are almost always, in a technical sense, relevant to the user’s con-

text.  In fact, our studies showed that users judged its results to be twice as good, in 

terms of precision, as the results returned from queries that they formulated them-

selves (over 60% vs. about 30% of the top 10 from each).  But, while “on point,” 

these results aren’t necessarily very interesting or useful.  Too often, in fact, the re-

sults are pretty much the same, from the user’s point of view, as the information pro-

vided in the original document context. 

 

                                                           
1 Although textual CBR systems have ameliorated this problem in certain domains by “extend-

ing” a well-represented core set of cases into the much larger space of unrepresented text.  

See for example the work described in Ashley and Lenz (1998). 
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The problem is that Watson uses similarity as a proxy for relevance:  If a document 

is highly similar (in a standard IR sense) to the document you are looking at, then it is 

deemed relevant to that document.  This is a basic assumption underlying information 

retrieval systems generally, but it is a simplification, and often an oversimplification 

(Budzik, et al., 2000; Bergmann, 2002).  To take the most extreme case, the document 

that is most similar to the document you have in your hand is another copy of that 

document itself.  This obviously isn’t very useful, because it doesn’t give you any 

new information. 

 

It’s clear, then, that to be genuinely relevant, information must be similar in certain 

respects to the context, but dissimilar in certain other respects.  The particular dimen-

sions of (dis)similarity that matter in a given context will depend upon the user’s in-

formation needs—which in turn depend upon the user, the user’s task, and the domain 

at hand.2 

 

A key component of these methods must involve using some portions of the con-

text as a focus or base, while systematically varying—tweaking!—other attributes of 

the information being sought in specific ways.  In this sense, the methods we propose 

are transformational.  Starting from a model of the current context or situation, they 

apply transformations to generate queries and filters aimed at identifying information, 

in the broadest sense, that is relevant along identified and explicit dimensions, and 

aimed at satisfying specific information needs determined by the context and task.  

These transformations might include adding, deleting, or substituting terms in the 

queries or filters being constructed, or imposing additional constraints along other 

dimensions of variation such as authorship, sentiment, narrative structure, etc. 

 

Our model, in broadest terms, is this: The domain-dependent aspects of a situ-

ational context are managed using term-based IR techniques.  Domain knowledge is 

not explicitly represented, but is simply embodied in relatively unanalyzed documents 

                                                           
2 Of course, the general notion that relevance depends on task will not come as a surprise to 

anyone working on CBR. 
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or media (perhaps with some simple metadata).  This provides scalability and robust-

ness.  The current information needs, as determined by the task, are used to transform 

this basic representation, for example by adding additional terms that bias the results 

in directions that make it more likely they will satisfy those needs.  The mechanisms 

for accomplishing this will generally be rule-based.  This provides context-sensitivity 

and goal-directedness. 

 

One of the systems we’ve built along these lines is called Compare & Contrast 

(Liu, Wagner, and Birnbaum, 2007).  As the name suggests, this system, given a 

document, aims to identify and retrieve documents describing similar but distinct si-

tuations in order to support reasoning by comparing and contrasting the cases.  In par-

ticular, given a news story, it aims to find news stories describing similar situations 

involving different agents.  For example, given a story about Israel’s use of cluster 

bombs during the 2006 Lebanon War, rather than retrieving hundreds or thousands of 

stories on the same topic, it finds and presents stories about US use of cluster bombs 

in the Iraq War, NATO use of cluster bombs during the Balkans campaign, and so on.  

In this sense, it is aimed at providing users with information diversity of a certain kind 

(McSherry, 2002; see also Leake et al., 1999; Budzik et al., 2000; Krema et al., 

2002).  In the example shown below, a story about Oracle’s effort to acquire MySQL 

results in the retrieval and presentation of a number of stories about IBM’s efforts to 

expand its open-source strategy through similar acquisitions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The system does this by developing two “models” of a story it is given.  The first 

consists of the named entities in the story, with particular effort made to discover the 

main actor.  The second is a stop-listed histogram of the other terms in the text.  The 

system finds comparable entities to the main actor, and then systematically combines 

these with terms from the second model—in effect, substituting these comparable en-

tities for the original actor—to form queries which are then directed at news search 

engines.  These comparable entities may be identified by using pre-existing hierar-

chies when available.  However the current version of the system attempts to find 

these entities on the web itself (Liu and Birnbaum, 2007).  It does this by first formu-
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lating general queries based on the second model (terms other than named entities).  

The first n resulting documents are then compared with the original story to find enti-

ties that play a syntactic role similar to that of the main entity in the original story, 

i.e., that play a similar role in lexically similar sentences.  All the documents ulti-

mately retrieved by the system are on this initial list as well, of course; but searching 

without any named entities is an extremely noisy process, so they may be quite far 

down the list.  Similarly, the list also includes a large number of stories that aren’t at 

all relevant to the current context. 

From Intelligent Information Systems to Case-Based Reasoning 

From the above discussion, we can discern the outlines of a general architecture for 

CBR systems built using transformational IR technology, comprising the following 

processes: 

 

1. Develop a representation of the current context (e.g., the documents users 

are currently manipulating, data from real-time systems, text streams, etc.), 

combining lexical elements and metadata from and about the context. 

2. Determine likely information needs in that context, based either on some 

prior expectations about likely goals or interests in that context—i.e., the 

task—or on some indication by a user. 

3. Retrieve or generate appropriate transformations specifying information 

dimensions or attributes relevant to the user’s information needs, along with 

filters that specify additional such dimensions or attributes. 

4. Parameterize and apply these transformations to generate queries and filters. 

5. Dispatch the queries to appropriate information sources, such as case librar-

ies, and manage the interaction with those sources. 

6. Filter and rank results based on metadata supplied by these information 

sources and/or the entire result itself, using the filters identified in step 3 in 

conjunction with the initial context representation. 

 

For example, in the earliest phases of situation understanding, a system built along 

the lines described above would take incoming reports and information, and, using 

standard IR techniques, search for prior cases involving similar reports and informa-

tion.  But if the reports and information concerned an adversary’s actions, the system 

might also want to present the user with cases in which similar reports and informa-

tion were the result of efforts by the adversary to misdirect possible observers.  Such 

cases might be actively searched for simply by the addition of terms such as “feint” or 

“misdirection.”  Alternatively, finding such cases, if any, might require more complex 

transformations—e.g., taking the input reports, plus a user’s assessment of what they 

might mean, and then searching for cases in which similar input reports are connected 

with quite different assessments of what they mean—along with historical data as to 

the ultimate correctness or utility of these assessments (i.e., outcomes).  These kinds 

of transformations would be automatically applied to the current situation model, 
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based on the user’s current task and its state, and used to retrieve the relevant prior 

cases, if any. 

 

Similarly, in retrieving prior plans to address the situation, the system might utilize 

transformations aimed at uncovering different types of plans utilizing different re-

sources—e.g., air operations, covert operations, etc.  And finally, if the current task 

involves evaluating potential plans, it would be possible to bias retrieval of prior cases 

based on particular relevant dimensions, e.g., civilian casualties, US forces casualties, 

scale of forces utilized, etc. 

 

Some of the query transformations or filters described above make use of docu-

ment or metadata structure, as when, e.g., searching for a similar situation coupled 

with a different assessment.  A critical challenge in utilizing text as opposed to more 

complex representations is, of course, its lack of explicit logical structure.  (This is 

what IR gives up in exchange for robustness and scalability.)  In some cases, this can 

be sidestepped, as in Compare&Contrast’s simplistic but effective assumption that ac-

tors in news stories will be represented by named entities.  In other cases, however, 

document or metadata structure can serve as a proxy for logical structure, with differ-

ent transformations or filters applied differentially to different components of the 

documents or metadata.  Many documents have a fairly rigid structure with sections 

explicitly labeled “Procedure,” “Outcome,” “Background,” “Budget,” etc.  This 

makes it possible to systematically vary those portions of the queries or filters derived 

from certain sections while holding others fixed or applying different transformations 

to them. 

 

We can also transform queries to bias retrieval towards particular kinds of narrative 

forms.  The Buzz system (Owsley, Hammond, Shamma, and Sood, 2006) retrieves 

and presents personal stories on specified topics or relating to certain themes from the 

blogosphere.  To find compelling stories, Buzz mines the blogophere, collecting blog 

posts in which the author describes an emotionally compelling situation—a dream, a 

nightmare, a fight, an apology, a confession, etc.—using syntactic story indicators in 

conjunction with topical or thematic terms to automatically generate appropriate que-

ries.  These story indicators are simply sets of words and phrases that we’ve empiri-

cally observed tend to be good cues that a document in fact contains a personal narra-

tive.  Such a process isn’t going to cast a particularly wide net—i.e., the recall of this 

system in IR terms isn’t very good.  But at web scale, a high recall rate isn’t necessar-

ily a virtue: there are a lot of stories on the web—we’re just looking for a few good 

ones.3 

 

After retrieving blog posts containing both the required topical or thematic terms 

and one or more story indicators, Buzz applies affective classification to focus on en-

tries with a heightened emotional state, and applies additional syntactic filters to find 

the most story-like entries and select the appropriate portions of those entries.  After 

                                                           
3 And indeed, many of the systems we have built tend to use fairly narrowly-formed queries 

and aggressive filtering, partly with an eye towards favoring precision over recall, but pri-

marily in order to avoid being overwhelmed by enormous numbers of results. 
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passing through these filters, the resulting story selections are compelling and emo-

tional.  They can be presented in a variety of formats, including a performance model 

in which they are read aloud by animated characters.  Here is an example of a story 

discovered by the system: 

 

My husband and I got into a fight on saturday night, he was drinking and ne-

glectful, and I was feeling tired and pregnant and needy. It’s easy to under-

stand how that combination could escalate, and it ended with hugs and sor-

ries, but now I’m feeling fragile. Like I need more love than I’m getting, like 

I want to be hugged tight for a few hours straight and right now, like I want a 

dozen roses for no reason, like a vulnerable little kid without a safety 

blankie. 

From Finding Narratives to Constructing Narratives 

Ultimately, CBR systems must be able not only to find apt stories for presentation to 

users, they must be able to actually generate stories.  News at Seven (Nichols, et al., 

2007) is a system that automatically generates a virtual news show.  Totally autono-

mous, it collects, parses, edits and organizes news stories and then passes the format-

ted content to artificial “anchors” for presentation.  Using information resources pre-

sent on the web, the system goes beyond the straight text of the news stories to also 

retrieve relevant images, videos, and blogs with commentary on the topics to be pre-

sented.  It then edits and combines these into a single, coherent presentation.  Once it 

has assembled and edited its material, News At Seven presents the content to its audi-

ence using animated characters and text-to-speech (TTS) technology in a manner 

similar to the nightly news. 

 

 
 

The initial implementation of News at Seven built reports following a single narra-

tive model: a short news show with a few stories from topic areas of interest, and in-
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cluding a single “man in the street” comment extracted from the blogosphere on one 

of these.  The system has since been expanded to utilize multiple narrative models.  

One of the more interesting such models we’ve implemented so far builds movie re-

view shows in the spirit of Siskel and Ebert, in which two animated “reviewers” pre-

sent different points of view on the movie in question in an interactive and conversa-

tional manner, producing a virtual “argument.”  The narrative models themselves are 

expressed as templates specifying not the particular topic of the resulting story, but 

the relationships that must hold among the elements that comprise the story and 

which must be retrieved.  These relationships are used to specify query templates 

which are filled out with terms extracted from the topical elements at hand to retrieve 

material which is on point and fills the appropriate role in the overall narrative model. 

 

Finally, we have begun to investigate both the construction and detection of 

“higher order” narrative structures.  We’ve developed a prototype system for con-

structing “rants” in which a virtual character begins to talk about a topic and then es-

calates his rhetoric saying more and more outrageous things about that topic.  We’ve 

also built a prototype system for generating short, humorous comic strips.  The text 

for these comics exploits ambiguity to generate puns using online lexical resources.  

Because the results to date are fairly hit-or-miss, a social media component is in-

cluded to enable humans to collectively select the comics that actually work. 

 

On the detection side, we’ve developed a prototype capable of detecting abstract 

themes (an exceptionally hard problem in natural language understanding) by propa-

gating human-generated labels.  For instance, the system can determine that the bank 

bailout of last fall might be construed as an instance of “setting the fox to guard the 

henhouse.”  The system works by combining terms from thematic descriptions (e.g., 

“fox,” “henhouse,” etc.) with topical terms (e.g., “bank bailout”) to ascertain whether 

the given thematic label has been applied to that topic by a human being.  It should be 

emphasized that the resulting system in no way understands the deep analogy between 

the theme and the specific topic at hand.  Instead, it uses the “human computation” 

approach proposed by Luis von Ahn—with the notable difference that it mines labels 

previously attached by humans to these narratives, rather than eliciting them in an in-

teractive mode. 

Back to the Future 

Our focus on web-scale intelligent information systems over the past ten or more 

years was based on a certain frustration with our earlier work in case-based reasoning.  

While we felt that there was much truth, and even beauty, in the CBR models we de-

veloped at that time, their lack of robustness and scalability eventually drove us to 

conclude that we were building on the wrong substrate, and needed to find an under-

lying set of mechanisms that would be inherently scalable and noise tolerant—which 

is to say, statistical mechanisms, in particular, information retrieval.  Nevertheless the 

issues of story retrieval, transformation, and construction have remained in the back 

of our thoughts.  We think the time is right to bring them to the fore again. 
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Using Experience on the Read/Write Web:
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Abstract. On the Read/Write Web, users are authors as much as they
are searchers. We describe one concrete example of this, a waste exchange
service where users submit descriptions of items that they have available
but wish to get rid of. It is generally to the advantage of subsequent users
if authors write comprehensive descriptions. We propose that successful
descriptions, i.e. ones which did result in the user passing on an item
for reuse, be used as cases. We describe the GhostWriter system that we
have designed and built: it makes content authoring suggestions using
feature-values extracted from the cases. We end with a preliminary, off-
line ablation study, which shows promising results.1

1 Introduction

Web 2.0 is the era of the Read/Write Web. The current Web makes information-
seekers but also information-authors of us all. On the one hand, we search and
browse; on the other hand, numerous web pages offer us the opportunity to post
our own content.

In his invited talk at the Ninth European Conference on Case-Based Rea-
soning, Enric Plaza argues that people increasingly use the Web as a repository
for recording and sharing experiences [7]. These experiences include reviews of
products, such as hotels, electronic goods, books and movies, in which people
report their experience of consuming these products; and they include ‘how-to’
plans and recipes, in which people report their experience of carrying out tasks
to achieve certain goals. Users search and browse web pages, blogs and forums,
to retrieve, aggregate and reuse these experiences to help them make decisions in
the real-world (e.g. which hotel to book) and to help them do things in the real-
world (e.g. how to install a piece of software). Reasoning with these unstructured
experiences is a new direction in CBR research.

1 This research was funded by the Environmental Protection Agency of Ireland under
Grant Number 2007-S-ET-5. We are grateful to Maeve Bowen and Catherine Costello
of Macroom-E and wastematchers.com and to Lisa Cummins of University College
Cork for their engagement in our research.
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All of this emphasizes how important it is, when exploiting the write-capabilities
of the Read/Write Web, that we author high quality content. In this paper, we
show how to reuse existing Web content to support the authors of new content.

In Section 2, we present the concrete scenario in which we are conducting our
research, namely a waste-exchange service. In Section 3, we present GhostWriter,
our case-based approach to making content suggestions to authors. Section 4
contains a discussion, including a review of related work. Section 5 presents
preliminary experimental results.

2 Waste Exchange Services: A Case Study

Waste exchange services connect organizations or households who have un-
wanted items with organizations or households who can use those items. The
advantages of such a service include: it provides a way of diverting waste from
landfill; it provides a way of saving on storage or disposal costs; and it provides
a way of sourcing cheap or even free materials.

Many waste exchange services operate over the Web. Organisations or house-
holds use the web site to submit descriptions of the items that they have avail-
able. Other organisations or households either search and browse for items that
they can reuse, or they submit descriptions of items and the waste exchange
service automatically contacts them when such items become available. On-line
waste exchange services are a great example of the Read/Write Web: their users
engage in both search and authoring.

But, in a waste exchange service there are at least four reasons why an
exchange may fail to take place:

– It may, of course, be that an unwanted item that is available through the
service is not wanted by anyone else, or that an item that is requested through
the service is not available from anyone else using the service.

– Surprisingly, the search facilities of these services are often quite rudimen-
tary. They use simple search engines, which may fail to find matches between
descriptions of items available and requested. Although not the focus of this
paper, it is part of our work to use ideas from Information Retrieval and case-
based retrieval to improve the search engine of the waste exchange service
that we are working with.

– The descriptions of items available or wanted that users submit are often
quite short, which reduces the likelihood that the search engine will find a
match. In the waste exchange service with which we are working, for example,
the average length of descriptions of items available is just 8 words or 6
words if we ignore stop-words; and the average length of descriptions of
items wanted is just 6 words or 4 words if we ignore stop-words.

– The service may find a match between a pair of descriptions but, when
their authors make personal contact, it may turn out that the match found
by the service is spurious and does not satisfy at least one of the persons
involved. Note how the short descriptions that we mentioned in the previous
bullet point increase the likelihood of spurious matches. A transaction may
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be abandoned when features that were not included in a description (maybe
the colour, the price, the delivery terms, etc.) become known.

From this analysis, it seems useful to consider how a waste exchange service
can support people in authoring better descriptions. There is an obvious source
of experience that we can exploit: successful descriptions.

Many waste exchange services have transaction closure facilities. Consider a
user who had submitted a description of an unwanted item, for example. When
she deletes the description, the service shows a form that requires her to explain
why the description is being deleted. She may have sold or given away the item
through the waste exchange service; she may have sold or given away the item
but not through the service; she may have disposed of the item (e.g. by sending
it to landfill); or she may have failed to dispose of the item. We propose that de-
scriptions of items that have been sold or given away through the waste exchange
service should be retained in a case base. These are successful descriptions: ones
that work.

We can use these successful descriptions to make suggestions. When a user is
authoring a new description, we can prompt her to think about including certain
kinds of content: content that we find in successful descriptions. We explain the
details of the way we do this in the next section.

Figure 1 shows an overview of a waste exchange service that includes a sug-
gestion facility of the kind we have described. The left-hand side of the figure
represents a standard waste exchange service. Users who have items insert them
into a database of items available, and search a database of items wanted; users
who want items insert them into a database of items wanted, and search a
database of items available. Transaction closure results in the update of statis-
tics. But, as the right-hand side of the figure shows, we propose the service also
inserts successful descriptions into a case base. Then the service can use success-
ful descriptions of items wanted to make content authoring suggestions to users
who are describing wanted items, and use successful descriptions of items avail-
able to make content authoring suggestions to users who are describing available
items.

3 GhostWriter: Case-Based Content Authoring
Suggestions

GhostWriter is the system that we have designed and built. It relies on feature
extraction, which we apply in advance to successful descriptions (cases) and
incrementally to the author’s own description as she writes it. The mechanism
we have designed and built for making the suggestions is novel but is inspired
by Conversational CBR techniques.

Up to now, our implementation, built using jColibri,2, is suitable only for run-
ning off-line experiments, preliminary results for which are described in Section 5.
Ultimately, however, we plan to implement an Ajax client that will proactively
2 http://gaia.fdi.ucm.es/projects/jcolibri/
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Fig. 1. A waste exchange service that includes a suggestion facility

send asynchronous requests to the server-side GhostWriter system: as the user’s
content grows, the client will send the new content in an asynchronous HTTP re-
quest to the server; the client will update a suggestions pane with GhostWriter’s
responses. In this way, the user is not interrupted from her normal work, either
to invoke GhostWriter or to receive its results. The user can click on a suggestion
in the suggestion pane if it is close enough to her current intentions and it will be
incorporated into her content, where she can edit it. More likely, the suggestions
will not be close enough to what is wanted but will prompt the user to include
content she hadn’t thought of including. For example, if one of the suggestions
is “Will deliver within a 10 mile radius”, this might prompt the user to include
her own delivery terms, even if these are very different from the suggested ones.
Hence, even if the use of suggestions means that descriptions more often have
the same features, they may still be novel descriptions by virtue of not having
the same feature-values.

3.1 Case and new item representation

As mentioned, a case is a successful description. It therefore primarily consists
of free text. But, as it enters the case base, we apply Feature Extraction rules.
For now in our work we produce these rules manually. Each is in essence a
regular expression that aims to find and extract a particular feature-value pair
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[ItemCondition]{0}(\w+\s+([Cc]ondition|[Qq]uality))

[ItemCondition]{0}(VGC|[Vv]gc|[Ww]orn|[Tt]or[en]|[Bb]roke|[Bb]roken)

Fig. 2. Example Feature Extraction rules in the format
[FeatureName]{FeaturePosition}RegularExpression

from the text. Hence, the rules augment each case by a set, possibly empty, of
feature-value pairs. Two example rules are shown in Figure 2. Both these rules
extract the ItemCondition feature. The zero indicates that the rule extracts the
entire expression. In the first rule, the regular expression matches phrases such
as “excellent quality” and “very good condition”; the regular expression in the
second rule matches ‘stock’ phrases and words for describing an item’s condition
such as “vgc” (very good condition), “worn”, “torn”, etc. (In GhostWriter, this
rule has more disjuncts than are shown here.)

More formally then, a case c comprises some free text, text(c), and a set of
feature-value pairs, fvs(c). We will denote a feature-value pair by 〈f, v〉 ∈ fvs(c).
Note that cases do not comprise problem descriptions and solutions. There is no
solution part to the cases. This is because making content authoring suggestions
is in some sense a form of case completion [2]: we use cases to suggest content
that the author might add to her description.

New items that the user is authoring have exactly the same representation
as cases: free text and feature-value pairs. The only difference is that they grow
in size, as the author adds to her content. We will denote a new item description
as nid .3

3.2 Conversational case-based suggestions

The GhostWriter approach to making content authoring suggestions to the user
is novel, but it is inspired by Conversational CBR (CCBR) [1]. In CCBR, a
typical case has a problem description, comprising of a free text description and
a set of question-answer pairs, and a problem solution, comprising a sequence of
actions. This is very similar to our case representation, described above, except,
as already mentioned, our cases have no solution component.

Aha et al’s generic CCBR algorithm [1] starts with the user entering a free
text query. Then the following repeats until the user selects a case or no further
cases or questions can be suggested to the user: the system retrieves and displays
a set of cases that are similar to the user’s query; from these cases, the system
ranks and displays a set of important but currently unanswered questions; then
the user inputs more free text or answers one of the questions.

Figure 1 shows the GhostWriter approach to making content authoring sug-
gestions. Recall that we invoke this algorithm repeatedly as the user’s content
grows. Each time we invoke it, it does the following:

3 We avoid the word “query”, which is more common in CBR, since we have found it
leads to confusion.
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Algorithm 1 GhostWriter’s content authoring suggestion algorithm
Inputs: CB : case base

nid : new item description
k1, k2, k3: number of cases, features and values, resp.

R← [ ]
C ← rank cases(nid ,CB , k1)
F ← rank features(C,nid , k2)
for each fi ∈ F , taken in decreasing order do

Vi ← rank values(fi, C, k3)
insert 〈fi, v〉 onto the end of R for each v ∈ Vi taken in decreasing order

end for
return R

– It initializes the result R to the empty list.
– It retrieves k1 cases C from the case base CB , ranking them on their simi-

larity to the user’s new item description nid . In fact, we compute similarity
between the free text descriptions, text(nid) and text(c) for each c ∈ CB . It
may be worthwhile to use a diversity-enhancing algorithm, e.g. [9], for this
retrieval.

– From the cases retrieved in the previous step C, we obtain up to k2 features
F . Candidates for inclusion in F are all features in each c ∈ C, after removing
duplicates and any feature that is already among the features of the user’s
item description fvs(nid), irrespective of that feature’s value in fvs(nid).
There are many ways of ranking these candidates. At the moment we use
the simplest approach: frequency of occurrence across the cases in C. We
place in F the k2 features that have the highest frequency of occurrence.

– For each of the features obtained in the previous step fi ∈ F , we obtain
up to k3 values for that feature Vi. Candidates for inclusion in Vi are all
values for that feature in each of the cases c ∈ C, after removing duplicates.
Again there are many ways to rank these candidates. At the moment, we
use the original ranking of the cases C. In other words, if 〈fi, v〉 ∈ fvs(c) and
〈fi, v

′〉 ∈ fvs(c′) and c ∈ C has higher rank than c′ ∈ C, then v has higher
rank than v′.

– We return the ranked list of up to k2 features, each with their ranked list of
up to k3 values, for display to the user in the suggestion pane.

When the user makes sufficient change to nid , possibly by incorporating sug-
gestions from the suggestion pane, we run GhostWriter again to make fresh
suggestions. This continues until the user is satisfied with her description and
submits it to the waste exchange service database.

4 Discussion

Our first goal in this section is to discuss related work. Several researchers have
investigated ways of proposing completions for incomplete phrases and sentences,
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representative of which are [4, 6]. This kind of work tends to focus on data
structures for representing phrases and sentences in a way that supports fast
matching with phrase and sentence prefixes. Lamontagne and Lapalme use CBR
for the more challenging task of generating email replies [5]. But their work,
and the work on phrase and sentence completion, is concerned with making
suggestions in situations where there are ‘stock responses’. We would argue that
GhostWriter’s task is different in nature. Its goal is to prompt the user to write a
more comprehensive description. On occasion, ‘stock responses’ may be relevant,
and the user may click on a suggestion to include it directly in her content. But
just as likely, she will not accept any of the phrases (feature-values) that we
suggest to her. Nevertheless, we hope that she will be prompted to include a
phrase of her own, inspired by the features that we suggest.

In its goal, Recio-Garćıa et al’s Challenger 1.0 system is much more similar
to our own work [8]. Their system supports the author of air incident reports.
However, their texts are longer and their techniques are quite different from ours.
They have no feature-value pairs and do not draw ideas from CCBR. Instead,
they use standard text retrieval coupled with clustering of the results.

Our second goal in this section is to discuss objections to what we have
done. It might be objected that a simpler approach is the use of forms. These
forms could include fields inviting the author to provide much more information
than normal (e.g. the colour, the price, the delivery terms, etc.). But we think
there are problems with a form-based approach: forms can become quite long;
there is the difficulty of anticipating what fields to include on the form, although
this could be solved by using Feature Extraction from successful descriptions;
a form-based approach assumes greater regularity in the descriptions than our
approach assumes; and a form-based approach may result in less distinctive
descriptions, when in fact the author’s real goal is to make her descriptions
stand out. Our approach, by contrast, prompts the user dynamically, based on
the current description and the content of related successful descriptions (cases).

Our final goal in this section is to discuss the generality of our approach. We
have made our presentation more concrete by giving a context, namely waste
exchange services. But we believe that the same approach can be used in any
‘classified ads’ service, where cars, jobs, housing, dates, and many other things
are advertised. In fact, we intend doing experiments with data that we have
scraped from craigslist.4 We are also interested to apply our approach to support
the authors of reviews of products such as hotels and electronic goods. The
content of these reviews is even less predictable than that of classified ads, so
our approach may then be even more promising than an approach based on
form-filling. In the domain of product reviews, other users can often indicate
whether they found a review to be useful or not. This is what we would use as
a measure of whether a description is successful. It implies that the case base
becomes a fuzzy set, where descriptions have different degrees of membership
depending on how useful people have found them to be.

4 http://www.craigslist.org
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5 Experimental Evaluation

Here, we report the results of a preliminary, off-line ablation study. The results
are promising, but they do show that we need to use a different dataset and we
do need to make some changes to our experimental methodology.

From an operational waste exchange service, we took a set of 73 descriptions
of items available. Most waste exchange services, including the one we work
with, do not retain successful descriptions. Therefore, unfortunately, these 73
descriptions, which we use as a case base in this experiment, are not restricted
to successful descriptions. As mentioned already, they are rather short: 8 words
on average, and 6 if we exclude stop-words.

We use a leave-one-out methodology. We temporarily remove a case from
the case base and delete a random proportion of its words. We treat this as
the user’s nid ; the ablation simulates an incomplete description. We supply this
nid to GhostWriter. GhostWriter is run with k1 = 10 (the number of cases it
retrieves), k2 = 2 (the number of features it suggests), and k3 = 2 (the number
of values it suggests for each feature). Hence it returns up to four suggestions
(two values for two features). We randomly select one of the suggestions and add
the suggested feature-value to the nid . We keep doing this until GhostWriter is
unable to make further suggestions. We repeat this for each case in the case
base, and we repeat the whole procedure five times to average out differences
that result from random ablation.

After we add a suggested feature-value to the nid , we measure the similarity
between the current state of the nid and the original case from which we created
the nid . We compute similarity using the standard cosine measure. The results
are shown in Figure 3.

On the y-axis is similarity; on the x-axis is the number of feature-values that
we have added to the nid . There are different lines according to the starting
amount of ablation. For example, one line records what happens when we form
the nid by ablating 20% of the original case; another plot measures what happens
when there is 40% ablation; and so on. The x-axis goes up to 6. But GhostWriter
will not make 6 suggestions for every nid . For some nids, GhostWriter may run
out of suggestions much earlier: if the features of the retrieved cases C are all
already present in the nid , then GhostWriter can make no fresh suggestions. The
percentages alongside each data point record this information. For example, on
the line for 0% ablation, we were able to add one feature-value pair to 85% of
nids; we were able to add two feature-value pairs to 63% of nids; three to 38%;
four to 25%; and so on.

In interpreting these results, the question is: when we add suggested feature-
values to a nid , are we restoring some of the original content that we ablated
earlier? If this is so, then the suggestions are useful ones. In judging this, we
must compare with the line for 0% ablation. When there is 0% ablation, any
feature-values we add inevitably reduce the similarity between the nid and the
original case: we are adding content that was not originally there. Provided the
gradient in the other lines is not as steep as the gradient in the 0% ablation line,
then we know that the content that we are adding is at least partly restoring
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Fig. 3. Average similarity between the nid as we add suggested feature-values and the
case from which it was created

ablated content. This does seem to be so: with 0% ablation similarity falls from
from 1.0 to 0.47, i.e. by 0.53; for 20% ablation it falls from 0.86 to 0.47, i.e. by
0.39; for 40% ablation it falls by 0.37; for 60% it falls by 0.33; and for 80% it falls
by 0.29. We believe this shows that the GhostWriter algorithm is promising.

The main lesson from this preliminary experiment, however, is that, going
forward, we need to change the experimental set-up. We need a case base with
more comprehensive descriptions, more akin to what we hope to find in a case
base of successful descriptions. We also probably need to take item category
into account so that when GhostWriter suggests content to someone describing
a desk, it should only use feature-values that come from other descriptions of
furniture, and not from descriptions of electrical appliances, for example. In the
experiment at present, this restriction is not in place. At the moment also the
ablation deletes a proportion of a case’s words at random. It may be a fairer
experiment to delete a proportion of a case’s phrases (i.e. its existing feature-
values) and to use a similarity measure that rewards GhostWriter the earlier it
suggests the right kinds of features, even if the suggested feature-values do not
match those in the original case.
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6 Conclusions and Future Work

In this paper, we have argued that the Web contains experience in the form of
successful descriptions, which we can treat as cases in making suggestions to
the authors of new content. We have presented a concrete scenario, that of a
waste exchange service, where this perspective can be useful. We have presented
a novel algorithm, implemented in the GhostWriter system, for making these
suggestions, inspired by work in Conversational CBR. And we have reported
some promising preliminary results.

This is early-stage research, with many lines of future inquiry. In particu-
lar, we want to apply the idea in other domains, especially classified ads and
product reviews. We want to try some of the many ways of learning the Feature
Extraction rules, see, e.g., [3]. We want to investigate variants of the algorithm,
where we use different ways of ranking the cases, features and feature-values.
We mentioned, for example, the use of diversity-enhanced methods for retriev-
ing the cases. We want to use a different dataset and make some changes to
the methodology in our off-line ablation study. Finally, we want to carry out
evaluations with real users.
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and P. A. González Calero, editors, Procs. of the 7th European Conference on Case-
Based Reasoning, LNCS 3155, pages 234–246. Springer-Verlag, 2004.

6. Anranb Nandi and H. V. Jagadish. Effective phrase prediction. In C. Koch et al,
editor, Procs. of the 33rd International Conference on Very Large Data Bases, pages
219–230. ACM Press, 2007.

7. Enric Plaza. Semantics and experience in the future web. In K.-D. Althoff,
R. Bergmann, M. Minor, and A. Hanft, editors, Procs. of the 9th European Confer-
ence on Case-Based Reasoning, LNCS 5239, pages 44–58. Springer Verlag, 2008.
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Abstract. Visualization is among the most powerful of data analysis
techniques and is readily available in standalone systems or components
of everyday software packages. In recent years much work has been done
to design and develop visualization systems with reduced entry and us-
age barriers in order to make visualization available to the masses. Here
we describe a novel application of case-based reasoning techniques to
help users visualize complex datasets. We exploit an online visualiza-
tion service, Many Eyes, and explore how case-based representation of
datasets including simple features such as size and content types can
produce recommendations of visualization types to assist novice users in
the selection of appropriate visualizations.

1 Introduction

Manipulating complex data is now a familiar part of our everyday lives. and
to help us there are a wide range of data analysis tools, from general pur-
pose spreadsheets to more complex statistical analysis packages. Visualization is
among the most powerful of data analysis techniques and is readily available ei-
ther as standalone systems or as key components of common software packages
such as spreadsheets. Great strides have been made in bringing a wide range
of visualization options to the masses. For example, Microsoft’s Excel offers 11
different types of chart (bar, line, pie etc.) and a total of 73 basic variations
on these charts. Apple’s Numbers spreadsheet is similarly well equipped and
even Google’s free Spreadsheets programme offers access to about 25 different
variations of 6 different chart types.

Surely all of this puts sophisticated visualization within reach of the average
user? The problem, of course, is that the average user is not a visualization expert
and producing the right sort of visualization for a given dataset is far from triv-
ial. Previous work in the area of visualization recommendation includes research
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into articulated task-orientated systems [4], early data property based systems
[9, 8], hybrid task and data based systems which examine both user intent and
the data at hand [11, 2] and more recent work which aims to discover patterns
in user behaviour in preparation of a dataset in order to predict visualization
requirements [6]. This work returns to the early data property based research as
we exploit case-based reasoning techniques to make visualization recommenda-
tions. We believe that case-based reasoning [1] is very well suited to providing
useful assistance in this type of task and in this paper we describe a case-based
recommender system that is designed to do just this.

The starting point for this work is a Web based “social” visualization plat-
form called Many Eyes. In brief, Many Eyes is a web-based visualization plat-
form, developed at IBM Research, that allows users to upload datasets, chose
from a wide variety of visualizations, and make the results available to others.
To date over 33,000 datasets have been uploaded by nearly 8,000 users, creating
24,000 different visualizations. These “visualization experiences” encode impor-
tant visualization knowledge in terms of the decisions taken by a user about
how to visually represent a given dataset. In this way each visualization can be
viewed as a case, with features of the dataset providing the case specification
and the resulting visualization configuration providing the case solution. In this
paper we propose that these visualization cases can be reused in the context of
a new dataset, to make suggestions about appropriate visualizations.

2 Many Eyes

Many Eyes (http://manyeyes.alphaworks.ibm.com/manyeyes/)is a browser based
visualization tool designed specifically to make sophisticated visualization easily
accessible to web users but also to make the process of visualization a social one,
where people can come together to discover and share what they see in publicly
visualized data [10]. Many Eyes differs from other visualization software in that
all human contributed data (datasets, visualizations and comments) are publicly
accessible. As Many Eyes is an experimental system the visualization options
vary from the ordinary (histograms and pie charts) to experimental (word trees
and matrix charts) and users have little assistance other than small graphics and
a short textual description when choosing a visualization for their dataset.

Many Eyes has four core processes, data upload, visualization creation and
social discovery and discussion. Due to the system’s open access policy each pro-
cess can be undertaken independently, for example any user can create a visual-
ization on any dataset contributed or comment on any dataset or visualization
created. This platform creates an ideal online environment for collaboration,
cooperation and communication around a set of data and its visualizations.

2.1 Data Upload

Raw data uploaded to ManyEyes can be freeform text or tab-delimited data.
In an effort to keep entry barriers to using Many Eyes low the system has the
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capability to recognise and process tab-delimited data and makes assumptions
as to the type of data, textual or numeric, contained in each column. Uploaders
are required to provide textual information such as a title for the dataset and
encouraged to provide other relevant information such as the source and descrip-
tion of the data. The system appends further metadata including the creation
date and creator’s details before making it public.

Fig. 1. Selection of category and visualization types in Many Eyes.

2.2 Visualization Creation

Many Eyes has 6 categories of visualizations, containing a total of 16 visualiza-
tion types, some of which can be further sub-categorized. Sample category titles
include “track rises and falls over time”, “analyze text” and “seeing the world”
amongst others. Each subcategory or chart type in the option list is accompa-
nied by 1-2 explanatory sentences to guide the user in their decisions. Further
information relating to each chart type describing its strengths and weaknesses
and its appropriateness for varying data types is available but users must nav-
igate away from their current process in order to locate this information [5].
Understandably not all of the visualization types in Many Eyes are suitable for
displaying both unstructured text and tabular data. Six of the 33 visualization
types have been used for text data visualization and 31 of the visualization types
have been used to chart tabular data. On selection of a chart type Many Eyes
automatically generates a visualization, assigning chart parameters such as map-
ping axis to columns etc. when only one suitable option is available and asking
for user confirmation when multiple options exist.

2.3 Sharing & Discovery

Many Eyes was designed to enable a new kind of social data analysis. As a
collaborative visualization tool it provides users with a platform for discovery,
sharing and discussion around people, datasets and visualizations. Each member
has a profile page containing personal details, watchlists, topic hubs and details
of activity on the site.
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In the context of the “knowledge worker”, the availability of datasets and
associated visualizations provides a rich environment from which non-expert vi-
sualizers can learn. Novice or inexperienced users may discover datasets similar
to theirs in order to decide how to effectively uncover the messages contained in
their raw data. Many Eyes provides various methods for browsing and searching
its repository of data and visualization pairs. We believe that case-based reason-
ing techniques could automate the process of discovering suitable visualizations
for contributed datasets. By creating cases which represent simple dataset fea-
tures such as the presence of numeric and textual content as well as the size of
the dataset we aim to capture the expertise demonstrated by expert visualizers
to assist users in selecting the best chart for their data.

2.4 The Dataset

The dataset used for this work represents approximately 21 months of usage of
Many Eyes from January 2007 and covers 33,656 separate dataset uploads and
24,166 unique visualizations from 15,888 registered users. It is worth noting that
only about 43% of uploaded datasets are actually successfully visualized. In turn,
just over 60% of users who uploaded datasets went on to store a visualization.
This is surely a telling comment on the challenges faced by users when it comes
to choosing and configuring suitable visualizations of their data. It seems that
in many cases users just did not have the visualization experience (or the time)
to select from the many different charting options and configurations that are
offered. In general there are two basic types of dataset in Many Eyes. Text
datasets are a bag-of-word type datasets whereas tabular datasets are column-
based datasets, using a mixture of data types.

3 A Case-Based Recommender for Many Eyes

The Many Eyes repository of datasets and visualizations is more than a simple
collection of raw datasets and charts. It is reasonable to assume that each combi-
nation of dataset and chart is the result of a deliberate visualization exercise. As
such it encodes some latent decision making process by which the dataset ‘owner’
came to settle on a particular visualization option which addressed his/her par-
ticular objectives. Of course such objectives may extend beyond the simple need
to visually summarise a particular dataset. In many cases it is reasonable to as-
sume, for example, that the user will have considered the aesthetics of particular
visualization choices, adding an extra dimension to their decision making.

In short then, the combination of dataset and visualization encodes an expe-
rience. It is a case in the classical view of case-based reasoning. And in this paper
we propose to take advantage of this perspective in order to develop a case-based
recommender system that is capable of suggesting good visualizations to users
based on the characteristics of their particular dataset. This will be of particu-
lar interest and benefit to less experienced Many Eyes users, who, in the past,
have failed to produce visualizations for their datasets. Of course the recom-
mendations may also be of interest to more experienced users by highlighting
alternative visualization options that they may be less familiar with.
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3.1 Case Representation

We will begin by assuming each case represents a single visualization of a single
dataset. Thus, each case, ci is made up of a dataset component, di and a visual-
ization component, vi as shown in Eq. 1. In fact there is additional information
that is sometimes available such as the rating associated with a particular visual-
ization, ri. In case-based reasoning parlance the dataset component corresponds
to the specification part of a case, the visualization component corresponds to
the solution part of a case, and the rating component can be viewed as the out-
come of the solution. In this paper we will focus on the specification and solution
side of visualizations cases, largely because the Many Eyes dataset is very sparse
when it comes to the availability of ratings data.

ci = {di, vi} (1)

The representation of the visualization component is straightforward, at least
for this paper, since each case solution is just the type of visualization used,
chart(vi), because we are focusing at the moment on recommending a particu-
lar visualization type when faced with a new dataset. Going forward, one can
envisage more complex solution features if we wish to reason about particular
features of the visualization, such as the axis placement, label usage etc.

Each dataset is characterised by a set of simple features that relate to the
type of data contained in the dataset. We distinguish between text and tabular
datasets by extracting different features for each. For example, for text datasets
we extract features that include the total number of terms (terms), the number
of unique terms unique as part of the specification; see Eq. 2. For tabular datasets
we can extract features such as the number of textual columns, coltxt, the number
of numeric columns, colnum and the number of data points, rows. In this way
each case is represented as a feature-based dataset and solution as in Eq. 3.

ci = {terms, unique}, chart(vi) (2)

ci = {coltxt, colnumrows}, chart(vi) (3)

3.2 Similarity and Retrieval

Given a new target case cT (made up of a particular dataset) the task of the
recommender system is to locate a set of similar cases that can be used as a
source of visualizations. For the purpose of this paper we concentrate on some
tried and tested similarity techniques using the above case representations. For
example, to compute the similarity between tabular dataset cases we use the
similarity metric shown in Eq. 4 which calculates the relative difference between
the number of textual and numeric columns and rows between the target dataset
and the case dataset; in this instance uniform weighting is used and so wf = 0.33.

sim(cT , ci) = 1−
∑

fε{coltxt,colnum,rows}
wf • |cT (f)− ci(f)|

max(cT (f), ci(f))
(4)
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A similar approach to similarity assessment is used for the text based dataset,
by comparing the datasets by the total number of terms and total unique terms.
While these similarity techniques are extremely simple, they provide a useful
starting point for this work. In the evaluation section we will demonstrate that
even these simple techniques work well when it comes to driving high quality
recommendations, while at the same time leaving a number of options open for
more sophisticated similarity techniques as part of future work. Thus, given a
target case, cT , we can use the above similarity techniques to produce a ranked
list of n similar cases as the basis for recommendation.

3.3 Generating Recommendations

Each of the n cases retrieved will be associated with a single visualization. The
same visualization type may occur in more than one case and so we can identify
a set of k different visualization types from these n cases. We need a way to
rank these visualizations so that those that are associated with more similar
cases are preferred over those that are associated with fewer, less similar cases.
To achieve this Eq. 5 scores each of the n visualizations, vi, as the sum of the
similarity scores associated with the retrieved parent cases; chart(vi, cj) = 1
if vi is the chart used in cj and is 0 otherwise. The result is a ranked list of
visualization recommendations, v1, ..., vk in descending order of their aggregate
similarity scores as per Eq. 5.

score(vi, cT , c1, ..., cn) =
∑

∀j=1...n

sim(cT , cj) • chart(vi, cj) (5)

4 Evaluation

As mentioned we believe that the low visualization rate of datasets is at least in
part due to the confusion of choice that faced novice first-time uploaders. Our
hypothesis is that even a simple form of case-based recommendation will help to
improve the visualization rate by making proactive suggestions to the user. In
this section we will describe the results of a recent large-scale, off-line evaluation
using the Many Eyes dataset.

4.1 Set-up

The core Many Eyes dataset was transformed into a set of 22,935 visualiza-
tion cases covering 14,582 different unique datasets and 33 visualization types.
These cases included 6800 text cases and 16135 tabular cases. For the purpose
of this evaluation we are interested in understanding the extent to which our
simple CBR strategy can produce useful visualizations, compared with a num-
ber of benchmark strategies, which differ in terms of how cases are selected or
recommendations are produced. The different techniques are summarised as:
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1. CBR - the basic CBR approach described above is used to produce a ranked
list of the top k visualizations from a set of n similar cases

2. Popular - this strategy simply recommends the k most popular visualizations
(globally) in Many Eyes.

3. Exact - this is a hybrid recommender strategy which identifies a pool of
similar cases like the CBR approach but only identifies cases which exactly
match the target features. It then calculates the popularity of each visual-
ization type for this pool. Specifically in the case of tabular data the set of
similar cases identified match the number of text and numeric columns in
the target case and in the text based datasets the word count of similar cases
is within a close defined range of the word count of the target dataset.

4. PopularContext - similar to Popular but it treats textual and tabular visu-
alization types separately.

5. Random - recommend a set of k random visualizations.

Obviously the CBR and Exact strategies provide a form of local recommen-
dation that is based on the particular features of the target dataset, whereas the
remainder provide simpler global recommendation strategies.

4.2 Methodology

Our evaluation takes the form of a standard leave-one-out test. For each target
case, cT , we use its specification features to represent a new dataset and generate
a set of k visualizations using each of 5 recommendation strategies; note that the
k is based on the number of unique visualizations retrieved by the CBR strategy.
There are two factors to consider when evaluating the quality of the resulting
recommendations. One is to look at how often the target visualization is present
in the set of k recommendations; so an accuracy of 60% means that the target
visualization is present in 60% of the recommendation sets of size k. Another
option is to look at the average position of the target visualization in the rec-
ommendation lists. And there are two ways to do this. One is to focus on those
recommendation lists that do have the correct target visualization and then com-
pute the average position of the target visualization in the final recommendation
list. This so-called average position approach ignores recommendation lists that
do not contain the correct visualization though, and therefore benefits the less
accurate strategies. As an alternative we can compute a position value across
all recommendation lists by assigning a k + 1 penalty to those lists that do not
contain the target visualization adjusted position. This is a conservative penalty
because it assumes that the correct visualization is actually in position k + 1,
which may not be, but it serves to at least remove some of the bias associated
with average position.

4.3 Results

Recommendation Accuracy Fig. 2(a)-(b) show the accuracy results sepa-
rately for the textual and tabular cases. These results clearly support the use
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Fig. 2. Accuracy of predicted visualization types (a) tabular and (b) textual.

of the CBR recommendation strategy. Overall CBR is seen to outperform all
other techniques with particularly impressive results for the CBR technique in
the easier textual case recommendation scenario. There is also a very consistent
benefit associated with the similarity-based technique used by CBR compared
with the simpler matching used by Exact, with the former delivering relative
improvements of 25%-50% across a wide range of k values.

Recommendation Position The results of the positional analysis of the rec-
ommendation techniques are presented in Fig. 3 (a)-(b). In terms of the average
position statistic the local recommendation techniques such as CBR and Exact
are delivering improved performance compared to the global benchmarks, al-
though there are a number of anomalies. For example in Fig 3(a), at k = 3, we
see that CBR delivers its correct recommendations with an average position of
1.5. However, the popularity-based techniques achieve a better average position
of just over 1. But remember, at this setting CBR is recommending a correct vi-
sualization among its top 3 recommendations more than 20% of the time versus
5% of the time with popularity-based approaches. By introducing a positional
penalty we find that the local techniques do consistently better than all other
benchmarks; see Fig. 3(c)-(d).

4.4 Summary

Even a relatively simple approach to case reuse has delivered useful results which
may make a difference to Many Eyes users in practice. In each case we have found
the case-based approach to outperform all of the other benchmarks that were
tried, consistently producing more accurate recommendations nearer to the top
of the recommendation list. Of course these findings need to be validated. They
may be based on real-user data but they have not been tested on live users in the
field. Nevertheless with these findings we can be optimistic about the prospect
of success in such a future trial.
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Fig. 3. Average position of the target visualizations (a) tabular, (b) textual and ad-
justed position of the target visualizations:(c) tabular, (d) textual.

5 Conclusions

The objective of this work is to help users of a Web based visualization sys-
tem to produce better visualizations by recommending visualizations that have
been previously used for datasets that are similar to their own. To that end we
have started with a very simple case recommendation technique, but this has
performed very well in practice, significantly outperforming a number of bench-
marks. However, there remains plenty of room for improvement and as future
work a number of obvious next steps present themselves.

More case features. For sure, there is ample opportunity to improve the case
representation and the similarity techniques used. In this work we have used a
very simple case representation for the purpose of exploring the potential of CBR
in this domain. More representative cases would encompass more sophisticated
details pertaining to datasets including in the case of numeric columns the fea-
tures that reflect the maximum, minimum, average, and standard deviations of
the columns (mini, maxi, avgi, devi) and for string columns we will extract the
terms themselves (t1, ..., tterms). For all datasets we can extract a bag-of-words
textual description derived from any metadata associated with the dataset, desc
(e.g., column headings, title, source etc). Also example, recognising that a par-
ticular data field is a date or a currency can help to significantly improve the
matching. Incorporating some notion of semantics into the representation and
similarity computation should be possible. Comparison to other Classification
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Techniques. In this work we have compared our simple CBR technique to very
simple alternative measures. With work into creating sophisticated CBR resp-
resentations planned we can also compare the performance of the CBR method
with other classification approaches such as Naive Bayes, decision trees or neural
networks.

Introducing Adaptation. There is considerable scope for adaptation in this
domain since recommending a visualization type is really just one part of a
larger decision support problem. Users will benefit greatly from configuration
support when it comes to actually using a particular visualization. This includes
deciding which fields are associated with which axes, scale settings, etc. and
these all provide opportunities for post-retrieval adaptation.

Ratings & Provenance. Many Eyes maintins rating information and informa-
tion about the creator of the particular visualization. In recent years there has
been new work in the area of provenance [7] and reputation [3] that could be
used to greatly improve the recommendation algorithms by harnessing informa-
tion about the source of a case and the reputation of the creator.
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Abstract. Acquiring knowledge for adaptation in CBR is an demanding
task. This paper describes an approach to make user experiences from
an Internet community available for the adaptation. We worked in the
cooking domain, where a huge number of Internet users share recipes,
opinions on them and experiences with them. Because this is often ex-
pressed in informal language, in our approach we did not semantically
analyze those posts, but used our already existing knowledge model to
find relevant information. We classified the comments to make the ex-
tracted and classified items usable as adaptation knowledge. The first
results seem promising.

1 Introduction

Adaptation is a central part of the case-based reasoning process model [1]. A
good adaptation is of very high importance if the case base is restricted to a
small number of cases or if the variation of the problems to be solved is very
high. Adaptation has not been the most current topic in recent years of CBR
research [2], but in the last year the research effort increased again [3–5]. Often
adaptation means justifying values in a bounded range [3] and is done via rules
created and maintained by a domain knowledge or system developer [6].

Knowledge acquisition for adaptation (Adaptation Knowledge acquisition:
aka) is a cost intensive task since it is highly domain dependent and the hard-
to-get experts are needed for acquiring and maintaining the necessary knowledge.
To solve this problem, research on automated adaptation knowledge acquisition
has been done, but mainly focused on automated aka from cases in the case
base [7–9].

Besides the case base, the Internet and the Web 2.0 with its user-generated
content are a large source of any kind of knowledge and experience. Following
the Web 2.0 paradigm of user-interaction people provide their experience, opin-
ions and advice on any kind of topic. Although the people are not necessarily
experts in the domain, the hope is that the mass of users will correct mistakes
as practiced for example in the Wikipedia project.

In this paper we present an approach to make knowledge from Internet com-
munities accessible as adaptation knowledge using the domain model that usu-
ally exists in structured CBR applications [10]. In the first part of the paper the

35



adaptation background inside CBR is introduced before we describe the domain
and the existing application we worked with in our approach. After a short in-
troduction of the tool we used, we will explain the approach in detail before we
close with our ideas for the evaluation, related work and an outlook.

2 The Cooking Domain

For most people cooking is ”everyday” knowledge. Almost everybody has en-
countered the problem of preparing a meal with a restricted amount of ingre-
dients. This explains why a huge number of people are willing to share their
recipes as well as their experience with the preparation of these recipes. Cooking
communities on the Internet offer a platform for this. They provide the possibil-
ity to share recipes and also the chance to review and comment them. Usually
they also offer additional information like cooking hints, background informa-
tion on groceries or preparation methods. Besides the fact of the existence of
active cooking communities, we chose the cooking domain for the investigation
on adaptation knowledge because it has some advantages compared to other
areas of interest discussed in communities like computer problems for exam-
ple. First of all, it is relatively easy to describe the (near) complete context of
preparing a meal. Hence, it is possible to reconstruct the experience of others by
preparing the meal and trying the adaptation suggestions oneself. The context
can be described according to the following characteristics:

1. all ingredients can be listed with exact amount and quality
2. ingredients can be obtained in standardized quantities and in comparable

quality
3. kitchen machines and tools are available in a standardized manner
4. (in case of a failure) the preparation of a meal can start all over again every

time from the same initial situation (except that we have more experience
in cooking after each failure).

The latter one is not given in many other domains, for example setting up a
computer costs much time and a certain installation situation cannot always
be restored. Additionally, cooking and the adaptation of recipes is (some basic
understanding presumed) relatively uncritical. In contrast to medical applica-
tions it does not endanger human health, except for some rare meals like fugu
(pufferfish). The costs of a failure are low. It is mostly covered by the price of the
ingredients plus the preparation time. Cooking is also an appropriate application
domain for adaptation, because cooking mastery depends on the variation and
creativity, not only on following strictly preparation advices for a meal [11].

3 CookIIS and Adaptation in CookIIS

CookIIS [12] is a CBR-based recipe search engine that competes in the Computer
Cooking Contest (CCC). When the user provides possible ingredients, it searches
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for suitable recipes in a case base. Doing that it considers ingredients the user
does not want or cannot use because of a certain diet. If recipes with unwanted
ingredients are retrieved, CookIIS offers adaptation suggestions to replace these
ingredients. According to the CCC the set of recipes is restricted. Besides the
retrieval and adaptation of recipes CookIIS also offers recipes for a complete
three course menu from the given ingredients (and maybe some additional ones).

CookIIS is using a very detailed domain model which is described in [12].
It was created using the empolis:Information Access Suite (e:IAS) [13], which
offers a knowledge modeling tool called Creator and with the Knowledge Server
a component to build client-server based applications. It also provides a rule
engine for the completion of cases and queries and for the adaptation of cases
after the retrieval. Some more technical details are described in [14].

3.1 Adaptation with the empolis:Information Access Suite

As stated above, the e:IAS offers the possibility to use completion rules which
are executed before building the case index or before the retrieval to extend
cases or queries with meta-information and adaptation rules, which are executed
after the retrieval, to modify retrieved cases. The Creator offers a rule editor to
model completion and adaptation rules with an own syntax. The rules follow the
classic IF ... THEN ... schema. They have read and write access to all modeled
objects and their values, but only adaptation rules have access to the retrieved
cases since they are executed after the retrieval. A large amount of predefined
functions help to manipulate single values. Both rule types use the same e:IAS
specific syntax, which after compilation is stored in the format of the Orenge
Rule Markup Language (ORML), an XML-language.

3.2 Case Representation and Similarity for Adaptation in CookIIS

The case representation is based on structured CBR. 11 classes of ingredients
(e.g. Vegetables, Fruit, etc.) plus some classes for additional information (e.g.
Type of Meal, Tools, etc.) are modeled, which represent about 2000 concepts
of the cooking domain. A case consists of 11 attributes, one for each possi-
ble ingredient class. Each attribute of ingredients can have multiple values per
recipe (sets). Most concepts of the different classes are ordered in specific tax-
onomies. These and some custom similarity measures are used to compute the
similarity between the query and the cases. Thereby the different attributes have
different weights corresponding to their importance for a meal. Additional meta-
information like the type of cuisine of a recipe is established during the indexing
process of the recipes and also stored in the case.

The approach for adaptation that was first realized in CookIIS is to replace
forbidden ingredients (according to a certain diet oder explicitly unwanted) with
some similar ingredients of the same class. While executing a query unwanted
(forbidden) ingredients are collected in extra attributes. Besides the explicit ex-
clusion, four different methods can be distinguished to handle dietary practices,
where more conditions have to be considered [14]. One of those methods is the
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same approach as above: ingredients that have to be avoided due to a diet are
replaced by similar ones.

Adaptation rules take these forbidden ingredients and check if at least one
of them is an ingredient used in the retrieved case (recipe). Then, making use
of the taxonomies and a similarity-aware set-function offered by the rule engine,
the most similar ingredients to the unwanted one are retrieved and offered as
replacement. The functions of the rules are described in detail in [14]. If no similar
ingredient is found that can be used for following the diet, then the suggestion
is to just omit that ingredient.

Shortcomings of the Existing Adaptation Approach Since the used adap-
tation approach makes use of the modeled taxonomies the results are often inap-
propriate. The method returns sibling concepts to the unwanted one as well as
parent and child concepts. Only the siblings are the ones who are interesting for
adaptation, but the others cannot be avoided with the provided rule functions.
Also the number of siblings is often too high. For one unwanted ingredient one
or two ingredients as an adaptation suggestion would be preferable. A detailed
analysis of the problems with the adaptation and the ways to handle it with the
e:IAS Rule mechanism is described in [15].

4 CommunityCook: A System to Extract Adaptation
Knowledge from Cooking Communities

In this chapter we will present our approach to extracting adaptation knowledge
from a German cooking community. For this purpose we use our existing knowl-
edge model from the CookIIS application and the TextMiner provided by e:IAS
to extract ingredients from recipes and comments on those recipes and classify
them. One of the classes can then be used as adaptation knowledge.

4.1 Idea behind the Approach

Our idea is to make knowledge from a cooking community accessible for our
CookIIS application to have better adaptation suggestions in case a recipe con-
tains an unwanted or forbidden ingredient. We were especially interested in com-
ments that people posted in reply to provided recipes. In these comments users
express their opinion on the recipe, before as well as after cooking it. They write
about their experience with the preparation process and also tell what they
changed while preparing the recipe. Thereby they express their personal adap-
tation of the recipe and frequently give reasons for this. Since this is written
down in natural language text, often using informal language, we had the idea
not to semantically analyze what people said, but to just find the occurrences
of ingredients in the comment texts and then compare them to the ingredients
mentioned in the actual recipe. We propose to classify them into three classes,
depending on whether the ingredients mentioned in a comment appear in the
recipe or not. The classification idea is described in the following sections.
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4.2 Analysis of Example Cooking Communities

In Germany, chefkoch.de1 is a well known cooking community with a large num-
ber of active users. So far, over 131’000 recipes have been provided by the users
with an even larger amount of comments on them. The users also have the possi-
bility to vote on the recipes, send them to a friend per email or even add pictures
of their preparation. Besides the recipes, chefkoch.de features an open discussion
board for all kinds of topics on cooking with more than 7.8 million contributions.
Their English partner site cooksunited.co.uk2 is unfortunately much smaller with
only about 2200 recipes and 3500 posts.

But with allrecipes.com3 a big platform with a huge amount of recipes and
over 2.4 millions reviews is available in English. It has representable big localiza-
tions for the United States, Canada, the United Kingdom, Germany, France and
others. Allrecipes.com explicitly provides variants of an existing recipe. Hence it
also seems to be also a good source candidate. Another large cooking German
community is kochbar.de4 with over 160’000 recipes. Besides these large com-
munities a number of smaller communities exist in the Web with more or less
similar content. For our approach we decided to use a large German community
since the recipes and the corresponding comments are presented on one page
with a standardized HTML-code template, which makes it easier to crawl the
site and extract relevant information items.

4.3 Extraction of Information Items from a Cooking Community

From a large German community we collected about 70’000 recipes with more
than 280’000 comments by crawling the site. This way we got one HTML source-
code page for each recipe with the corresponding comments. From this source
code we extracted the relevant information entities using customized HTML-
filters which we built using the HTML Parser tool5. For the recipes these entities
were primarily the recipe title, needed ingredients and the preparation instruc-
tions, but also some additional information on the preparation of the recipe (e.g.
estimated time for the preparation, difficulty of the preparation, etc.) and some
usage statistics (e.g. a user rating, number of times the recipe has been viewed,
stored or printed, etc.). If users commented on the recipe, we extracted the text
of the comment, checked if the comment was an answer to another comment
and if the comment has been marked as helpful or not. We also remembered the
recipe ID of the related recipe. All this information we stored in a database to
have an efficient access to it.

In the next step we used the e:IAS and indexed all recipes and all comments
into two different case bases using a slightly extended CookIIS knowledge model.
One case base consists of the recipes and one of the comments. For each recipe
1 http://www.chefkoch.de, last visited 2009-04-22
2 http://www.cooksunited.co.uk, last visited 2009-04-23
3 http://allrecipes.com, last visited 2009-04-23
4 http://www.kochbar.de, last visited 2009-05-22
5 http://htmlparser.sourceforge.net, last visited 2009-04-18
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and each comment we extracted the mentioned ingredients and stored them in
the case using our knowledge model and the e:IAS TextMiner during the indexing
process. Since our knowledge model is bilingual (English and German) we were
also able to translate the originally German ingredient names from the comment
text into English terms during this process and this way had the same terms in
the case bases that we use in our CookIIS application.

4.4 Classification of Ingredients

Having built up the two case bases we first retrieved a recipe and then all of the
comments belonging to the recipe and compared the ingredients of the recipe
with the ingredients mentioned in the comments. We then classified the ingredi-
ents mentioned in the comments into the following three categories:

– New : ingredients that are mentioned in the comment, but not mentioned in
the recipe

– Old : ingredients that are mentioned in the comment as well as in the recipe
– OldAndNew : two or more ingredients of one class of our knowledge model,

of which at least one was mentioned in the recipe and in the comment and
at least one other one was only mentioned in the comment, but not in the
recipe

We interpret the classification as follows:

– New : New ingredients are a variation of the recipe. A new ingredient (for
example a spice or an herb) somehow changes the recipe in taste or is a
tryout of something different or new.

– Old : If an ingredient of a recipe is mentioned in the comment it means that
this ingredient is especially liked or disliked (for example the taste of it),
that a bigger or smaller amount of this ingredient has been used (or even
left out), or it is a question about this ingredient.

– OldAndNew : This is either an adaptation (e.g. instead of milk I took cream)
or an explanation/specialization (e.g. Gouda is a semi-firm cheese).

For the adaptation the last class is the interesting one. For each ingredient
classified as OldAndNew we also stored whether it is the new or the old one. We
tried to distinguish between adaptation and specialization by looking for hints
in the original comment text and by using the taxonomies of our knowledge
model. Therefore we tried to find terms in the comment during the text-mining
process that confirm if it is an adaptation (e.g. terms like: instead of, alternative,
replaced with, ...) and stored those terms in the corresponding case. Additionally
we looked in the taxonomy of the ingredient class whether the one ingredient is
a child of the other (or the other way around). If an ingredient is a child of the
other we interpreted this as specialization or explanation, because one ingredient
is a more general concept than the other. This way we could avoid adaptations
like: ”instead of semi-firm cheese take Gouda”.

For the classes Old and New, which we consider as variations of the recipe,
we also tried to find terms in the comment that closer describe the function of
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the mentioned ingredient. For example, if an ingredient was classified as Old, we
looked for terms like ‘more’, ‘less’ or ‘left out’. If the ingredient of the comment
is of the supplement class of our CookIIS knowledge model, and the recipe did
not contain any supplement, then we took this as a suggestion for a supplement
(e.g. bread for a soup recipe).

For each classified ingredient we assigned a specific score, which depends on
the following factors:

– the number of ingredients found in the comment text
– whether the comment was marked as helpful or not
– whether a term was found that indicates the classification assigned or not
– whether a term was found that indicates a different classification or not

After assigning the score we aggregated our classification results. We did this
in two steps: First we aggregated all classified ingredients of all comments be-
longing to one recipe. Thereby we counted the number of the same classifications
in different comments and added up the score of the same classifications. Then
we aggregated all classifications without regarding the recipe they belong to.
This way we could select the most common classifications out of all classifica-
tions. Since we are using a CBR tool and have cases, we also checked if similar
recipes have the same ingredients with the same classification mentioned in the
comments. We did this for each recipe first with a similarity of at least 0.9, then
with a similarity of 0.8. If many of the same classified ingredients exist in similar
recipes, this supports our results.

Fig. 1. Some suggestions for adaptation
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4.5 Usage as Adaptation Knowledge

OldAndNew -classified ingredients can be used to generate adaptation sugges-
tions. This can be done in two different ways: independent from the recipe or
with regard to the recipe. Considering the fist way, we look in the database table
for the ingredient to adapt and use the result where the ingredient that needs
to be adapted is categorized as old and appears in the most recipes or has the
highest score. It is possible to retrieve two or more adaptation suggestions to be
more manifold. Using this approach we got more than 6200 different adaptation
suggestions of which we only used the most common (regarding the number of
appearances in the comments and the score) per ingredient. Figure 1 shows some
of these suggestions, e.g. in the first line a suggestion to replace cream with milk
which appears in comments to 128 different recipes.

We integrated this approach into our CookIIS application: at first we look
for two adaptation suggestions from CommunityCook. If no suggestions are pro-
vided, the set of more general adaptation rules (see section 3.2) determine adap-
tation suggestions.

5 Evaluation of the Results

A first look at the results of the most common adaptation suggestions is promis-
ing. Only the ingredient class ”supplement” reveals problems which are due to
the fact that too many different ingredients are integrated into this class. This
can be changed by further improving the modeling.

A complete evaluation still has to be done. For that we want to follow two
different approaches. At first we want to check if our classification and the in-
terpretation correspond to the intentions written in the original comments. This
can be done manually by comparing the classification results and their inter-
pretation to the original comments. The second evaluation will be done on the
results of the overall aggregated adaptation suggestions. We want to find out
if adaptation suggestions with a high score are good adaptation suggestions for
any kind of recipe. This is more difficult since we need domain expertise for
this. Our idea is to take a representative number of recipes and present them
with adaptation suggestions to real chefs. These chefs then rate the adaptation
suggestions. For this we will design a questionnaire and present it to different
chefs, because each chef may have a different opinion.

6 Related Work

JULIA [16] and CHEF [17] are early CBR systems giving preparation advice for
meals. CHEF is a planning application which builds new recipes in the domain of
Szechwan cooking. To satisfy the goals of a request for a new recipe it anticipates
and tries to avoid problems. Therefore it stores and retrieves occurred problems
and ways of dealing with them. JULIA integrates CBR and constraints for menu
design tasks. It uses a large taxonomy of concepts and problem decomposition
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with fixed decomposition plans. Unlike our approach their knowledge was built
by experts and was not captured from communities.

The idea presented here closely relates to the research of Plaza [18], especially
the EDIR cycle, however they concentrate more on gathering cases from web
experience. In [4] they use the presented IakA approach for the acquisition of
adaptation knowledge (and cases) by asking an oracle, which is described as an
“ideal expert”, but the presented prototype IakA-NF works (only) for numerical
function domains. Furthermore Acquisition of Adaptation Knowledge from cases
was done by by [8] or with the CabamakA System by [9].

The procedure of looking at first for concrete adaptation suggestions and
apply afterwards, if the first step yields no results, more general rules, was done
also by [6] with DIAL, which at first attempt to retrieve adaptation cases.

Our approach presented here goes with the vision of Collaborative Multi-
Experts Systems (CoMES) [19] and is modelled following the SEASALT ar-
chitecture [20], an instance of CoMES. Mapping this to the CommunityCook
System the collection of recipes and comments corresponds to the task of the
Collector Agent. The further analysis and interpretation match to their role of
a Knowledge Engineer.

7 Conclusion and Outlook

Adaptation knowledge acquisition is an demanding and expensive task since it
needs experts. In this paper we presented an approach to use experience from
Internet communities for adaptation knowledge. Our approach is based on the
idea of comparing the ingredients mentioned in a recipe to the ones mentioned
in the comments that relate to the recipe. From comments which contain in-
gredients also existing in the recipe and others which are not contained in the
recipe the adaptation suggestions are created and aggregated over all comments
to 6200 suggestions. First evaluation results are promising, however ideas for a
more complete evaluation which has still to be done are sketched.

The approach described here has a lot of advantages. For finding ingredients
we can use our existing CookIIS knowledge model which has the benefit of
taking care of synonyms, independence from slang and grammatically deficient
language. By using a large number of recipes and comments we hope to balance
out wrong classifications. We integrated the extracted adaptation suggestions in
our CookIIS application.

In the future we want to be able to use the adaptation suggestions with
regard to the recipe they belong to. Therefore we will find similar recipe out
of our pool of 70’000 recipes to the one that has to be adapted and consider
only comments of these recipes following the principle that similar recipes need
similar adaptations.

Following the SEASALT architecture we also want to realize a multi-agent
system that continuously monitors the community for new experiences with the
recipes and adapts our adaptation knowledge if necessary.
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Abstract. The advent of Web 2.0 has created a proliferation of resource sharing
sites where individual users tag resources. Retrieval performanceis good when
users share the same vocabulary, but deteriorates when users havediverging vo-
cabularies. In this paper we propose a novel method of reusing search experi-
ence to transform the underlying representation of tagged resources.The aim is
to favour those tags that best correspond to community consensus. A CBR ap-
proach is presented to learn from user search histories, modifying resource tags
in response to implicit user feedback. We evaluate this method on a prototype im-
age retrieval systemIFETCH. Our evaluation shows that resource transformation
progressively increases the ranking of those images that are generally deemed
relevant by similar search sessions. Our results also confirm that the casebase
weight update mechanism is more robust to erroneous user feedbackcompared
to a naive constant weight update strategy.

1 Introduction

Social searching and browsing have in recent years become increasingly popular with
the advent of Web2.0 applications. These applications allow users to share resources
such as documents, images, videos, music and Blogs on the Web. The absence of textual
content presents a significant challenge for index creationfor multimedia retrieval [8].
Resource annotation in the form of tagging is freely used andrefers to the free asso-
ciation of keywords to resources by members of a given community using their own
vocabulary [12]. The term folksonomy is now commonly used torefer to the bottom up
structures that emerge as a result of such social tagging [1]. In recent years, social tag-
ging has become popular, presenting itself as a useful indexing knowledge source, with
Wikipedia, Flikr and del.icio.us websites a testament to this trend. An interesting emer-
gent problem is the absence of a controlled tag vocabulary. Although this is attractive
for users it is obviously not ideal for vocabulary management and multimedia content
comparison. In this paper we investigate how to utilise usersearch and browsing expe-
riences to evolve indexing vocabularies so as to capture consensus. We achieve this by
transforming resource representations by altering individual tag weights thereby mov-
ing the resource closer to the queries that are commonly usedto search that resource.
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Resource transformation involves the modification of the underlying representation
of a given resource [9]. Unlike feature weighting here feature values are incremented or
alternatively decremented. Identifying which feature values to update and by how much
are key concerns for transformation. Here we rely on user interaction and implicit rele-
vance judgments. We introduce a casebased tag weight updatemechanism by capturing
previous user search experiences. Local neighbourhood similarity values are used to
control the amount by which a weight is updated. We demonstrate our approach on an
image retrieval task. Initial evaluation results are promising, showing that the technique
increases the ranking of those images that the majority of users have deemed as rele-
vant. Our results also show that the casebase weight update mechanism is more robust
in the presence of atypical users.

In Section 2 we discuss the role of CBR within Web2.0 applications. Resource trans-
formation using a casebased approach appears in Section 3 followed by a description of
the image retrieval prototype,IFETCH, in Section 4. Our experimental design and ini-
tial results are discussed in Section 5. We conclude in Section 7 after presenting related
work in Section 6.

2 Learning from Searching and Browsing Experiences

With information retrieval (IR) systems, users initiate retrieval through keyword-based
search queries. Standard meta-search engines typically return a set of resources ranked
according to their relevance to the query. A resource for example can be a document,
image, video or Blog; and relevance typically estimates thelevel of term overlap in
textual content. Like CBR, resource representation, indexing and similarity measures
are key IR system design considerations. The vector space model is typically used for
resource representation combined with an inverted list forindexing and the cosine sim-
ilarity metric for retrieval [2]. Term importance or term weighting within each resource
is typically captured as a function of term frequency and is known to improve search
retrieval and ranking.

Tagging provides an additional source of knowledge for the standard feature vector
representation. In fact studies suggest a greater overlap between the tag-query vocabu-
laries when compared to the content-query vocabularies [11]. As a result it is increas-
ingly common to represent resources based on just the tagging vocabulary. However the
notion of tag importance within each resource is hard to capture, this is because a tag
is simply assigned to a resource and is either present or absent. The situation is further
exacerbated by the absence of a controlled tagging vocabulary, particularly with broad
folksonomies where users can tag a resource with any set of tags that they see fit.

The question then is what knowledge can we use to establish within resource tag
importance? User consensus on tags (tag popularity) and user selection patterns are
both useful for this purpose. Unlike tag popularity which iseasily captured by means of
tag counters, user selection patterns require more sophisticated capture and integration
mechanisms. For instance, if a user selects a resource as relevant to a query, then the
query terms that are also used to tag this resource must be deemed important by this
user. This allows us to implicitly identify which tag weights should be increased or
alternatively decreased. However, some users might mistakenly select a resource as
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relevant or be atypical and diverge from the majority. Therefore, instead of considering
single user behaviour in isolation, it is far more useful to rely on collective user selection
patterns. We need to also consider how much weights should bealtered after each user
session? The answer depends very much on the level of similarity in user selection
patterns. To this end we exploit search history informationto learn how much to update
a tag weight by. We propose to maintain a casebase of previousqueries, together with
user selected resources. The more similar the cases to the recent user session the more
reinforcement for tag weight update.

3 Case Representation and Transformation

A case consist of a query and a set of resources judged as relevant to the query by
the user. The reliability of a user’s feedback is a function of the similarity between
the current search and the most similar cases in the casebase. These cases represent
previous searches where the query and the relevant resources are the most similar to the
current search. Each tag associated to a resource is given a weight proportional to how
representative this tag is for this resource. This weight isconsistently updated as the
casebase evolves and more information is deduced from previous searches.

3.1 Case Representation

A case is a pair(Q,RR), whereQ is a query andRR is a set of resources judged rele-
vant to this query. A queryQ is represented by a set{q1, . . . , ql} of keywordsqi present
in the query. A set of relevant resourcesRR is represented by a set{R1, . . . , Rm} of
resourcesRj judged by a user as relevant to the queryQ. Each resourceRj is itself
represented by a set{t1, . . . , tn} of tagstk, where each tag has an associated weight
wk. A resource is normalised so that the weights of all associated tagstk sum up to
1. In order to ascertain and utilise collective user judgments, the similarity between 2
cases is computed by aggregating the similarity between thequery and the similarity
between the set of relevant resources. The more similar the cases, the more similar the
user search experiences.

3.2 Resource Transformation

The purpose of maintaining a casebase of previous searches and computing the simi-
larities to the current search keywords is to optimise the tag weights associated to each
resource. We propose to penalise tags associated to resources selected as relevant if
they are not in the query. The weight reduction of such tags occurs as a side effect
of the weight renormalisation stage. The weight update is a function of the similarity
between the current search, or test case, and previous searches, or training cases. The
more similar the test case is to the nearest cases in the casebase, the more the current
users’s feedback is aligned with previous users’ feedback and therefore deemed as more
reliable. The tags weights of a resourceR ∈ RR are updated as follows:
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wi
temp = wi ∗ update(R,Q)

update(R,Q) =
{

1 if ti ∈ Q
f (CB,Q) if ti /∈ Q

f (CB,Q) = (1− Simk(CB,Q))α

HereSimk is the average similarity betweenQ and its topk neighbours inCB.
We use the cosine similarity metric andα is a parameter controlling the severity of the
penalty. Other similarity metrics could have been applied,but cosine is most commonly
used when comparing unstructured text. The fact that our tagvectors are normalised
also makes cosine a natural description of similarity. Eachdimension in a vector rep-
resentation is a different term, where a non-zero value indicates the presence of that
term. After each run, a resource’s representation is updated so that the weights of each
resource tag not present in the query is reduced relatively to the similarity between the
current query and the most similar cases in our casebase. In turn, weight renormalisa-
tion will have the effect of increasing the weights of each resource tag present in the
query. The renormalisation is achieved as follows:

wi
new =

wi
temp∑n

j=1 wj
temp

The overall impact of updating weights is to increase the importance of commonly
used tags in the similarity metric used during retrieval, therefore achieving a ranking of
resources more aligned with a global consensus of opinion.

40245 10547 2527 20628 8360 2543 2668

Search Session for Q(flowers in summer)

Case{Query || Relevant Resources}

Case{flowers, summer || 40245, 2527, 8360}

3NN

Case{flowers, summer, day || 2543, 20628, 10547}

Case{flowers, summer || 2527, 8360, 40245}

Case{flowers || 40254, 2527, 2688, 20628}

yellow

blue

flowers

meadow

summer

flowers

green

Grass

flowers

Casebase

f(CB,Q, RR)

Resource Tag Weight Update

Fig. 1. Tag weights updated using a casebase

Figure 1 illustrates an example of a tag weight update session for images. The user
executes a search with keywordsflowers in summer. From the search results the users
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selects 3 images 40245, 2527, 8360 that they feel are relevant to their information need.
A new case made up of both the keywords and the identifiers for the images selected
is then created and presented to the casebase. Thek nearest neighbours are identified
by calculating the cosine similarity between the new case and those in the casebase. A
function of this similarity is then used to update the weights of each of the tags, where
tags that were not in the query have their weights decreased,and tags common to the
query have their weights increased. Finally tag weights of each of the selected resources
are updated before the new case is added to the casebase for future searches.

4 The IFETCH Prototype

Fig. 2. The IFETCH user interface

To test our resource transformation method a demonstrator Web2.0 application,
IFETCH was developed for image retrieval. Figure 2 shows the main components of
the user interface. The interface header panel contains thesearch box to the top right
(area 1) allowing users to input their search terms. Also in the centre of the header panel
is the page selectors which are shown when there are multiplepages of results returned.
Search result appear in the center (in area 2). Each image in this panel can be enlarged
by clicking a magnifying glass icon below the image. Relevant images can be dragged
into the task panel (shown by area 3) at the bottom of the interface. Each of the images
in the task panel can be swapped back and forth or removed using a cross icon below
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each image. This is illustrated in the figure with an image being dragged by a user into
the task panel (in area 4). For demonstration purpose the task panel currently allows a
selection of upto seven images. This is in keeping with Miller’s [15] findings that the
usual limit of the human short-term memory store is around seven units.IFETCH also
allows users to execute multiple searches for the same information need while retaining
any previously selected relevant images in the task panel. This is to allow the user to
combine selections from multiple searches for the same information need. This is main-
tained as part of the user’s profile, allowing them to amend previous queries and track
their history of information needs.

5 Experimental Evaluation

We evaluateIFETCH incorporating the casebased weight update mechanism with acon-
stant update function without a casebase. We also investigate the robustness of retrieval
in the presence of noise. By noise we mean user’s that may incorrectly identify re-
sources as relevant or deviate from majority consensus. Precision at10 is a good mea-
sure for evaluating the performance of web based retrieval systems [14]. This is due to
the fact that the majority of people will only examine the first page of10 results. Mean
Average Precision (MAP) is a more recent metric that calculates the precision after each
relevant document’s retrieved rank [5] . These scores are then averaged over the number
of relevant documents retrieved. For instance, if a run retrieves 3 relevant documents,
one ranked 3rd, one ranked 5th and one ranked 10th. The precision at rank 3, 5 and
10 is calculated and averaged. In our evaluation, we used both metrics to compare the
2 systems: Precision at 10 (P10) and Mean Average Precision (MAP). It is generally
accepted that evaluation is a challenge when user interaction is central to the techniques
being evaluated. This is mainly due to the cost involved withlarge scale user trials,
requiring live user participation. In order to get round this problem we developed a test
harness to simulate user query generation and resource selection. Instead of collect-
ing actual data from user trials we simulate search sessionsusing the IMAGECLEF’06
collection containing a set of images and their relevance to60 topics.

5.1 Query Generation and User Trial Simulation

The IMAGECLEF 2006 dataset contains 20,000 images from many locations around
the world. The majority of the images provided in the datasetare images from an in-
dependent travel company organising adventure and language trips to South America.
The images within the dataset are varied and are realistic interms of what we would
expect to search in a web based image retrieval system. Figure 3 shows an example
of a typical topic (animal swimming) and an associated imageannotation. Topic an-
notations capture typical search needs and have been generated from search logs with
the aim to provide a balanced and representative set of information needs. Importantly
IMAGECLEF also has images labelled as relevant for each topic. We assume that these
ground-truth images would be the ones that typical users might select for a given query
(for a specific topic). As such the retrieval rank of ground-truth images provides the
basis for comparing retrieval performance between user trials. The more ground truths
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<IMAGE>

<NO>annotations/34/34160.eng</NO>

<TITLE> a swimming Pelican near 

Paracas</TITLE>

<DESCRIPTION> a Pelican is swimming on the 

water;

</DESCRIPTION>

<NOTES></NOTES>

<LOCATION>Mondsee, Austria</LOCATION>

<DATE>December 2003</DATE>

<IMAGE>images/34/34160.jpg</IMAGE>

<THUMBNAIL>thum/34160.jpg</THUMBNAIL>

</IMAGE>

<TOPIC>

<NUM> Number: 5 </NUM>

<TITLE> animal swimming </TITLE>

<NARR>

Relevant images will show one or more animals 

(fish, birds, reptiles, etc.) swimming in a body of 

water.

Images of people swimming in water are not 

relevant.

Images of animals that are not swimming are not 

relevant.

</NARR>

</TOPIC>

Fig. 3. The IMAGECLEF example topic and image annotation

ranked at the top the better the retrieval. Each image is allocated tags by extracting
stemmed keywords from its description (see Figure 3). Tag weights are initialised and
length normalised. We simulate a search task as selecting upto 7 images from those
retrieved for a system generated query. Queries are generated by extracting keywords
from a topic’s title and as such play the role of a user query. For each query we then
simulate 105 user trials, whereby 7 images are randomly selected as relevant from the
retrieved set in a given user trial. A perfect user is simulated by randomly selecting
ground-truth images from the set of retrieved images whilsta random selection forming
a mix of ground truths and other irrelevant images simulatesan imperfect user. In this
way the level of error is managed by using a mixing parameter.A case is created for
each simulated user trial and tag weights accordingly updated at each trial.

5.2 Results
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Figure 4 illustrates the evolution of MAP and P10 results averaged over the 60
topics for each ordered trial. During the first 25 runs, we assume a perfect user. The
following 15 runs simulate unreliable user feedback. This is simulated by randomly
selecting only 20% of ground-truth images and 80% of irrelevant images. This pattern is
repeated for the following 65 runs. The first trial indicatesthe MAP and P10 result when
no resource transformation is used. As expected, resource transformation significantly
improves upon this first trial in consequent trials. Both MAPand P10 results peek faster
when no casebase is used initially. This is because, during the 25 first runs, ground-truth
images are selected and the relevant tag weights of each of these images are promoted
after every run. However, with a casebase, the same image hasto be selected multiple
times before the similarity between the new case and cases inthe casebase is sufficient
to significantly promote tag weights. This initial phase canbe likened to a standard CBR
system’s performance during the case generation or authoring phase. The advantage of
the matured casebase becomes more apparent with the introduction of user error. This
can be seen with the introduction of erroneous user feedbackbetween trials 25 to 40,
where MAP drops considerably when not using a casebase, whilst remaining relatively
stable when using the casebase. This is because, with a casebase, an irrelevant image has
to be selected multiple times before it can be promoted to a higher rank i.e. the majority
of users must agree that these images fulfill the informationneed better than those
previously selected. In the absence of a casebase, an irrelevant image gets promoted
quickly to a higher rank as soon as it gets selected. This phenomenon is illustrated
even more clearly in Figure 4, with the P10 graphs. Without the use of a casebase,
P10 suffers a drop at each introduction of erroneous feedback and does not recover,
even when consistent relevant feedback follows. It is also important to note that the
average P10 achieved over the 60 topics reaches a level of over 0.8. This is much higher
than the average MAP. While MAP illustrates the spread of relevant images over the
retrieval, P10 illustrates the amount of relevant images ranked in the top 10. This is a
more relevant result as, in a real web based system, users would tend to look at the top
images within the first page and are less likely to browse other pages.

6 Related Work

Many studies have been conducted into user tagging behaviour with a view to iden-
tify how best to utilise tags as meta-knowledge sources for collection organisation and
searching [12, 13]. Although the absence of any controlled vocabulary is viewed as a
drawback, studies have shown that frequently used tags are still a good indicator of
user query terms [11]. In our work we leverage on user queriesas a means to refine the
explicit association of tags to images. A casebase is used tocapture tag popularity and
social consensus about tags. Case similarity values are then used to implicitly refine the
tag-to-image associations. The approach is sufficiently generic and can be transfered to
other resources commonly encountered within folksonomies.

Refining associations between tags and their resources can be viewed as a form of
tag recommendation but also as a form of relevance feedback.In traditional IR rel-
evance feedback is used to refine a query entered by the user. The popular Rocchio
algorithm uses feedback from a user’s explicit preferencesto form two centroids; rep-
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resentative of relevant and irrelevant resources [6]. Using a linear combination query
terms are then promoted if they appear in the relevant centroid and demoted otherwise.
Here promotion can also be viewed as query expansion. Reliance on users for explicit
feedback is a drawback which has been addressed by research into implicit feedback
capture. Typically click-throughs and mouse moves are usedfor this purpose [7]. An
interesting aspect here is o facilitate unobtrusive and effective feedback capture though
clever interface design [8].IFETCH also adopts a similar emphasise whereby standard
areas for query entry and ranking are augmented with additional drag-and-drop work
areas to allow for task management.

Document transformation work in machine learning, aims to refine a document’s
representation by learning from queries that led to its access. Unlike explicit and im-
plicit relevance feedback mechanisms from IR, here querying experiences are utilised
as a means to assist future user’s with similar search needs.The idea is to reuse query
and relevance feedback knowledge to improve descriptions of selected resources. In [9]
indexing descriptors of documents on the web are modified, byincrementally updating
it to better match each query that is used to retrieve it. However to directly apply such
an approach within a folksonomy setting would be naive. Thisis because one needs to
influence the update according to consensus and not simply onthe basis of individual
user queries. We achieve this by using an update function that is directly influenced by
similarity to previous user search sessions i.e. their queries and chosen relevant resource
sets. The more consensus amongst users about a query and its relevant resource set the
higher the average similarity leading to higher promotion and demotion of tags.

Use of consensus within a community of like-minded people has been applied to
improve document ranking in [10]. A separate representation of documents is main-
tained so as to to capture document relevance preferences for similar queries entered by
users within a community. A new representation for selecteddocuments is generated
from snippet text that is returned by standard meta-search engines such as Google or
Yahoo. This approach has the useful property of altering surrogate representations of
documents instead of the original document representations themselves. As such one
can imagine the maintenance of multiple community views through multiple surrogate
representations. One drawback here is its reliance on textual snippets and as such does
not easily lend itself to other forms of resources within folksonomies: such as images
and videos. However the general idea of maintaining multiple community views is still
very interesting and an area we intend to explore in the future.

7 Conclusion and Future Work

This paper presents and initial approach to transforming resource representations by
altering the weights of tags associated to resources. We present a novel casebased ap-
proach to help control the amount by which weights are updated. The casebase main-
tains previous search experiences consisting of query and relevance judgments. A small-
scale evaluation of theIFETCH demo system shows that resource transformation to
result in far superior retrieval performance as it learns from each user session. Further-
more the casebase weight update approach remains resistantto user error, and outper-
forms a constant weight update approach.
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The simulation of query generation and user trials in our evaluation is particularly
novel. In future work it would be interesting to include new features to this evaluation
methodology, for example, to allow variation in queries within topics, thus simulating
user’s differing vocabularies. Another interesting future direction would be the inclu-
sion of multiple representations for groups of users, transforming these representations
based on the group’s vocabulary and the behavior of individual’s within that group. We
also intend to evaluate our weight update strategies using real users with theIFETCH

prototype to ascertain if the technique works in a real life scenario.
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Abstract. The praxis of the users in some particular domain charac-
terizes the Experience Web. In this paper we focus on analyzing usage
of musical objects, and how the knowledge discovered can be used to
design and implement a CBR system. We perform a case study of the
Poolcasting CBR system in order to analyze the role of content provided
by the praxis of users in the musical domain and the techniques used to
acquire the knowledge required by a CBR system in the context of the
Experience Web.

1 Introduction

Among the wide diversity of user-contributed content on the web, there is a
particular kind of content that has the potential of being put to good use by
intelligent systems: human experiences. We are now familiar with different forms
of content that are provided by the users that reflect not merely an opinion
or a belief, but rather express an individual experience: this we may call the
Experience Web.

For instance, when a user has experienced a travel with an air carrier company
or a stand at a hotel, the comments of that user concerning the air carrier A
or the hotel are not merely issues of opinion or belief, they are expressing and
recording a concrete and factual experience. That is to say, that the plane was
delayed or that the hotel H didn’t attend a client’s request, they are not merely
subjective estimations: (i) they are statements that certain facts occurred and (ii)
they are evidence with respect to the likelihood oh these facts being a recurring
pattern (A’s planes tend to be delayed, H’s staff tends to be unfriendly).

Human experiences recorded on the web offer practical knowledge concerning
a wide variety of real world objects and situations. This practical knowledge
is different from theoretical knowledge as that which can be provided by the
Semantic Web. For instance, the Semantic Web approach can offer theoretical
knowledge about hotels as in the statement “Hotel H is three stars (according
to European Standards)”, which means that some authority has classified hotel
H so because it satisfies certain properties adjudicated to that class. Although
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this knowledge also provides evidence on the quality and features of hotel H,
it is in fact knowledge about the “three star hotel class” rather than about H
itself.

Theoretical knowledge is, by definition, about the concept or the class —
while practical knowledge is mostly about the object or the instance. What is
there about the instance that is not in the class? Well, basically an instance has
a concrete cluster of relationships with other instances, with its environment
(that includes how people use that object or instance). Most of these relations
are outside the purview of a theoretical/semantic definition of a concept or a
class. Experiences, on the other hand, being concrete, are precisely those clusters
of relationships among instances.

We have now introduced a core notion: usage. Thus human experiences, when
expressed, essentially provide a description of how people have used an object —
and therefore a description of relevant relations of that object with its (physical
and conceptual) environment. In previous papers I’ve emphasized the fact that
a large number of experiences in the web are described using text [6, 7]. There
are situations, however, where such experiential knowledge are recorded on the
web as different forms of data instead of free text; although these situations may
seem minority or less general, they may be more amenable to analysis and reuse
of those experiences by an automatic process.

In the rest of the paper we will present a case study in the domain of music,
where human experiential knowledge is recorded and available as different forms
and sources of data, and we will show how this experiential knowledge may
be analyzed, interpreted, and reused to automatically to perform a particular
task. The task we want to automate is that of play a DJ in a radio channel, as
implemented in the Poolcasting system [4]. The task is to convey a selection of
songs that are satisfying for a dynamic audience (i.e. a group of individuals) and
that play smoothly one after the other (i.e. each song is musically associated
with the next and not merely chosen at random). The purpose of the paper is to
elucidate how web data can be analyzed as experiential knowledge and used in
a case-based reasoning process. That is to say, how data can be interpreted as
records of actions performed by human beings, and thus represents their musical
praxis, and how the practical knowledge that can be discovered or inferred from
that praxis can be exploited in a system that reasons from people’s experiences.

The structure of the paper is as follows. Since Poolcasting has to satisfy two
criteria, namely song sequence smoothness and group audience satisfaction, we
will show in the next two sections how to acquire experiential knowledge for the
criteria of musical smoothness (§2) and audience satisfaction (§3). The paper
will close with a discussion section.

2 Social Music Praxis

In order to establish a succession of songs whose order in musically meaning-
ful or appropriate, we need to acquire knowledge about which songs “play well
together.” Moreover, since this is a matter of degree, we will call (musical) asso-
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ciation between two songs the likelihood that these two songs “play well one after
the other.” There are two ways to approach the acquisition of such a musical
association model, one based on principles, and one based on praxis.

Acquiring a musical association model from principles means that we have
some theory, some general knowledge, such that when applied to a particular
pair of songs yields a degree of association. in the music domain these are called
content-based approaches, since they analyze the song’s musical or acoustic con-
tent. A simple principle could be that songs classified as belonging to the same
genre should, in principle, play well together — similarly to the three-star hotel
above, we are using information about the class (the genre). We may use any
kind of class partition for this purpose, e.g. the songs performed by the same
artist, or written by the same composer. The most common way is to represent
each song by a collection of acoustic features extracted from the audio signal. For
instance, some authors posit the principle that two songs are highly associated
when their global timbre quality is similar [1]; this approach then focuses on
ways to analyze the spectral shape of songs and ways to assess their similarity.
Other approaches use beat and tempo analysis to assess which songs “sound
similar” [8].

The other approach is analyzing the praxis of people in situations where they
deal with songs that “play well together.” One example of this approach would
be analyzing the behavior of real DJ’s in charge of playing music that flows
smoothly over time. Nielsen Broadcasting Data has compiled a large amount of
data on music broadcasts in more than 1,600 radio station, but their data base
is not available without a fee.

The social web has revolutionized the scope and availability of all forms
of content, and specially in the domain of popular music. Different social web
platforms that focus on music concerns have compiled user-provided playlists in
the order hundred of thousands. A playlist is in essence a collection of songs that
someone has considered “play well together.” Analyzing hundred of thousands
of playlists we may discover which songs are more associated with respect to a
community of users of a social web platform.

The association model we developed for Poolcasting analyzes this social data
to find those songs that appear together in playlists, following two intuitions:
(a) that the closer they occur in a playlist, the more associated they are, and
(2) the more playlist two songs co-occur, the more associated they are. However,
this initial analysis was insufficient, and we needed to take into account what we
called a song’s popularity : the more playlist a song occurs in, the more popular
the song is. The reason is that, without taking into account song popularity
co-occurrence of pairs of songs in playlists was biased in favor of popular songs.
That is to say, we detected mainly situations where one of the co-occurring song
was highly popular, but we missed co-occurring pairs of songs where neither of
them was popular.

The final measure of song association, re-normalizing with respect to relative
popularity [2], was applied to 599,565 playlists provided by the social web plat-
form MyStrands.com. Moreover, once song association is estimated we can infer
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Destiny's Child

Kelly Rowland, City High, Ciara, Fantasia, Christina Milian, Beyonce, Ashanti, Girls Aloud, 3LW, Dru HillPoolcasting/
beta=0.5

Ciara, Pussycat Dolls, Usher, Beyonce, Nelly, 50 Cent, Mariah Carey, Chris Brown, Gwen Stefani, EminemMyStrands

Mariah Carey, Jennifer Lopez, Aaliyah, Xscape, Ginuwine, Deborah Cox, Kelly Price, Faith Evans, Brandy, UsherAllMusic

Cruel Story Of Youth, Jessica Simpson, Ryan Cabrera, Ashlee Simpson, Faith Evans, Nick Lachey, Vitaly Romanov, 
Janet JacksonYahoo

Beyoncé, Mariah Carey, Jennifer Lopez, Usher, Aaliyah, Rihanna, TLC, Ciara, Ashanti, Christina AguileraLast.fm

Fig. 1. Comparisons of artists associated with Destiny’s Child.

association degrees among artists. The results were compared with other models
of “musical similarity” among songs and artists, like All Music Guide where they
are provided by expert editors, Yahoo! Music where information come from user
feedback, and Last.fm where similarity comes from overall listening habits of
users. Although our order-based association is asymmetric and is not a measure
of similarity as the measures provided by these sources, the general results are
roughly equivalent in practice. However, our measure did find out more obscure
associations (because of the popularity renormalization) than others did not de-
tect. For instance, Figure 1 shows that Poolcasting associates Destiny’s Child
with Kelly Rowland; this association is a good one, because Kelly Rowland is
the lead singer of Destiny’s Child.

Regardless of the details, the focus of this paper is on the fact that we are an-
alyzing how people use their music. Playlists embody some particular instance
of the notion of “songs sounding well together,” and the social web platform
merely provides a conduit where this experiential knowledge, from many users,
and about tens of thousands of songs, is expressed and stored. The fact that
MyStrands.com is a “social web platform” is relevant in as much as it facilitates
that a large number of users contribute their musical experiences. There is no
difference in analyzing user’s playlists in a personal computer or shared via a
website: social web platforms are useful in motivating and facilitating the sharing
of experiential knowledge, not necessarily creating that experiential knowledge.
Nevertheless, the openness of user-contributed experiential content is very im-
portant in practice: (1) the number of songs and artists from different countries
and sources (e.g. bootleg concerts, independent bands) is larger than any par-
ticular endeavour (like All Music Guide, based on experts) could ever achieve;
(2) the responsiveness to include newly created songs is also much higher.

Reasoning from experiences on the web is not only a matter of acquiring and
analyzing experiential knowledge. In our musical domain, for instance, playlists
are contentless — i.e. they contain references to the songs (and the artists)
but not the songs themselves. Thus, to put the Poolcasting system into practice
we needed to identify the songs references and the artists names: recover from
misspellings, unify denominations and establish a unique (and possibly shared)
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Artists can be described as genre-affinity vectors
4 THE RESULTS

The genre-affinity degree Mx(g) is high when artists that often co-occur with x 
belong to genre g and artists that rarely co-occur with x do not belong to genre g.
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Fig. 2. Genre affinity profile of Madonna.

ID for each object in the domain. This Data Web concern is orthogonal to our
approach on the Experience Web, and is currently being addressed by research
on the Data Web; in this approach objects like cities or persons are identified by
RDF triplets. The “linked data” approach proposed by Tim Bernes-Lee [5] seems
more congruous with the Experience Web than the semantic web approach: the
Data Web focuses on representing the clusters of relationships among instances
that we talked about before as the way concrete experiences may be represented.

Analyzing and discovering higher-level relationships from experiences is not
technically different from analyzing data, but the fact that the discovered rela-
tionship come from data recording practice is what makes a difference. Analyzing
how people use and combine songs in playlists we find how songs and artists are
associated. Therefore, we can analyze how songs or artists cluster together to
form groups. Moreover, songs and artists are already categorized into genres, but
his application of principles assigns only one genre label to each artist, sacrificing
a more nuanced characterization. However, analyzing users’ musical praxis we
can discover new relations between artists, clusters of artists, and genres.

For instance, we can revise the principle-based categorization of artists and
propose that artists have a graded affinity to multiple genres [3]. This character-
ization of artists is closer to reality, since artists do not belong to one genre and
are excluded from belonging to any other genre; rather, they have high affinity
to some genres (e.g. Madonna has high affinity with Pop and R&B) and low
affinity to others (e.g. Madonna has very low affinity with Jazz). Moreover, the
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Genre-centrality comparison of two artists, 
both originally labelled as ‘Rock/Pop’

Genre-centrality comparison of two artists, 
one labelled ‘Rock/Pop’, the other ‘R&B’

Artists can be compared in terms of centrality to different genres
4 THE RESULTS

The genre-centrality of an artist x to a genre g is the percentage of 
artists whose genre affinity to g is ≤ Mx(g)
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Fig. 3. Genre-centrality comparison of two artists originally labelled as Rock/Pop.

affinity vector of each artist with respect to genres provides a new way to de-
scribe musical performers, as shown in Figure 2, where the affinity degree spans
from 0 to 1.

Moreover, we can detect which artists are “central” to specific genres — i.e.
they are good representatives of that genre. The genre-centrality of an artist x
to a genre g is the percentage of artists whose genre affinity to g is lower or equal
than the genre affinity of x to genre g. For instance, on the Soundtrack genre
the most central artists are James Horner, Alan Silvestri and Michael Giacchino,
who are famous composers of original movie scores (e.g., James Horners Titanic
Original Soundtrack), and not Pop artists who have only sporadically performed
famous songs which appeared in movies (e.g., Celine Dions My Heart Will Go
On). Moreover, artists can be compared on how central they are to different
genres, as shown in Figure 3 where we may compare Madonna and Metallica
(both originally classified in the Rock/Pop genre).

The usage of musical objects by users is the basis of these analysis, it’s the
availability of this data that is crucial for the Experience Web. The fact that
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this data is available in “social web platforms”, or the kinds of data mining
techniques used to analyze them, these are secondary issues: the praxis of the
users in some particular domain characterizes the Experience Web.

3 Individual Music Listening Praxis

The second criterion for the Poolcasting system is to customize the music selec-
tion to a dynamic audience —namely the group of users registered at a musical
channel. Therefore, the system needs knowledge to estimate how satisfying is
selecting a song over another (1) for the individuals in the audience and (2) for
the overall satisfaction of the group as such. The overall satisfaction is essen-
tially some sort of average of the individual satisfaction, so we needed to acquire
knowledge about which songs and/or artists an individual prefers. For this pur-
pose, we analyzed how individuals used their music libraries on their computers,
specifically on iTunes players. The data available on iTunes library database
includes which songs are rated higher, which songs had been played frequently,
etc.

The strategy is similar to the one in the previous section, but now we are
focusing on examining each individual music player as a repository of data about
their musical listening praxis. We considered that each library database may be
interpreted as an “individual case base” and can thus be used in a CBR system
like Poolcasting to predict the degree of satisfaction of each user in the audience
with respect to a specific song. However, as indicated in the original paper [4],
they were not strictly “individual case bases” since they not contained cases.
The core idea of cases in CBR is very close to that of examples in Machine
Learning, maybe for historical reasons; a case may have a representation that
is simpler or more complex, but is composed of two separate objects: a problem
(represented on the problem space) and a solution (represented on the solution
space). Similarity of two problems is defined over the problem space with the
purpose of estimating how similar their solutions might be in the solution space.

However, the Poolcasting system did not had access to this kind of experi-
ential knowledge represented as cases. Thus, the approach we took was to take
a step back, and recall that CBR is also classically defined as reasoning and
learning from past experience. Within this interpretation, we did have knowl-
edge of the users’ usage of songs for listening purposes by analyzing the digital
music player library data. The knowledge that can be derived is (qualitatively)
straightforward: the more often a song has been played, the more star-based
ranking a song has, the more songs of an artist the user has, then the more
likely is that the user likes that song or that artist.

Moreover, we already have seen in section 2 how to acquire knowledge about
song association. The schema in Figure 4 shows how the the Poolcasting sys-
tem combines knowledge about musical association among songs (obtained from
playlists contributed by a community of users) and knowledge about audience
song preferences (obtained from digital music player library data of the members
of the audience). The Retrieve process uses the musical association knowledge to
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F ig. 3. T he C B R schema.

music recently played on H ; the song that best matches the four propert ies
of Sect . 2.2 is scheduled to play on H after Y .

3. ( Revise P rocess) Listeners can evaluate the songs played on H ; a posi-
t ive / negative feedback increases / decreases the degree of associat ion of this
song with the previous one played, relat ively to channel H .

We consider the library of each participant as a Case Base. Each case is a tuple
(song, art ist , preference degree), where the preference degree re  ects how much
a participant likes a song. In Sect . 3.1 we will explain how, when a new user joins
a channel, her musical preferences are inferred from the listening experience of
the songs contained in her personal music library. In Sect . 3.2 we will explain
the concept of musical associat ion and how to infer which songs or art ists are
associated from the analysis of a large public collect ion of playlists. In Sect . 3.3
we will present the Retrieve Process, that selects from the Case Bases a subset of
songs to achieve the goals of variety and continuity. In Sect . 3.4 we will detail the
Reuse Process, that combines individual preferences to choose a song that fairly
satisþes the group as a whole. F inally (Sect . 3.5), we will present the Revise
Process, where users can evaluate the songs played on each channel.

3.1 T he P a r t ici p a n ts' C ase B ases

E very Case Base contains the list of songs in the shared library of a Participant ,
and a preference degree for each song. We deþne, for each participant P 2 P (t),
and for each song S 2 L (P ), a preference degree g(P ; S ) with values in [  1; 1],
where -1 means P hates S , 1 means P loves S , and 0 re  ects indiÞerence. To
assess the preference degrees of P , we use her library to extract information
about her listening experience, namely the rat ing she assigned to each song and
the number of t imes she listened to them. We assume that the higher the rat ing
and the higher the play count , the stronger the preference. However, the absolute
values of rat ing and play count are not relevant , for a \ high " play count or rating
for one user (e.g., 10 times, 3 stars) could be \ low " for another user. For this
reason, we normalise both values according to the average listener behaviour, in
the following way. Let % m i n and % m a x be the minimum and maximum possible

Fig. 4. The CBR schema of the Poolcasting system.

filter, from all possible songs, a small number of songs that are musically associ-
ated with the last song being played, while the Reuse process used the audience
song preferences knowledge to select the song that will keep the audience (and
individual members) satisfied.

4 Discussion

In summary, Poolcasting as a CBR system focuses on acquiring and harness
knowledge coming from the praxis of users in a domain, analyzing their usage
of the objects in a domain for specific purposes. In this case study we analyzed
how people put together songs in a playlist; they do it because for them these
songs (for some unknown reasons or purpose) “sound well together.” We also
analyzed how individuals use music stored in their digital music players; we
interpreted them as repositories of data recording the music listening praxis of
each individual.

The Experience Web is therefore characterized by a certain viewpoint on a
specific type of content. The content is data representing specific actions, the
praxis of individuals in a given domain; the viewpoint is that we interpret those
actions, that praxis, as experiences from which new knowledge and insight can
be gained and harnessed by developing intelligent systems for achieving specific
goals.

The Semantic Web and the Data Web are orthogonal endeavors withe re-
spect to the Experience Web approach. They are in fact required to be able
to harness the Experience Web. We have focused on this paper on domains
where experiences are directly recorded as data, not free text. Although text-
based experiences are qualitatively and quantitatively very important, we would
argue that a careful examination of existing non-textual content will uncover
areas where the available data can be analyzed and interpreted as experiential
content, and be amenable to partake of the Experience Web approach.
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Abstract. Knowledge and user generated content is proliferating on the
web in scientific publications, information portals and online social me-
dia. This knowledge explosion has continued to outpace technological
innovation in efficient information access technologies. In this paper, we
describe the methods and technologies for ‘Conversational Search’ as an
innovative solution to facilitate easier information access and reduce the
information overload for users. Conversational Search is an interactive
and collaborative information finding interaction. The participants in
this interaction engage in social conversations aided with an intelligent
information agent (Cobot) that provides contextually relevant search
recommendations. The collaborative and conversational search activity
helps users make faster and more informed search and discovery. It also
helps the agent learn about conversations with interactions and social
feedback to make better recommendations. Conversational search lever-
agesthe social discovery process by integrating web information retrieval
along with the social interactions.

1 Introduction

Socially enabled online information search (social search) is a new phenomenon
facilitated by recent Web technologies. This collaborative social search involves
finding specific people in your network who have the knowledge you’re look-
ing for or finding relevant information based on one’s social network. Social
psychologists have experimentally validated that the act of social discussions
have facilitated cognitive performance[1]. People in social groups can provide
solutions (answers to questions)[2], pointers to databases or other people (meta-
knowledge)[2][3] , validation and legitimation of ideas[2][4], can serve as mem-
ory aids[5] and help with problem reformulation[2]. Guided participation[6] is a
process in which people co-construct knowledge in concert with peers in their
community[7]. Information seeking is mostly a solitary activity on the web today.
Some recent work on collaborative search reports several interesting findings and
the potential of this technology for better information access. [8] [9] [10] [11]

We are building a system called Cobot 1 to address these challenges. Cobot
introduces a conversational environment that provides social search through con-
versations integrated with intelligent semantic meta-search from the web. Users
1 We use the term Cobot for Cobot system as well as Cobot agent interchangeably
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want to simplify their experience when performing an information finding task.
Conversational Search is about letting users collaboratively search and find in
natural language, leaving the task of user intent comprehension on the system.
The participating agent interacts with users proving recommendations that the
users can accept, reject, like, dislike or suggest.

Figure 1 captures the online search space divided into web search and social
search on one axis and aggregated, personalized and semantic search on the
other axis. Cobot falls in the space of Social and Semantic Search space. It is
social because it uses the user’s social graph to find socially relevant results.
It is semantic because it understands the queries (to some extent), concepts,
relationships and indexes terms by their enclosing semantic types.

Fig. 1. Web Search Space

2 The Problem

The need to make the world wide web information universally accessible has ac-
celerated research and development in Information Retrieval (IR) systems. Most
web search systems are based on general Information Retrieval (IR) principles.
Many of these IR systems are general purpose search systems that index mil-
lions, if not billions of pages and use state of the art advanced statistical modeling
techniques to make them findable using keyword based matching. Google, for
example, models webpages using link cardinality on the hypertext web graph to
calculate the relative importance of webpages. They use several other parameters
like proximity, anchor text and cardinality to build their full text search index.
One of the design goals of the initial Google system was to handle the common
case of queries well, topical information and under-specified queries. Even today,
these popular search engines are not able to find precise, specific and non topical
information efficiently.

Conversational Search differs from traditional search paradigms in some ways.
The focus is user centric collaborative information access from the web; it is not
acceptable to return hundreds of results matching a few keywords even if two
or three of the top ten are relevant. Unlike traditional information retrieval, the
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problem requires synthesis of information and interaction, the system along with
the users of the system must analyze the results collectively to create an effective
solution.

3 Proposed Solution

3.1 Conversational Search

Conversational Search(CS) is an interactive and collaborative information find-
ing interaction. The participants engage in a conversation and perform a social
search activity that is aided by an intelligent agent. The collaborative search ac-
tivity helps the agent learn about conversations with interactions and feedback
from participants.

It uses the power of semantics with natural language understanding to pro-
vide the users with faster and relevant search results without being overwhelmed
by information. It moves search from being a solitary activity to being more
participatory activity for the user. The search agent performs multiple tasks
of finding relevant information and connecting the users together; participants
provide feedback to the agent during the conversations that allows the agent to
perform better.

CS is different from Information Retrieval (IR) [12] or Question Answering
(QA) [13]. The focus of IR systems is on retrieving relevant documents from a
large document collection in response to a query. If the user’s information need is
complex, browsing through retrieved results to find solutions to problem queries
is time consuming and inefficient. Moreover, IR generally does not deal with the
process of understanding the meaning of queries when posed in natural language
e.g. in the form of a question or paraphrases.

In Question Answering (QA), researchers are developing different algorithms
and techniques to obtain effective responses for specic information requests. The
solution is generally present in a paragraph, sentence, or phrase. These snippets
of information contain possible answers to the posed questions. While QA deals
with understanding the meaning of natural language queries, it does not involve
a back and forth interaction to continuously adapt the results and find out more
and explore in continuum about some information or questions.

CS involves a continuous exchange of information between the sender and
recipients; allowing for mutual learning and benefit. Fusion of IR and QA can be
imagined to be a part of the CS approach. It is an intelligent problem solving AI
technique applied to address the problem of search differently. There are several
hard problems and challenges involved in CS besides the inherent problems in
IR and QA. Some of the additional problems in CS are as follows:

– How to model CS as a collaborative information finding activity? The process
of modeling an artifact involves giving it structure and organization for rep-
resenting its intension and extension. The challenge lies in modeling it such
that it can lend itself naturally for carrying out tasks for which it needs to
be modeled. CS brings relevant information and people to the participants.
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These recommendations are generated in progression with users’ social in-
teractions. Taking these functionalities into account, modeling CS involves
creating dynamic data structures that are socially aware of the participants
of the conversation and its content.

– How do we use the model as a basis for providing recommendations? The
socio-semantic models of conversations along with the user models, case in-
dex of conversations and the semantically searchable document index act as
different levels of memory structures for the system. Users’ interactions and
social feedback are registered in the system to bring in suitable recommen-
dations and also improve contextual relevance of the data being generated.

– How do we dynamically connect cohorts based on the conversations? The
system is aware of the users’ social network along with the users who are
online in the system. The user models consist of an aggregate of user’s knowl-
edge as a result of his past interactions. We dynamically connect cohorts by
overlaying the user models with the social network taking into account the
users that are online in the system.

– How does the agent find relevant information to insert in the conversation
besides providing relevant recommendations? Besides providing the recom-
mendations for the conversations, the agent’s goal is to insert possible an-
swers to questions directly into the conversation. The “Text Analysis and
Processing Engine(TAPE)” analyzes the conversation and the recommenda-
tions to identify possible answers for the natural language questions.

The approach we have taken to address CS problems is by developing dy-
namic data structures that model it. We call this structure the “Socio-Semantic
Conversation Net” - these conversation nets maintain in memory models of the
conversation, participants, participants’ immediate social connections, concepts,
relationships and information flow.

3.2 Socio-Semantic Conversation Model

“The core problem that context-sensitive asynchronous memory addresses is how
to get the information an agent needs when it doesnt know how to ask the right
question and doesnt have the time to exhaustively search all information avail-
able to it. The key to this solution is to interleave remembering with thinking
and doing, thus making the context of thought and action available to guide re-
membering.”[14]

The Socio-Semantic Conversation Model that we are developing is a dynamic
memory data structure based on principles of experience based agent architec-
ture. [15] It supports interleaved retrieval of information by applying different
memory retrieval algorithms such as PageRank or Spreading Activation. The
model maintains the user’s social graph, the conversation graph with the ex-
tracted semantic net for the conversation.

Some essential properties of the model are as follows:

– The model should be socially aware of the participant and his social net-
work’s availability (to aid with Cohort Matching)
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– The model should provide bi-directional recommendation and feedback.
– The model should understand domain terminology and be able to find se-

mantic relationships amongst concepts extracted from conversations.
– The model should be aware of user’s basic profile (such as interests) for the

agent to be able to use that information if needed.

The Socio-Semantic Model aims to provide storage and memory based re-
trieval for dynamic representation, update and reuse of users’ knowledge and
experiences. Figure 2 depicts the user-centric domain information modeling ap-
proach to jointly model the information context from users’ perspective.

Fig. 2. User-centric Domain Information Modeling

4 Cobot System Prototype Design

Cobot is an intelligent agent platform that connects users through real-time and
offline conversations. Cobot lives in a community, has a limited understanding
of domains through ontologies and brings relevant information to the users by
participating in the conversations. Cobot’s ’conversation engine’ monitors user
conversations with other users in the community and provides/receives recom-
mendations (links and snippets) based on the conversation to the participants.
Cobot’s community engine’ models conversations to capture user-user and user-
information interactions.

The following design goals are being adhered while developing the Cobot
system.

1. Near real time conversational agent
2. Personalized recommendations
3. Agent learns with interaction
4. Uses a structured internal organization of content
5. Connects conversations to people.
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Figure 3 depicts the high level architecture of the Cobot system. The Conver-
sational Agent uses different modules for conversation analysis (TAPE), search
and recommendation and maintains a short-term conversation memory for each
conversation. The socio-semantic index is analogous to the agent’s long term
memory model where it stores all processed information about users, conversa-
tions, activities and content descriptors.

Fig. 3. System Architecture

Figure 4 shows one screenshot of the initial system prototype. This prototype
is fine tuned for health related searches by incorporating medical ontologies in
order to better understand the conversations. Users actively engage in conver-
sations by multi-user chat, rating or adding recommendations. The agent mon-
itors the environment to build user interaction models and to improve search
relevance.

5 Key Research Challenges for Conversational Search

Search results are not tailored to the users goals or information need, or to
his/her specific situation. Cobot system is agent based and agent assisted. We
browse, find and soon forget what we have found. The agent based system builds
and maintains user models and finds relevant information from the web or his
past interactions, network and experiences.
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Fig. 4. Prototype Interface

5.1 Precise Search

Identifying relevant documents for a particular user’s need without extensive
search, in conversational manner is the key objective for precise search. The
right search queries need to be figured out with situation assessment from the
conversational snippets. It is not desirable to return dozens or hundreds of re-
motely relevant results, even if some of them will be highly relevant. The aim is
to retrieve successive recommendations that try to address the search problem
precisely.

5.2 Knowledge Representation and Synthesis

Any form of knowledge that needs to be captured has to be expressed in some
representation medium. This representation of knowledge is one of the funda-
mental intelligence design problems that has been extensively studied in Articial
Intelligence research. Textual search based systems work on natural language.
Natural language, unlike math or logic, does not intrinsically lend itself to com-
putational reasoning. In order to intelligently reason from text, it needs to be
abstracted in a form that becomes amenable to communicating that meaning to
any user. Combining the document models with the user models in an integrated
representation will lead to development of systems that intrinsically lend their
model to user centric personalization efforts. We are developing a graph based
representation of our information model that includes data entities as well as
user based entities.
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5.3 Socio-Semantic Conversation Modeling

Language and interaction creates usable memories, useful for making decisions
about what to do, what to retain, or how to plan future moves. Data Modeling
is the process of providing some organization and structure to data. Knowledge
bases and databases are built by adhering to some data model and populating
the model with occurrences of data. We build socio-semantic nets as discussed
earlier to model the social behavior of people on the system across the semantic
data nets.

Fig. 5. The Socio-Information Cycle

Figure 5 tries to depict the relationships between the user, information and
the communities. Communities are made up of users who are grouped by differ-
ent information needs into dynamic cohorts. These online communities, through
effective sharing and collaboration, increase the utility of systems and help solve
individual problems more effectively.

5.4 Case based Reasoning for Longitudinal Search

Case-based reasoning is an artificial intelligence approach, in which past cases
are used to solve new problems [16] [17]. The key lies not in running a smarter
search engine against a set of documents, but in understanding which documents
contain appropriate answers to users’ different kinds of queries using his past
experiences. While driven by information retrieval techniques, there is a learning
component that goes beyond simply matching queries against documents to
matching queries against past episodes. Cases are stored in a case library and
represent the systems experience or historical record of previous queries and
responses.

Conversational Search uses the familiar CBR cycle (retrieve, select, apply,
learn) but with the following differences:

– there is a separate acquisition and representation phase which builds the
knowledgebase by acquiring information from the web
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– these is a social retrieval component that finds people based on their re-
lated past conversations; it also retrieves information from the user’s social
network based on conversations

– retrieve and select require text analytics (in our case, NLP, search), since
the knowledgebases and cases are unstructured text instead of traditional
AI representations

– the apply phase merges the social and web based recommendations to create
a new case for the problem

– learn requires human-in-the-loop relevance feedback and requires storing new
cases in the case library

Instead of matching queries against keywords in documents, the system devel-
ops a case library of past problem-solving sessions containing previous queries
the system has seen and corresponding solutions the system has proposed. More
specifically, this approach builds on the following research issues, as can be as-
sociated with a CBR system:

– Knowledge Representation: What information does a case contain apart
from the given knowledgebase representation? How is this information rep-
resented?
Information is modeled by capturing user-user and user-data interactions for
every user so that the system can reason with their experiences. A particular
case is associated with the problem as posed by the user and the solution
which in turn keeps a record of the suggested and finally chosen solution(s).

– Indexing and Retrieval: How are cases organized to enable relevant cases to
be found later? How are cases retrieved in response to a users query? How
is the relevance of a case determined?
Relevance of a case is dependent on the user model in the system along with
the experience (feedback) associated with it.

– Learning: How are new cases learned? How are indexes and cases updated
through experience?
For every case that is finally created, there is social feedback associated with
it. The system uses such implicit and explicit feedback to learn and update
associated user models and also to gauge relevance of cases.

6 Discussion

This paper proposes a collaborative system for conversational search. We are
hypothesizing that such a Conversational Search system is more usable for in-
formation access as compared to a solitary web search experience. We briefly
describe the challenges involved in construction of a Socio-Semantic Conversa-
tion Model for Conversational Search. Socio-Semantic Conversation Modeling
using Experience-based Agency is a unified approach for solving Conversational
Search problem. This approach leverages the individual Social and Semantic
Approaches efficiently. The dynamic and self configuring memory structures and
the semantic net details enable memory retrieval from the storage. Automatic
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Cohort Matching based on Conversations describes a methodology to dynami-
cally pull users for conversations. Unlike users themselves having to find relevant
conversations, the conversations find the users using this approach.
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Abstract. With the rise of user-generated content (blogs, wikis, ratings, reviews,
opinions etc.) the web is evolving from a repository of content into a repository
of experiences, and as it evolves there are many opportunities to harness these
experiences. In this paper we consider some of the challenges associated with
harnessing online experiences by adopting a case-based reasoning perspective,
and highlighting how existing case-based approaches might be adapted to take
advantage of this new world of the experience web. To make this discussion more
concrete we will draw on examples from one recent case-based attempt to harness
the experiences of communities of users in the area of web search.

1 Introduction

The Social Web [9] reflects an important change in the nature of the web and its content.
Since 1999, the rapid growth of blogs, as a simple way for users to express their views
and opinions, ushered in this new era of user-generated content (UGC) as many sites
quickly began to offer a whole host of UGC alternatives including the ability to leave
comments, write reviews, as well as the ability to rate or vote on the comments/opinions
of others. The result has been an increased emphasis on people rather than content and,
in combination with social networking services, this has precipitated the growth of the
social web as a platform for communication and collaboration. What has all of this got
to do with experiences? The essential point is that the combination of traditional web
content (the digital artifacts that are the fundamental units of conventional web content)
with the opinions, views, and ratings of users, is the very stuff of experiences [10]; see
Fig. 1. More generally, the combination of a digital artifact plus its usage information is
an experience repository. Usage information encompasses not only the explicit forms of
user-generated content mentioned above but also the implicit usage information, such as
the navigation trails and/or search queries that led to a particular digital artifact, usage
information that is recorded within server logs. Echoing the views of [10], the web is
the ultimate decision-support tool and there is a significant opportunity to harness these
? This work is supported by Science Foundation Ireland under grant 07/CE/I1147, the French

National Center for Scientific Research (CNRS), and HeyStaks Technologies Ltd.
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many and varied types of experiential knowledge in order to help people make the right
decisions using the right information at the right time.
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Fig. 1. The Evolution of the Experience Web.

The ability to harness and reuse these online experiences has tremendous potential
and the purpose of this paper is to explore how we might go about meeting this chal-
lenge, and to what end. Our starting point is the research of the case-based reasoning
(CBR) community, where more than 20 years of research effort has been devoted to
exploring different aspects of reasoning from experiences [1, 5, 17]. Our aim is to iden-
tify challenges and pose questions rather than to propose answers through fully worked
solutions. Specifically we wish to consider the type of tools and techniques that need to
be developed in order to support (personal) experience reuse as a basic web service, in
much the same way as web search is a basic service today. In particular we will focus
on 3 core challenges as follows:

1. Capturing Personal Experiences. How might we capture, organise, and share the
online experiences of web users? How can current tools and applications be aug-
mented to accommodate experience capture and reuse, leading to the creation of
shared personal case bases.

2. Coping with Noise. Personal experience creation is a departure from traditional ap-
proach to expert-led CBR (in which cases are created by domain experts or as a
direct result of expert problem solving). Capturing the ad-hoc experience of indi-
viduals introduces a significant quality risk. Not only are our opinions and views
subject to change, but the way they are collected on the web may not always reflect
our own perception, introducing a considerable amount of noise. How might an
experience reuse system cope with repositories of experiences that are extremely
noisy?

3. Reuse in Context. How can we leverage the right experience at the right time
and in the right context, bearing in mind that relevant experiences may be dis-
tributed across multiple cases or even case bases? In particular, understanding the
provenance of a case and the reputation of the case creator — while dealing with
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the attendant privacy issues — will play a significant role in the development of
experience-based interfaces that will integrate experience reuse into our everyday
tasks.

In what follows we will make our discussion concrete by drawing on a particular
implementation of one attempt to harness the experience web in the area of web search.
HeyStaks is a search utility that is designed to work with mainstream search engines
by allowing users to organise, share and reuse their particular search experiences; see
www.heystaks.com for a live beta. It comes in the form of a browser toolbar and back-
end server to provide users with an experience-based web search support system that
is fully integrated with Google. While it will not be possible to describe the technical
details behind HeyStaks the interested reader is referred to [13] for further information.

2 Challenge 1 - Capturing Personal Experiences

Experience-like information is now commonplace on the web, as many sites and ser-
vices attempt to supplement their core content with the opinions, ratings, and comments
of users. The challenge for end-users is that these experiences are often ad-hoc and usu-
ally fragmented. As a user my opinions and reviews are thinly spread across many
different sites and the trusted opinions of my social network are all but invisible to me.
How might we support individual users when it comes to the creation and sharing of
their personal experiences? As a user, I want to be able to keep track of my experi-
ences and the relevant experiences of my trusted friends and colleagues. I want to be
reminded of similar experiences as I interact with services online; if I am booking con-
ference accommodation (through the conference web site) I would like to be reminded
if I have stayed at a particular hotel before, or if one of my colleagues has stayed there,
especially if the experience was good or bad.

To meet this challenge there is the need for common representational formats as
a way to represent digital artifacts; this has been a long-time goal of semantic web
initiatives [2]. In addition, experience creation, organisation and sharing needs to be
built into the very fabric of the web, and the tools that we use to interact with web
services. In short, there is a need for experience creation and management tools that are
as much part of the web experience as the browser and search engine are today. This is in
contrast to the work of the case-based reasoning community which, to date, has focused
on the the provision of dedicated CBR tools. These tools are mainly designed to be used
by domain experts, allowing for the creation of standalone CBR systems and case bases.
If we are to incorporate experience reuse into our online-lives then a different sort of
approach is needed, one that sees experience management fully integrated into the many
and varied tools and services that we naturally use, from search engines and portals to
e-commerce services to online word processors etc. [8].

HeyStaks addresses these challenges in the domain of web search by allowing users
to create repositories for search experiences related to a particular topic or task. Each
repository is called a search stak and is effectively a case base of search cases. Each case
corresponds to a single result page that has been ’selected’ for this stak during a user’s
searches. Each case is anonymously associated with a number of implicit and explicit
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interest indicators, including: the total number of times the result has been selected
during a search, the query terms that led to its selection, the snippet terms associated
with the result when it was selected, the total number of times a result has been tagged
and the terms used to tag it, the total votes it has received, and the number of people
with whom it has been shared. In addition each term (query, tag, snippet) is linked to
a hit-count that reflects the number of times that this term has been associated with the
page in question.

For example, Fig. 2-left shows how a user can use the HeyStaks toolbar to create a
search stak to capture their searches related to the experience web. Then, as they search
they can select a suitable stak prior to, or during a search, as a way to ensure that the
current search experience is stored within the appropriate stak; see Fig. 2-right.

Fig. 2. Creating a new search stak (left) and selecting a search stak prior to search (right).

In this way users can create and share different repositories of search experiences.
As they browse and search, these repositories are enriched with additional searches. For
example, while browsing users can use the HeyStaks toolbar to vote on any particular
page, or they can tag a page or share it with a friend. As they vote, tag, and share this
information (tag terms, votes) is associated with the page in question in the current
stak. In turn, as users search, their result click-thrus are taken as implicit indicators of
interest so that click-thru frequency information is also associated with a given result
for a given query in the current stak. Moreover, the HeyStaks toolbar augments conven-
tional search result-lists to provide access to tagging, voting, and sharing actions at the
level of individual results: as the user mouses-over individual results popup HeyStaks
icons provide access to voting, tagging, and sharing features as shown. HeyStaks also
promotes a number of results, which we will discuss in more detail in section 4.

The power of staks as search experience repositories comes to be fully felt when
they are shared with others. This facilitates the aggregation of search experiences across
groups of friends and colleagues. In the case of our Experience Web search stak, by
sharing it with a group of interested searchers this stak will be added to their own
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toolbar, and will therefore quickly grow to accumulate a significant store of related
search experiences as the basis for targeted promotions during future searches by stak
members. In this way, stak members will benefit from results found by other members
for similar queries in the past. In a recent beta deployment across 95 users, over a 3
month period, we found stak sharing to be commonplace. The average user created 3.2
search staks and joined a further 1.4 staks and 70% of users shared staks with at least
some other users; see [13] for further information.

3 Challenge 2 - Coping with Noise

In the previous section we argued for experience management and creation tools as a
necessary feature of future web infrastructure, and we described HeyStaks as a point
example of how this has been achieved in the context of web search. Providing for the
capture of online experiences will ensure that our experience repositories grow quickly
to reach some critical mass, especially if these experiences are created based on im-
plicit as well as explicit actions and activities. For example, in the case of HeyStaks,
every search by a user that results in at least one result click-thru is translated into an
experience (search case). The problem now becomes one of quantity versus quality and,
specifically, the extent to which these experiences will serve as a reliable basis for future
actions and decision making.

For example it will not always be possible to infer the right context for a given
experience so the resulting experience may be misrepresented or misclassified. This is a
problem in HeyStaks, exacerbated by the need for users to select the current search stak
at search time. If the user does not select the correct stak then their new search will be
stored in whatever stak happens to be active at search time. This is in part addressed by
using recommendation techniques to automatically select an appropriate stak (from the
user’s stak list) based on their current search query. Reliable recommendations cannot
always be made, however, especially if there are few experiences in the user’s staks as
the basis for query matching, and so searches continue to be misclassified by HeyStaks.

Thus, a key challenge when it comes to personal experience capture and manage-
ment concerns the ability to deal with potentially significant levels of noise. For a num-
ber of years the case-based reasoning community have looked a variety of techniques
for editing experiences, under the heading of case-base maintenance; see for example
the work of [4, 6, 7, 16]. However, existing techniques are usually designed to manage
case bases with relatively low amounts of noise and work best with cases where there
is an objective measure of when a case can be used to correctly solve some target prob-
lem. These assumptions are less likely to hold in the experience web. For example, in
HeyStaks we currently find a significant number of search experiences to be stored in
an incorrect stak, largely due to failings in the stak recommendation feature mentioned
above, and because many users “forget” to select an appropriate stak at search time.

One technique for coping with high-levels of experience noise is to identify what
we call the experience kernel, a notion related to the notion of a competence footprint
in the work of [14, 15]. In the case of HeyStaks this is a subset of pages (cases) that are
assumed to be relevant to that stak. Experience kernels can be computed using a variety
of techniques. Because of the extent of noise within search staks we have explored a
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number of different approaches based on the clustering of cases into meaningful groups
of related experiences. For the purpose of this paper we will briefly review the simplest
term-based clustering approach here. Two query terms used in a stak are considered
related if at least n pages contain both of these terms3. Briefly, we use a complete
linkage clustering algorithm [12] to build clusters of related terms according to this
measure. Then, we remove all clusters containing less than s terms. The kernel of the
stak is composed of all the pages in that stak that were retrieved with at least one term
from the remaining (i.e. large enough) clusters.

An interesting feature of this method is that, although it retains a small number of
terms (at most 15% for some staks, and 5% globally), it keeps a reasonably high number
of pages in the kernel. For example, the histogram in Fig. 3 shows the relative number
of pages contained in a subset of staks, including the size of each stak’s kernel. The
relative size of the kernels gives a clear indication of the amount of (potential) noise
that is contained within staks with some staks being dominated by potential noise while
others enjoy much larger kernels.
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Fig. 3. Number of kernel and non-kernel pages (histogram) and accuracy of the classifiers, for
each test stak (lines).

The ability to identify reliable experience kernels leads to a number of ways to
improve the manner in which experiences are captured and organised. For example, we
can construct a classifier from the experience kernels and use this classifier to predict
the right stak for a given search experience. In this scenario each instance corresponds
to a page from the relevant stak kernel with the stak id used as the class. For instance,
from the staks described in Fig. 3 we constructed a C4.5 [11] decision tree and a naive
bayesian classifier, trained with the kernel pages, to use as test classifiers. A standard
10-fold cross validation evaluation delivers stak-by-stak classification results shown as
line-plots in Fig. 3; the average accuracy is 89% for the decision tree and 83% for the
naive bayesian classifier.

3 More precisely, n is weighted by how many times each term was used to retrieve each page.
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The predictive power of both classifiers is generally good. Both mostly agree on the
“difficulty” of certain staks. This suggests that the kernel building technique is capable
of identifying collections of core pages that are at least reasonably predictable within
a stak, and lends confidence to the prospect of using the classification approach as a
way to associate non-kernel pages with their “correct” staks as part of a maintenance
process.

These preliminary results merely scratch the surface of some of the maintenance
challenges associated with the experience web. They serve to highlight the potential for
high degrees of noise in personal experience repositories where the inadvertent actions
of the user can lead to experiences being misclassified. They also point in the direction
of a potential solution since if experience kernels can be reliably identified then they
can also be used to guide experience maintenance. In the future it may be interesting to
quantify how mature or consensual an experience repository (stak) has become, or on
the contrary to detect when it is subjected to an abrupt change. This kind of information
could provide additional context when using these experiences for recommendation.

4 Challenge 3 - Reuse in Context

In this section we consider some of the reuse challenges that must be addressed when
it comes to actually putting stored experiences to good use. Once again there is an
integration challenge, related to how relevant experiences might be incorporated into a
particular application interface. In addition, there is the obvious challenge of experience
selection (and ranking) as the right experiences need to be chosen at the right time and
in the right context. Moreover, we note that when experiences are created and shared
within communities of users, experience reuse creates a new form of collaboration net-
work between community members.

Search experiences can be reused as a way to recommend actual result-pages during
web search, and this is the approach adopted by HeyStaks: individual pages that have
been frequently selected, tagged or voted on, for similar queries are highlighted, pro-
moted, or inserted directly into the Google result-list by the HeyStaks toolbar. Briefly,
to generate these promotion candidates, HeyStaks uses the current query as a probe
into each stak, to identify a set of relevant cases. Each candidate case is scored using a
similar technique to that described by [3] by using a TFIDF (term frequency • inverse
document frequency) function as the basis for an initial recommendation ranking; this
approach prefers cases that match terms in the query which have occurred frequently
in the case, but infrequently across the case base as a whole; see also [13] for a more
detailed analysis of HeyStaks’ promotion mechanism.

In addition, however, HeyStaks is designed to explore another form of reuse, at the
level of the case base, rather than the individual case. In this context, for a given target
query, and in addition to the results that may be promoted from the currently active stak,
HeyStaks will also consider experiences that are stored in other staks that the user is a
member of, with a view to identifying relevant experiences in these alternative contexts.
Consequently, HeyStaks can also recommend to the user a list of alternative staks as a
source of further recommendations. Indeed, HeyStaks can also recommend public staks
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from the wide HeyStaks community — staks that the user has not yet joined — if they
also contain similar experiences to the current search context.

Many of the recommendations that are made to the current user may come from
their own personal search histories but many also come from the search histories of
other users who also participate in their shared staks. This type of collaboration is com-
monplace within HeyStaks as the results of a recent beta deployment demonstrate. For
example, a net producer is defined as a user who has helped more other users than
they themselves have been helped by; in other words they have contributed more search
experiences, which have been reused by others, than they themselves have reused. Con-
versely, a net consumer is defined as a user who has been helped by more users than they
themselves have helped; in other words they tend to benefit a lot from the experiences
of others but don’t contribute many new experiences of their own for others to benefit
from. For example, [13] highlights how 47% of HeyStaks users are net producers (that
is, almost half the users are helping others, by their search experiences, more often than
they themselves are helped in return) and, when we look at the promotions that users
actually select during their searches we find that, on average, 33% of these are so-called
peer promotions, promotions that are directly derived from the experiences of others,
where as 66% are so-called self promotions, promotions that come from the searcher’s
own personal experiences. In this way, experience reuse in HeyStaks pervades conven-
tional web search as results and staks (case bases) are suggested, on the fly, to searchers.

5 Conclusions

The web provides a rich source of explicit and implicit experiences but, by and large,
these experiences are either diluted across a great many different sites and services, or
never captured in the first place. From a case-based reasoning perspective we know how
to represent and reuse experiences and so there is considerable opportunity for the CBR
community to turn its attention to the web as a new source of experiential knowledge
that is just waiting to be harnessed. In this paper we have taken the first tentative steps
in this regard, in an attempt to explore this type of experience reuse, and the challenges
that it presents.

Our vision is one that reflects a bottom-up approach to experience reuse. We have
argued the need for experience capture and reuse facilities to be integrated into our
online tools and services, so that individual users can benefit from their own past expe-
riences to begin with. We have also argued the need for experiences to be shared among
groups of related users and interested parties, so that people can benefit from aggre-
gate community experiences. We have also highlighted issues of reliability and noise
when it comes to personal experience capture and argued the need for new techniques
to cope with high degrees of experience noise that would be considered to be unusual
in a conventional expert-created case base.

Throughout the paper we have attempted to provide concrete examples with ref-
erence to one particular online experience reuse system that has been deployed in the
domain of Web search. As such, the HeyStaks system illustrates many of the points that
have been made. It integrates experience capture and reuse as part of the traditional web
search interface and allows for the creation and sharing of personal search experiences.
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These experiences are inherently noisy and we have described one approach to coping
with this noise by identifying experience kernels within a case base. Finally we have
demonstrated how current HeyStaks users are benefiting from their own search expe-
riences and those of others, leading to an effective form of search collaboration as a
side-effect of experience reuse and sharing.
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Pádraig Cunningham, University College Dublin, Ireland
Belén Dı́az-Agudo, Complutense University of Madrid, Spain
Babak Esfandiari, Carleton University, Canada
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Preface

The motivation for this workshop was to encourage the exchange of infor-
mation and ideas about CBR as it is embedded within and provides support for
computer gaming environments. Computer games are receiving increasing atten-
tion as a means for testing CBR concepts and to extend current CBR paradigms
(e.g. real-time issues, uncertainty, online learning). The goals of this workshop
have been to:

1. Provide a medium of exchange for information on games-related CBR re-
search.

2. Provide an opportunity for participants to demonstrate some game-related
CBR prototypes and hence to illustrate some of the challenges and issues
faced by CBR researchers.

Seven papers were accepted for this workshop. Various gaming environ-
ments were represented in the contributions including real-time strategy games,
RoboCup game, football simulation, and Texas Holdem poker. And technical
contributions addressed themes such as real-time control strategies, character
decision making, opponent modeling and behavior authoring.

Floyd and Esfandiari present a learning-by-demonstration problem in the
RoboCup simulation environment and present an evaluation that shows that
an example-based classifier outperforms a decision tree, and SVM and a Naive
Bayes classifier on the problem.

Laviers et al. describe a CBR and SVM-based approach to recognizing ad-
versary plans in the context of the Rush 2008 game, a football simulator. They
exploit the spatio-temporal structure of the team behaviors and make use of
support vector machines as a technique to classify and recognize the opponent’s
defensive play.

Mehta et al. propose a case-based planning approach to guide a gaming sys-
tem to learn behavior sets from its interactions with a human user. By learning
from demonstration, the authors aim to ease the process of defining game char-
acters and to reduce the amount of coding necessary to program their behavior.

Rubin and Watson submitted two contributions to this workshop. In their
first paper, they give an overview of a case-based poker-playing agent with a sim-
ilarity metric that is comprised of the betting sequence, the quality of the hand
as well as the quality of the community cards. In their second paper they tackle
the problem of general game playing and propose to address this through anal-
ogy and lazy learning techniques. The paper explores various types of memories
and their potential use for this problem as well as lazy learning techniques.

The paper by Sanchez-Ruiz et al. proposes the use of abstract cases auto-
matically generated through planning to assist game designers when building
Behaviour trees, an expressive mechanism that let designers author complex
behaviours along the lines of the story they want to tell without requiring pro-
gramming knowledge.
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Szczepanski and Aamodt propose a CBR approach to control, at a micro-
management level, the actions of individual units of a real-time strategy game
(Warcraft 3). They propose various strategies for case matching and action adap-
tation. They also report on experiments conducted on different testing configu-
rations and compare their approach to scripted computer opponents.

We wish to thank all who contributed to the success of this workshop, es-
pecially the authors, the Program Committee, and Sarah Jane Delany, the IC-
CBR09 Workshop Coordinator.

Luc Lamontagne July 2009
Pedro González Calero
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Abstract. In learning by demonstration systems, learning is performed
by an agent observing how an expert behaves in response to a given in-
put. The learning task is more difficult when the agent is situated in a
dynamically-changing environment, especially when only a partial view
is available at any time. In this paper we propose a comparison of differ-
ent learning by demonstration techniques, namely case-based reasoning,
decision trees, support vector machines and naive bayes classifiers, in the
dynamic environment constituted by the RoboCup robotic soccer simula-
tion. An initial look at the results indicate that our case-based reasoning
algorithm behaves well across all experiments and outperforms the other
classifiers. Case-based reasoning even outperforms a decision tree classi-
fier when learning from an expert whose internal reasoning is represented
as a decision tree.

1 Introduction

Case-based reasoning has been successfully applied to a variety of gaming ap-
plications [1–5] and, more recently, has been used to learn to play a game by
watching an expert play. In these learning by demonstration systems, cases are
generated by observing how an expert behaves in response to the current state of
the game and then behaving similarly when presented with similar game states.
Using case-based reasoning for learning by demonstration has been used in a va-
riety of games including robotic soccer [6, 7], real-time strategy [8–10] and Tetris
[11].

In some games, like chess or Tetris, the game playing agent will have a com-
plete world view at all times and will be fully aware of the state of the environ-
ment. However, in many real-world domains the agent will only have a partial
world view. This is common when the agent is able to move around a large,
dynamic environment. If the agent is only able to view a portion of the environ-
ment at a given time, it will never be fully aware of the state of the environment
at all times.

This partial world view can pose a challenge since the environmental stimuli
may not be consistent over time. For example, as the agent moves around the
environment objects may move in and out of its field of vision. Also, there is
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no guarantee that any specific object will be visible to the agent at a particular
moment in time. In fact, the agent may never know how many objects of any
kind are present in total in the environment. One approach that has been used
to overcome this is to have other agents provide information about unseen areas
of the environment [3] although this requires multiple cooperating agents that
are adequately distributed over the environment.

This difficulty in dealing with data from a partial world view is not limited to
case-based reasoning, but exists in most learning by demonstration work. Typical
approaches to deal with a partial world view include only using omnipresent
objects as inputs [12], ignoring external stimuli [13], or only reasoning using
commonly visible objects [14, 15]. Finding a reasoning technique that does not
require such limitations or restrictions would be a preferable solution as it would
allow for learning by demonstration even if the agent only had a partial world
view.

The goal of this paper will to be compare case-based reasoning to several
other classifiers to determine which is most applicable to a learning by demon-
stration system that receives the sensory information of an agent with a partial
world view as inputs. In Section 2 we describe the raw data available when ob-
serving an expert perform a task and Section 3 presents a method to transform
the raw data so it can be used by common classifiers. Section 4 provides the ex-
perimental results and, finally, Section 5 discusses the conclusions we can draw
from those experiments.

2 Sensory Stimuli

When a software agent or a robot is situated in a large, dynamic environment
it will likely have a partial, and always changing, world view. For example, the
field of vision of a soccer player is shown at three points in time in Figure 1. At
different points in time, as shown in Table 1, the player observes different objects.
Additionally, the player may not have the ability to uniquely identify objects. For
the soccer player, this would mean it would be unable to differentiate between
the various players or know if it is observing the same ball at the different points
in time.

Each sensory stimulus, S, of an agent can then be modelled as a collection of
multi-valued attributes, Vi. If the agent is able to differentiate between n types
of objects, there will be n multi-valued attributes. Going back to the soccer
example, there would be two types of objects: balls and players.

S = {V1, . . . , Vn} (1)

The multi-valued attribute for each type of object contains the objects, of
that type, that are currently visible to the agent. Each of these multi-valued
attributes is an unordered set, with the size of that set being variable. This
variability in set size can cause different types of objects to have different sized
sets but can also cause the same object type to have differently sized sets at
different points in time if objects move in or out of the agent’s field of vision.
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Fig. 1. A graphical representation of a soccer player’s field of vision at three different
points in time.

Field of Vision Balls Players

(a) B1 P1, P2

(b) P3, P4, P5

(c) B2 P6, P7

Table 1. The attributes of each field of vision.

3 Data Transformation

Most classification algorithms expect each feature to be single-valued. We there-
fore need to break down our multi-valued features into sets of single-valued ones,
while ensuring a systematic way for each value of a stimulus to be mapped to
an appropriate feature. This can be defined as a problem of matching the vis-
ible objects in a stimulus, S = {o1, . . . , om}, to a set of single-valued features,
F = {f1, . . . , fn} (where m ≤ n).

If, in the soccer example, there were always exactly one ball and one player
visible in every stimulus then a feature vector could be constructed that con-
tained two objects. The first object in the feature vector, representing the ball,
could always be compared to the first object in other feature vectors. However, if
there were multiple instances of each type of object then a correspondence prob-
lem arises. If a pair of stimuli each contain two player objects, it then becomes
necessary to determine how those objects will be matched when comparing the
stimuli. For example, we would need to determine if the first player in the first
stimulus would be compared to the first player or the second player in the second
stimulus. This correspondence problem is further complicated by the fact that

Ball Distance Direction

B1 3 0◦

B2 1 10◦

Table 2. The attributes of each ball.
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different stimuli could have different numbers of objects of a given type. When
comparing two stimuli this can result in objects that do not have a matching
object to be compared to. An example where this correspondence issue would
be a problem is in a decision tree. If a node of the tree makes a decision based
on a single object of a specific type, there is no way to know which object of
that type should be used.

There has been some work examining how data with multi-valued attributes
can be used in a top-down induction of decision trees (TDIDT) algorithm [16–
18]. In these approaches, when traversing the tree all possible valid paths are
considered. When a test input contains a multi-valued attribute, any decisions
based on that attribute are made using all of the values of the attribute so
that several paths through the tree are taken simultaneously. This results in
examining a series of paths through the tree that only involve a single value
of each attribute and then combining the results. Since these approaches only
examine a single object of each type during each traversal of the tree, they are
not applicable in applications where information from multiple values of a multi-
value attribute are needed. In the soccer example, this implies that only a single
player object would be considered during each traversal of the decision tree, so
no decisions involving multiple players would be possible.

Another possible approach would be to convert Table 1 into first normal
form. This would involve replacing the Balls and Players columns with separate
tables that contain a single row for each object. Using normalized relational
tables, inductive logic programming (ILP) [19] could be used for multi-relational
classification [20, 21]. However, similar to the TDIDT techniques described above
these, ILP approaches treat each row containing a multi-valued attribute as
multiple rows containing single-valued attributes, thereby not allowing all of the
multiple values of an attribute to be used simultaneously.

In order to make this data usable by most classifiers, we will transform the
data into a form that mirrors the biases imposed by our existing case-based
reasoning system [6, 7]. In our previous work we have used case-based reasoning
to control the behaviour of a soccer agent. The agent receives sensory input
through its field of vision, which contains the positions of the objects that are
visible to the agent. The current field of vision is then compared to a case base
where each case is composed on a field of vision and an associated action. Using
the most similar cases, the agent is then able to select an action to perform. Since
the case base is created by observing a teacher, the agent should ideally perform
the same actions as the teacher given similar sensory inputs. The case-based
reasoning system adds two primary biases:

1. Set Ordering: In order to provide an ordering on the multi-valued at-
tributes, objects are matched with similar objects when comparing two sen-
sory stimuli. If there are an unequal number of objects then some objects
may not have a match. This does not provide a fixed ordering of the objects,
since the matching can be different depending on the other sensory stimulus
that is being compared to.
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2. Extra Objects: When calculating the distance between two sensory stim-
uli, an object that does not have an appropriate matching object in the
other sensory stimulus results in a penalty value being added. This penalizes
stimuli containing a different number of objects.

We will attempt to keep similar biases in the transformed data so as to avoid
giving an advantage to any of the classifiers during the experimental comparison.
The data transformation involves the following steps:

1. Fixed Sized Feature Vector: Each sensory stimulus will be represented
as a feature vector of a fixed length. Initially, a set of training stimuli will be
examined to determine the maximum size, Mi, of each of the multi-valued
attributes. The feature vectors will then be created so that each attribute is
able to contain the maximum number of values. If there are N attributes, the
vector will be able to hold

∑N
i=1 Mi objects. Since each object is complex and

has both a distance and a direction, relative to the agent, the feature vector
will actually be twice that size (V ectorlength = 2

∑N
i=1 Mi). For example,

the first 2 × M1 values of the vector will contain data related to the 1st
multi-valued attribute.

2. Object Ordering: Objects are ordered by sorting them based on their
distance from the agent. Objects that are closer to the agent will be placed
in the feature vector before more distant objects of the same type (when
two feature vectors are compared the objects closest to the agent will be
compared to each other, second closest objects compared, etc.). This does
not allow for more precise object matching, since the ordering is performed
in advance, but is similar to the matching performed by our case-based
reasoning system since it is computationally inexpensive and can be used in
real-time.

3. Normalization: Similar to how a training set was mined to find the max-
imum size of each multi-valued attribute, it will also be mined to find the
minimum and maximum values of the object distances and directions. These
maximum and minimums will be used to normalize the distances and direc-
tions, between 0 and 1, so that all elements of the feature vector are of a
similar scale.

4. Padding: If a sensory stimulus contained fewer than the maximum number
of values for any of the multi-valued attributes, the remaining entries in
the vector will be padded with values that represent unseen objects. These
values are used to mirror the penalty values used by the case-based reasoning
system, since a visible object will have values that are dissimilar to the unseen
object values.

4 Evaluation

Our experiments will look to compare the performance of our existing case-based
reasoning system [6, 7] with three popular classification methods: J48 decision
trees, SMO support vector machines and naive bayes. For these three algorithms
the Weka [22] implementations were used.
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4.1 Experimental Setup

The data will be generated by observing simulated robotic soccer players in the
RoboCup Simulation league [23]. Two teams of players will be observed: Krislet
agents [24] and CMUnited agents [25]. Krislet agents behave in a simple manner.
They turn until they can see the soccer ball and then run toward the ball.
When they get to the ball they attempt to kick it toward their opponent’s goal.
Krislet was selected because it is a simple, reactive team that should be easily
represented as a decision tree. CMUnited is far more complex and was the former
champions of the RoboCup Simulation League. They use a layered learning
architecture and a number of strategies including formation strategies and agent
communication. CMUnited players can have multiple states of behaviour and
maintain internal models of the world, so their behaviour is likely more similar
to that of a human expert.

The agents were observed while playing games of simulated soccer. During
the games, each team was comprised of 11 players per team and the opposing
team was always made of Krislet agents. Both Krislet and CMUnited agents
were observed playing 25 complete games of soccer resulting in approximately
100000 observations being collected per team. Each classifier was trained using
5000 randomly selected observations1 and tested using 10-fold cross validation.
This testing was performed 25 times, for both the Krislet and CMUnited data,
using each classifier.

The complete set of collected observations was mined in order to determine
the maximum number of objects of each type visible during an observation and
the maximum and minimum distance and direction values to use for normal-
ization. The maximum and mean occurrences of each type of object2, in the
Krislet data, are shown in Table 3. Therefore, each stimulus for the Krislet data
will be represented by a vector of length 114 (57 object each with a distance
and direction value). The CMUnited data is similar to the Krislet data except
the maximum number of flags is slightly higher. This is because the CMUnited
agents do not use the standard sized field of vision, but instead use a wider
field of vision (but this wider field of vision also leads to noisier estimates of the
position of objects).

The feature vectors were padded with distance and direction values of -1
when fewer than the maximum number of objects, of a specific type, were visible.
This value was chosen since it will never occur in any visible objects since they
are normalized between 0 and 1.

Lastly, each of the classifiers had its performance optimized using feature
selection. Using a methodology similar to that used in previous work [7], the
most important types of objects were found for each classifier. Data from any
objects that did not positively affect the classification performance was removed.
It should be noted that, with only a few exceptions, each classifier selected
1 Approximately the number of observations collected during a single game.
2 The objects in simulated RoboCup soccer are: soccer ball, flags, boundary lines,

goal nets, teammates, opponents and unknown players (their team is unknown due
to noise).
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the same features to use and those features were consistent with our previous
studies3.

Ball Flag Line Goal Team. Opp. Unk. Total

Max 1 16 1 2 10 11 16 57
Mean 0.6 5.8 1.0 0.5 4.4 3.2 1.8 17.3

Table 3. The maximum and mean occurrences of each type of object in the Krislet
data.

4.2 Results

Our results measure the ability of each classifier to predict the action the expert
would have performed given a similar stimulus. The possible actions are kicking,
dashing and turning. Each action also has associated parameters, like the dashing
power, but we ignore those and only attempt to get the action correct. For each
classifier we measure the performance using the f-measure. The f-measure, which
is a function of the precision and recall of each action, was selected because it
is an acceptable metric to use when data is extremely imbalanced (only around
0.2% of the data is for the kick action).

Table 4 shows the average f-measure values over the 25 tests. Examining
the results from Krislet, we can see that both our case-based reasoning (CBR)
algorithm and the J48 algorithm perform best. It was expected that the J48
algorithm would work well, since the reasoning logic of Krislet can be represented
as a decision tree, but it is interesting to note that our CBR approach actually
performs slightly better (although not a statistically significant difference).

CBR J48 SMO NaiveBayes

Krislet 0.83 +/- 0.002 0.82 +/- 0.005 0.70 +/- 0.003 0.66 +/- 0.017
CMUnited 0.61 +/- 0.002 0.42 +/- 0.007 0.47 +/- 0.011 0.16 +/- 0.024

Table 4. The f-measure results using each classifier.

An initial look at the results in Table 4 indicate that our CBR approach
clearly outperforms the other classifiers on the CMUnited data. While we have
not thoroughly looked at optimizing the parameters of any of the algorithms,
3 Most classifiers found the ball to be important for Krislet and the ball, goal and

flags to be important for CMUnited. However, naive bayes also found teammates to
be important for both Krislet and CMUnited and did not find the goal important
for CMUnited.
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it is promising to see that our CBR system outperforms the others using de-
fault parameters. This is likely due to the complexity of the reasoning used by
CMUnited. Whereas the Krislet agent only reasons using the soccer ball and
opponent’s goal net, the CMUnited agents use a variety of objects. For the balls
and goals, there are only ever one or two instances of those objects. Whereas
with flag objects there are many of them, so more objects influence the classi-
fication process. Additionally, the data does not contain all of the information
the CMUnited agents use during reasoning. Things like internal states and inter-
agent communication are not included in the data so the stimuli may become
more difficult to separate using rules or generalizations. The benefit of our CBR
approach is that it keeps the data stimuli unchanged, so important information
is not discarded as noise.

Further examination of the results show that the decision trees generated
by the J48 algorithm on the Krislet data only contain a few decision nodes.
These decisions are quite close to the decisions that the Krislet agent actually
uses during reasoning. However, it often underestimates the decision bounds re-
sulting in some misclassification during testing. On the other hand, with the
CMUnited data the decision tree uses hundreds of decision nodes. The decisions
are often not generalizations of the data, but instead make rules that completely
describe individual training instances. Looking at the SMO support vector ma-
chines algorithm and naive bayes, they also do fairly well on the Krislet data but
have significant trouble on the CMUnited data. Similar to the J48 algorithm,
these approaches tended to over train the class boundaries based on the training
instances.

While the results we have presented are not from an exhaustive comparison of
all possible classifiers, or all combinations of algorithm parameters, they do show
our case-based reasoning approach performs well when learning from agents of
various complexities. More importantly, our CBR approach is competitive with
the J48 algorithm when learning from an agent who reasons using a decision
tree.

5 Conclusions

In this paper we examined the data available when an agent only has a partial
view of the world and how the objects in its field of vision can change as the agent
moves around the environment. This only gives the agent limited information
about what it can see and causes a correspondence problem when attempting to
use this information in learning by demonstration systems. The primary reason
for this correspondence problem is an inability to uniquely identify objects, so
the agent only knowns what type of object it sees, rather than which object of
that type it sees.

Our results show that using our case-based reasoning system on such agent
sensory data outperforms a variety of other classification algorithms when learn-
ing by observing a simulated soccer agent. Our experiments did not attempt to
perform an exhaustive comparison of all possible classifiers or use all possible
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algorithm parameters, but instead looked to show that our case-based reasoning
system performs well on both simple and complex data and requires no transfor-
mation of the data. Even if the agent being learnt from can easily be represented
by a set of rules or a decision tree, our CBR approach still performed well com-
pared to a classifier more suited to that form of learning.

An additional benefit of an instance based learning approach, like case-based
reasoning, is that the input data can be compared with actual stimulus rather
than generalizations of the stimulus. This is important when ordering the multi-
valued attributes since the objects can be matched using more sophisticated
matching algorithms rather than being ordered using a fixed ordering rule (like
being ordered by distance to the agent). These findings lead us to believe case-
based reasoning is an appropriate technique to use when learning by demonstra-
tion as it can be used regardless of the complexity of the teacher and allows for
the use of all knowledge contained in the training data since no generalization
occurs.

Future work will involve examining a broader range of data sets. By perform-
ing a larger study we hope to be able to further identify the type of data our
case-based reasoning approach performs well with and also if there is any data
our approach performs poorly on. Also, we will look to compare our case-based
reasoning approach to a variety of state-of-the-art classification algorithms.
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Abstract. Plays are sequences of actions to be undertaken by a col-
lection of agents, or teammates. The success of a play depends on a
number of factors including, perhaps most importantly, the opponent’s
play. In this paper, we present an approach for online opponent model-
ing and illustrate how it can be used to improve offensive performance
in the Rush 2008 football simulator. In football, team behaviors have an
observable spatio-temporal structure, defined by the relative physical po-
sitions of team members over time. We demonstrate that this structure
can be exploited to recognize football plays at a very early stage. Using
the recognized defensive play, knowledge about expected outcomes, and
spatial similarity between offensive plays, we retrieve an offensive play
from the case base. This play is then (partially) reused to improve an
in-progress offensive play. We call this process a play switch. Empirical
results indicate that spatial similarity is central to play retrieval, and that
substituting only a subset of the current play yields greater improvement
over a full play substitution.

1 Introduction

To succeed at American Football, a team must be able to successfully execute
closely-coordinated physical behavior. Teams rely on pre-existing sets of offensive
and defensive plays, or playbooks, to achieve this coordinated behavior. By ana-
lyzing play history, it is possible to glean critical insights about future plays. In
American Football, quarterbacks frequently call audibles, changes of play based
on an assessment of the opponent’s play. This task involves identifying the op-
ponent’s play and then selecting a new play for the offensive team.

In physical domains (military or athletic), team behaviors often have an ob-
servable spatio-temporal structure, defined by the relative physical positions of
team members. This structure can be exploited to perform behavior recognition
on traces of agent activity over time. This paper describes a method for recogniz-
ing defensive plays from spatio-temporal traces of player movement in the Rush
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2008 Football Simulator. Rush 2008 simulates a modified version of American
Football and was developed from the open source Rush 2005 game [1].

Using knowledge of play histories, we present a method for executing a play
switch based on the potential of other plays to improve the yardage gained and
their similarity to the current play. From a case-based reasoning perspective [2],
this involves retrieving a superior play and adapting it to the current situation.
In retrieving a superior play, we show that considering the relative similarity
of the current play compared with the candidate play improves performance.
Furthermore, we show that limiting the play switch to a subgroup of players is
preferable to switching them all.

We begin by describing the Rush Football simulator. Next we describe our
play switching approach with a detailed discussion of opposing play recognition,
play similarity, and play adaptation. We outline the system that implements
these ideas and present an empirical evaluation. We close with related and future
work.

2 Rush Football

Football is a contest of two teams played on a rectangular field that is bordered
on lengthwise sides by an end zone. Unlike American Football, Rush teams have
only 8 players on the field at a time out of a roster of 18 players. The field is
100 yards by 63 yards. The game’s objective is to out-score the opponent, where
the offense (i.e., the team with possession of the ball), attempts to advance the
ball from the line of scrimmage (i.e., the starting position of the ball) into their
opponent’s end zone. Therefore, an offensive play’s success can be measured by
the number of yards gained. Offensive plays contain the following positions:

Quarterback (QB): is given the ball at the start of each play, and will initiate
either a run or pass to a receiver.

Running back (RB): begins behind the quarterback. The running back is el-
igible to receive a handoff or pass from the quarterback.

Fullback (RB): serves the same purpose as the RB.
Wide receiver (WR): executes passing routes and is the primary receiver for

pass plays.
Offensive lineman (OL): is responsible for preventing the defense from reach-

ing the ball carrier.
Tight end (TE): serves either as a lineman or as a receiver.

A Rush play is composed of (1) a starting formation and (2) instructions
for each player in that formation. A formation is a set of (x,y) offsets from the
center of the line of scrimmage. By default, instructions for each player consist
of (a) an offset/destination point on the field to run to, and (b) a behavior to
execute when they get there. Play instructions are similar to a conditional plan
and include choice points where the players can make individual decisions as well
as pre-defined behaviors that the player executes to the best of their physical
capability. Rush includes three offensive formations (power, pro, and split) and

98



four defensive formations (23, 31, 2222, 2231). Each formation has eight different
plays (numbered 1-8) that can be executed from that formation. Offensive plays
typically include a handoff to the running back/fullback or a pass executed by
the quarterback to one of the receivers, along with instructions for a running
pattern to be followed by all the receivers. Defensive plays direct players to
certain areas or toward individual offensive players with the goal of tackling the
offensive player with the ball.

3 Offensive Play Switches

In American Football, the quarterback often dynamically changes the play based
on the defensive formation and their reactions to offensive actions before the
beginning of the play. Although Rush does not allow for actions before the play,
the Rush simulator allows us to alter the play shortly after it has begun.

Fig. 1. Play-switching approach.

Our approach focuses on two aspects of case-based reasoning: retrieval and
reuse [2]. At this early stage, we are not concerned with the revision or retention
of play-switching episodes for future use. Our play switch approach is summa-
rized in Figure 1. Our retrieval method selects an expected best offensive play
by quickly recognizing the opponent’s play, predicting the results of different of-
fensive plays against it, and computing similarities between each offensive plays
and the current situation. The retrieved play is reused by giving new actions to
players in the current situation. Retrieval is performed using a case base of 24
plays (i.e., 8 plays for each of the three offensive formations).

The system’s background knowledge includes 50 instances of every offensive
and defensive play combination. These instances are used to train the recognition
system, generate an expected yardage table for every combination of plays, and
compute similarity between the offensive plays. The next sections describe the
play recognition and similarity metric used in retrieval, followed by a discussion
of how the retrieved play is adapted for the current situation.
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3.1 Play Recognition using SVMs

Given a series of observations, our goal is to recognize the defensive play as
quickly as possible in order to maximize our team’s ability to intelligently re-
spond with the best offense. Thus, the observation sequence grows with time
unlike in standard offline activity recognition where the entire set of observa-
tions is available. We approach the problem by training a series of multi-class
discriminative classifiers, each of which is designed to handle observation se-
quences of a particular length. In general, we expect that the early classifiers
will be less accurate since they are operating with a shorter observation vector
and because the positions of the players have deviated little from the initial
formation.

We perform this classification using support vector machines [3]. Support
vector machines (SVM) are a supervised algorithm that can be used to learn
a binary classifier; they have performed well on a variety of pattern classifica-
tion tasks, particularly when the dimensionality of the data is high (as in our
case). Intuitively an SVM projects data points into a higher dimensional space,
specified by a kernel function, and computes a maximum-margin hyperplane
decision surface that separates the two classes. Support vectors are those data
points that lie closest to this decision surface; if these data points were removed
from the training data, the decision surface would change. More formally, given
a labeled training set {(x1, y1), (x2, y2), . . . , (xl, yl)}, where xi ∈ <N is a feature
vector and yi ∈ {−1,+1} is its binary class label, an SVM requires solving the
following optimization problem:

min
w,b,ξ

1
2
wTw + C

l∑
i=1

ξi

constrained by:

yi(wTφ(xi) + b) ≥ 1− ξi,
ξi ≥ 0.

The function φ(.) that maps data points into the higher dimensional space is
not explicitly represented; rather, a kernel function, K(xi,xj) ≡ φ(xi)φ(xj), is
used to implicitly specify this mapping. In our application, we use the popular
radial basis function (RBF) kernel:

K(xi, xj) = exp(−γ||xi − xj ||2), γ > 0.

Several extensions have been proposed to enable SVMs to operate on multi-
class problems (with k rather than 2 classes), such as one-vs-all, one-vs-one, and
error-correcting output codes. We employ a standard one-vs-one voting scheme
where all pairwise binary classifiers, k(k−1)/2 = 28 for every multi-class problem
in our case, are trained and the most popular class is selected. Many efficient
implementations of SVMs are publicly available; we use LIBSVM [4].
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We train our classifiers using a collection of simulated games in Rush col-
lected under controlled conditions: 40 instances of every possible combination of
offense (8) and defense plays (8), from each of the 12 starting formation config-
urations. Since the starting configuration is known, each series of SVMs is only
trained with data that could be observed starting from its given configuration.
For each configuration, we create a series of training sequences that accumulates
spatio-temporal traces from t = 0 up to t ∈ {2, . . . , 10} time steps. A multiclass
SVM (i.e., a collection of 28 binary SVMs) is trained for each of these training
sequence lengths. Although the aggregate number of binary classifiers is large,
each classifier employs only a small fraction of the dataset and is therefore effi-
cient (and highly paralellizable). Cross-validation on a training set was used to
tune the SVM parameters (C and γ) for all of the SVMs. Testing demonstrated
near perfect recognition results, 96.88%, at t = 3, therefore this classifier was
used to help select the most appropriate offensive play, as discussed below.

3.2 Play Similarity Metric

While knowledge about the opposing play is central to retrieving an effective
offensive play, the similarity of the candidate plays to the current play estimates
the feasibility of the play switch.

To calculate play similarities, we create a feature matrix for every forma-
tion/play combination based on background knowledge. The 13 features for each
athlete A include max, min, mean, and median over x and y in addition to the
following five special features:

FirstToLastAngle: Angle from starting point (x0, y0), to ending point (xn, yn),
defined as atan

(
4y
4x
)

StartAngle: Angle from the starting point (x0, y0) to (x1, y1), defined as atan
(
y1−y0
x1−x0

)
EndAngle: Angle from (xn−1, yn−1) to the ending point (xn, yn), defined as

atan
(
4y
4x
)

TotalAngle:
∑N−1
i=0 atan

(
yi+1−yi

xi+1−xi

)
TotalPathDist:

∑N
i=1

2
√

(xi − xi−1)2 + (yi − yi−1)2

These features are similar to the ones used in [5] and more recently by [6]
to match pen trajectories in sketch-based recognition tasks, another spatio-
temporal task. Here, they are generalized for use with multi-player trajectories.
Feature set F for a given play c (c = 1...8, represents possible play matches
per formation) contains all features for each offensive player in the play and is
described as:

−→
Fc = {Ac1 ∪Ac2 ∪ . . . ∪Ac8}

Using the 50 play instances from background knowledge, we compute a sim-
ilarity vector V for every combination of offensive formation, offensive play,
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defensive formation, and defensive play combination. This vector includes 8 en-
tries (the computed similarities between the offensive play and the other plays
from that formation). We define the similarity between plays as the sum of the
absolute value of the differences (L1 norm) between features Fci and Fcj . In the
evaluation section, we compare the performance of a similarity-based play switch
mechanism vs. a play switching algorithm that focuses solely on the predicted
defensive play.

3.3 Play Reuse

To reuse the new play in the current situation, we must adapt the current play.
The most straightforward approach involves changing the entire play (i.e., each
offensive player follows the new play from this time forward). An alternative
strategy, subgroup switching, involves modifying the actions of only a small group
of key players while leaving others alone. By segmenting the team in this fashion,
we are able to combine two plays that had previously been identified as alike with
regard to spatio-temporal data, but different in regards to yards gained. Based
on our domain knowledge of football, we selected three subgroups as candidates
to switch: {QB, RB, FB}, {OL, OL, OL}, and {WR, WR, TE}.

4 Improving the Offense with Play Switches

To improve offensive performance, our agent evaluates the competitive advantage
of executing a play switch based on 1) the potential of other plays to improve
the yardage gained and 2) the similarity of the candidate plays to the current
play. Our algorithm for improving Rush offensive play has two main phases:
a preprocess stage, which yields a play switch lookup table, and an execution
stage, where the defensive play is recognized and the offense responds with an
appropriate play switch for that defensive play. We train a set of SVM classifiers
using 40 instances of every possible combination of offensive (8) and defensive
plays (8), from each of the 12 starting formation configurations. This stage yields
a set of models used for play recognition during the game. Next, we calculate
and cache play switches using the following procedure:

1. Collect data by running the Rush 2008 football simulator 50 times for every
play combination.

2. Create yardage lookup tables for each play combination. This information
alone is insufficient to determine how good a potential play is for a play
switch. The transition play must resemble our current offensive play or the
offensive team will spend too much time retracing steps and perform very
poorly.

3. Compute the similarity matrix between offensive plays for all formation/play
combinations.

4. Create the final play switch lookup table based on both the yardage infor-
mation and the play similarity.
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To create the play switch lookup table, the agent first extracts a list of
offensive plays L given the requirement yards (Li) > ε where ε is the least
amount of yardage gained before the agent changes the current offensive play to
another. We used ε = 1.95 based on a quadratic polynomial fit of total yardage
gained in 6 tests with ε = {MIN, 1.1, 1.6, 2.1, 2.6,MAX} where MIN is small
enough so that no plays are selected to change and MAX is set so that all plays
are selected for change to the highest yardage play with no similarity comparison.
Second, from the list L find the play most similar to our current play, and add
it to the lookup table.

During execution, the offense uses the following procedure:

1. At each observation less than 4, collect movement traces for each player.
2. At observation 3, use LIBSVM with the collected movement traces and pre-

viously trained SVM models to identify the defensive play, j.
3. Access the lookup table to find best(i, j) for our current play i.
4. If best(i, j) 6= i, Send a change order command to the offensive team to

change to play best(i, j).

As described in Section 3.3, our system allows for different methods of using
the retrieved play. The agent can switch the play for either every offensive player
or a subset.

5 Empirical Evaluation

Our goal is to the answer the following questions:

1. Does our play switching algorithm improve yardage gained?
2. Does retrieval incorporating similarity with the current play outperform a

greedy strategy that selects solely based upon expected yardage gained?
3. What are the effects of subgroup switching on play performance?

To answer the first two questions, we ran the RUSH 2008 simulator for ten
plays on each possible play configuration under three conditions: a baseline with-
out any play switching, our play switch model (using the yardage threshold
ε = 1.95 as determined by the quadratic fit), and a greedy play switch strat-
egy based solely on the yardage table (ε = MAX). The results are shown in
Figure 2(a).

Overall, the average performance of the offense went from 2.82 yards per
play (in the baseline condition) to 3.65 yards per play (ε = 1.95) with an overall
increase of 29%, ±1.5% based on sampling of three sets of ten trials. An analysis
of each of the formation combinations (Figure 2(a)) shows the yardage gain
varies from as much as 100% to as little as 0.1%. Power vs. 23 is dramatically
boosted from about 1.5 yards to about 3 yards per play, doubling yards gained.
Other combinations, such as Split vs. 23 and Pro vs. 32 already gained high
yardage and improved less dramatically (i.e., about .2 to .4 yards more than the
gains in the baseline sample). Overall, our model’s performance is consistently
better for every configuration tested.
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(a) Results by play similarity (b) Results by subgroup swtiching

Fig. 2. Similarity-based switching (shown in red) outperforms both the baseline Rush
offense (blue) and a greedy play switch metric (green). Changing the play for just
Group 1 improves performance over changing the entire play.

Results with ε = MAX clearly shows simply changing to the play with great-
est expected yardage generally results in poor performance. When the similarity
metric is not used, the results are drastically reduced. The reason appears to
be mis-coordinations between teammates accidentally introduced by the play
switch; by maximizing the play similarity simultaneously, the possibility of mis-
coordinations is reduced.

To evaluate the subgroup switching, we ran the simulation in three additional
trails. In each trial, our play switching method was allowed to switch only one of
the offensive player subgroups. Using the improvement in yardage, we compared
these trials to the full offense switch and the best offensive play against the
defense.

The results (shown in Figure 2(b)) clearly indicated the best subgroup switch
(consistently Group 1) produced greater gains than the total team switch, which
still performed better than the baseline. The Max category presents the results
of an agent given the opposing play at t = 0, providing a ceiling. Early play
recognition combined with subgroup switching yields the best results.

6 Related Work

Previous work on team behavior recognition has been primarily evaluated within
athletic domains, including American Football [7], basketball [8], and Robocup
soccer simulations [9–12]. In Robocup, most of the research on team intent recog-
nition focused on coaching. Techniques have been developed to extract specific
information, such as home areas [13], opponent positions during set-plays [10],
and adversarial models [9], from logs of Robocup simulation league games. How-
ever, the coaching agents use offline processing to improve their team’s perfor-
mance in future games. In contrast, our agent immediately takes action on the
recognized play to evaluate possible play switches. Ros et al. present a simi-
lar approach involving similarity between offensive and defensive alignments for
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selecting plays in robocup soccer [12]. Our retrieval approach differs by using
traces of player movement and a prediction concerning the opposing play. Fur-
thermore, we demonstrate the utility of switching the play for only a subset of
the offensive players. On the other hand, their representations include aspects
of the overall strategy, including the score and the amount of time remaining in
the game. Adding knowledge of this type is necessary for our agent to effectively
play an entire football game.

Comparatively few case-based reasoning researchers have investigated spa-
tial reasoning. Most focus on retrieving precedents based on quantitative and
qualitative features [14] without any adaptation. Using insights from research
on pen stroke recognition [6], our spatial similarity metric incorporates spatio-
temporal knowledge into retrieval, which is then used to adapt the current situa-
tion. Galatea [15] uses stored visual problem-solving episodes consisting of visual
transformations, which are employed analogically to arrive at a solution for new
problems. While transfer in Galatea is iterative, our play switch is a one-shot
process. Furthermore, Galatea places little emphasis on retrieval. Our model uses
spatial knowledge throughout retrieval, first in categorizing the opposing team’s
play, then in determining the most similar play from the case base.

Rush 2008 was developed as a platform for evaluating game-playing agents
and has been used to study the problem of learning strategies by observation [16].
Intention recognition has been used within Rush 2008 as part of a reinforcement
learning method for controlling a single quarterback agent [17]. In this paper,
our approach addresses policies across multiple agents.

7 Conclusion

Accurate opponent modeling is an important stepping-stone toward the creation
of interesting autonomous adversaries. In this paper, we present an approach for
online strategy recognition in the Rush 2008 football simulator. After identifying
the defense’s play, our agent evaluates the advantage of executing a play switch
based on the potential of other plays to improve the yardage gained and their
similarity to the current play.

We have shown that spatio-temporal features enable online strategy recog-
nition in the early stages of a play. Furthermore, by incorporating spatial simi-
larity into the selection of the appropriate play switch, our method avoids mis-
coordinations between offensive players, increasing the yardage gained. Addition-
ally, we demonstrate that limiting the play switch to a subgroup of key players
further improves performance.

In future work, we plan on extending our game playing agent to play the en-
tire game. While our focus on gaining more yards is central to successful offense,
in the complete game, offensive strategy becomes more complex, including scor-
ing and clock management. As discussed previously, we plan to explore methods
for automatically identifying key player subgroups for adapting the play by ex-
amining motion correlations between players. Finally, we plan to explore these
ideas of online strategy recognition in other domains.
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Abstract. Behavior authoring for computer games involves writing be-
haviors in a programming language. This method is cumbersome and
requires a lot of programming effort to author the behavior sets. Further
this approach restricts the behavior set authoring to people who are ex-
perts in programming. This paper will describe our approach to design
a system that will allow a user to demonstrate behaviors to the system,
which the system will use to learn behavior sets for a game domain. With
learning from demonstration, we aim at removing the requirement that
the user has to be an expert in programming, and only require him to
be an expert in the game. The approach has been integrated in a easy
to use visual interface and instantiated for two domains, one a real time
strategy game and another an interactive drama.

1 Introduction

State-of-the-art computer games are usually populated with many characters
that require intelligent and believable behaviors. However, even though there
have been enormous advances in computer graphics, animation and audio for
games, most of the games contain very basic artificial intelligence (AI) tech-
niques. In the majority of computer games traditional AI techniques fail to play
at a human level because such games have vast search spaces in which the AI
has to make decisions in real-time. Such enormous search spaces cause the game
developers to spend a large effort in hand coding specific strategies that play
at a reasonable level for each new game. Game designers are typically non-AI
experts, and thus defining behaviors using a programming language is not an
easy task for them. They might have a clear idea in mind of the behavior they
want particular characters in the game to exhibit, but the barrier is encoding
those ideas into actual code. Ideally, we need an approach that can allow game
designers to easily author behavior sets for particular games.

Human learning is often accelerated by observing a task being performed or
attempted by someone else. In fact, infants spent a lot of their time repeating the
observed behaviors [11]. These capabilities of the human brain are also evident
in computer games where players go through a process of training and imitating
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experienced players. These results have inspired researchers in artificial intel-
ligence to study learning from imitation techniques. However except for a few
attempts, there have been very few attempts at their integration in computer
games. By observing an expert’s actions, new behaviors can quickly be learnt
that are likely to be useful; because they are already being used by the expert
successfully. In this paper, we present an approach that utilizes this ability to
extract behavioral knowledge for computer games from expert demonstrations.
Using the architecture presented in this paper the game authors demonstrate
the behavior to be learnt (maybe by controlling some game characters manu-
ally) instead of having to code the behavior using a programming language and
the system learns from that demonstration. In order to achieve that goal, we
use case-based reasoning (CBR) techniques, and in particular case-based plan-
ning [12]. The idea is to represent each behavior as a plan, and use case-based
planning to reuse the behaviors learnt from demonstrations in order to play the
game. Our architecture has been instantiated in two domains, one a real time
strategy game and the other an interactive drama.

The rest of the paper is organized as follows. We present our architecture in
Section 2. We discuss the concrete instantiation of the architecture in real time
strategy game WARGUS (an open source clone of the popular game WAR-
CRAFT II) in Section 3 and interactive drama domain in Section 4. The paper
closes with related work and conclusions.

2 Learning from Demonstration Architecture

Our main goal is to create a system that allows a game designer to easily author
AI behaviors using learning from demonstration, in constrast to having him
encoding behaviors in some programming language. In order to achieve that
goal, we have designed a learning from demonstration architecture (shown in
Figure 1) that consists of four steps:

– Demonstration: The human plays the game, demonstrating the particular
behavior he wants the system to learn. This process results in a trace, i.e.
a log file that contains each action that the expert executed, together with
their respective game state and time stamps.

– Annotation: The human annotates the trace specifying which goals (selected
from a predefined set of goals) he was attempting with each action. In our
experiments, annotation is performed using an easy to use GUI. Section 2.2
explains why annotation is desirable.

– Behavior Learning: The annotated trace is handed to a behavior learning
module, which can automatically extract procedural behaviors from the an-
notated trace, and store them in a behavior base.

– Behavior Execution: Once the behavior base has been populated, the learnt
behaviors can be executed in the game using a behavior execution engine.
We propose to use a case-based planning [12] behavior execution engine,
where each one of the behaviors is represented as a case.
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Fig. 1. Our general Learning from Demonstration Architecture, involving 4 steps:
demonstration, annotation, behavior learning and finally behavior execution.

2.1 Demonstration

The game domain needs to provide a way to demonstrate behaviors. Depending
on the game at hand, this can be done using the normal interface that a player
would use to play the game, or through a special interface if required. The main
idea is to let the expert use the basic set of primitives that are available within
the game world. For example, in our RTS game domain, WARGUS the standard
game playing interface can be used. However, in our interactive drama domain,
Murder Mystery, a specific interface to control virtual characters inside the game
world was developed. This was the case because the default game interface in
that game did not generate traces nor allowed us to control the characters at
the level of detail we wanted.

The author uses the demonstration interface to play the game. Apart from
this interface, a basic mechanism to record the trace is required. In our archi-
tecture, a trace is composed of a list of entries, where each entry is a triple:
time stamp, game state, primitive actions. Representing at a particular time in
a particular state, the expert executed some primitive actions.

2.2 Trace Annotation

The next step is to annotate the trace. In this process, the expert specifies
which goals was he pursuing for each particular action. This process requires
a collection of goals being defined for each game for which the architecture is
instantiated. Once a set of goals is defined, the expert can simply associate each
of the actions in the game with one or more of the set of available goals.

The intuition behind annotation is that if a set of actions are labeled as
achieving the same goal, then the system will put those actions in a single be-
havior that achieves the specified goal. Thus, annotations can be used in order
to group together the actions that were demonstrated into individual behaviors.
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We can now see that the set of goals that have to be defined for each game is a
set of goals that allows the human to decompose the task of playing the game in
subtasks for which behaviors can be learnt. Annotation could be partially auto-
mated (as we propose in [9]). However, an automatic process of annotation leaves
the expert with less control over the learnt behaviors. An automatic annotation
process is desirable if the goal is to build a system that can learn how to play
the game autonomously. However, if the goal is to facilitate the task of a human
author, annotation provides a simple way in which the author (or expert) can
control which behaviors will be learnt. For example, in a given game, the expert
might, by accident, achieve some particular goal during the game in a way that
he did not want to demonstrate (just as a side effect of some actions). In an
automated annotation process, that will result in the system learning an unde-
sired behavior, which for the purposes of the system learning to play the game
is desirable, but for the purposes of helping the author defining the behaviors
he wants to define is undesirable. For that reason, we believe that annotation is
desirable when the goal is to assist a human in behavior authoring.

2.3 Behavior Learning

In order to learn behaviors, the annotated trace is analyzed to determine the
temporal relations among the individual goals appearing in the trace. In our
framework, we are only interested in knowing if two goals are pursued in se-
quence, in parallel, or if one is a subgoal of the other. We assume that if the
temporal relation between a particular goal g and another goal g′ is that g
happens during g′, then g is a subgoal of g′.

From this temporal analysis of goals, procedural descriptions of the behavior
of the expert can be extracted. Notice that an expert might assign more than
one goal to each action. Thus, the system can learn hierarchical behaviors. Also,
once the system has learned behaviors for each one of the goals used by the
expert, a global behavior that uses these behaviors as “subroutines” can also be
inferred (See [10] for more details).

Each one of the learnt behaviors are stored in a behavior library for future
use. Notice that no generalization of the behaviors is attempted at learning
time. Since we are proposing to use a case-based reasoning approach (where
each behavior is considered to be a case), all generalization is left for problem
solving time, i.e. for when the system is playing a game.

2.4 Behavior Execution

Once behaviors have been learned, they are ready to be executed in the game.
Thus, a behavior execution engine is required. We propose to use a hierarchical
case-based planner to perform this task. Each behavior will be seen as a partial
plan to achieve a particular goal, and the hierarchical planner will combine them
together to form full plans to achieve the goals of the character or characters the
system is controlling.
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Cycle Player Action Annotation

8 1 Build(2,“pig-farm”,26,20) -

137 0 Build(5,“farm”,4,22) SetupResourceInfrastructure(0,5,2)
WinWargus(0)

638 1 Train(4,“peon”) -

638 1 Build(2,“troll-lumber-mill”,22,20) -

798 0 Train(3,“peasant”) SetupResourceInfrastructure(0,5,2)
WinWargus(0)

878 1 Train(4,“peon”) -

878 1 Resource(10,5) -

897 0 Resource(5,0) SetupResourceInfrastructure(0,5,2)
WinWargus(0)

... ... ... ...
Table 1. Snippet of a real trace generated after playing WARGUS. The game states
for each entry in the trace are omitted.

3 First Game Domain: WARGUS

Real-time strategy (RTS) games have several characteristics that make behav-
ior authoring difficult: huge decision and state spaces [1, 2], non determinism,
incomplete information, complex durative actions, and real time. WARGUS is
a real-time strategy game where each player’s goal is to remain alive after de-
stroying the rest of the players. Each player has a series of troops and buildings
and gathers resources (gold, wood and oil) in order to produce more troops and
buildings. Buildings are required to produce more advanced troops, and troops
are required to attack the enemy. In addition, players can also build defensive
buildings such as walls and towers. Therefore, WARGUS involves complex rea-
soning to determine where, when and which buildings and troops to build.

In order to demonstrate a behavior set for WARGUS an expert simply
plays a game. As a result of that game, we obtain a game trace. Table 1 shows a
fragment of a real trace from playing a game of WARGUS. In the WARGUS
domain, each trace entry is limited to a single action. For instance, the first action
in the game was executed at cycle 8, where player 1 made his unit number 2
build a “pig-farm” at the (26,20) coordinates.

The next step is to annotate the trace. For the annotation process, the expert
uses a simple annotation tool that allows him to specify which goals was he
pursuing for each particular action. The annotation tool simply presents the
execution trace to the expert (with small screenshots of the state of the game at
every trace entry, to help the human remember what he was doing) and he can
associate goals to actions. All the goal types defined for the WARGUS domain
are available to the expert, and he can fill in the parameters of each goal when
annotating. Figure 2 shows a screenshot of such tool.

In our approach, a goal g = name(p1, ..., pn) consists of a goal name and a set
of parameters. For instance, in WARGUS, some of the goal types we defined are:
WinWargus(player), representing that the action had the intention of making
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Fig. 2. A screenshot of our WARGUS trace annotation tool.

the player player win the game; KillUnit(unit), representing that the action had
the intention of killing the unit unit; or SetupResourceInfrastructure(player,
peasants, farms), indicating that the expert wanted to create a good resource
infrastructure for player player, that at least included peasants number of peas-
ants and farms number of farms.

The fourth column of Table 1 shows the annotations that the expert specified
for his actions. Since the snippet shown corresponds to the beginning of the game,
the expert specified that he was trying to create a resource infrastructure and,
of course, he was trying to win the game. The annotated trace is next processed
by the behavior learning module, which encodes the strategy of the expert in
this particular trace in a series of behaviors.

Notice that in our system we don’t attempt any kind of generalization of the
expert actions. If a particular expert action in the trace is Build(5, ”farm”, 4,
22), that is exactly the action stored in a snippet. Thus, using the learnt snip-
pets to play a new scenario in WARGUS, it is very likely that the particular
values of the parameters in the action are not the most appropriate for the new
scenario (for instance, it might be the case that in the new map the coordinates
4,22 correspond to a water location, and thus a farm cannot be built there). In
our WARGUS implementation, the behavior execution engine is responsible to
adapt those parameters at run time.

Our execution engine in WARGUS is a case-based planner, that uses a set
of adaptation rules in order to adapt the parameters of each of the actions in
each behavior before executing it. Thus, in our implementation in the WAR-
GUS domain, the game state in which the human demonstrated each action is
stored together with the behavior. For details on how adaptation at run time is
performed, see [10].

In order to evaluate our techniques in WARGUS, we developed an IDE
from where users could launch WARGUS to start a demonstration, annotate
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demonstrations, manipulate behaviors, and test them on the game [13]. Our
results show that users were able to successfully demonstrate behaviors using
our system, and that they felt demonstrating behaviors was an easier way to
generate scripts, than coding them by hand.

4 Second Game Study: Murder Mystery

In recent years, there has been a growing interest in creating story based interac-
tive systems where the player experiences a story from a first person perspective,
interacts with autonomous, believable characters. Interactive drama presents one
of the most challenging applications of autonomous characters, requiring char-
acters to simultaneously engage in moment-by-moment personality-rich physical
behavior, exhibit conversational competencies, and participate in a dynamically
developing story arc. Hand authoring of behavior for believable characters allows
designers to craft expressive behavior for characters, but nevertheless leads to
excessive authorial burden [6]. Tools are needed to support story authors, who
are typically not artificial intelligence experts, to allow them to author behaviors
in an easy way.

The interactive drama we are developing is named Murder Mystery (MM).The
story set up consists of six characters and is set up in a British mansion at the
beginning of the 20th century. The player controls one of the character and is free
to interact with the rest of the characters using natural language and also move
freely around the house and manipulate some objects. In particular, the drama
starts when two of the characters decide to celebrate an engagement party, and
invite two friends to a dinner in their newly acquired mansion. The remaining
two characters are the butler of the house and the father of the bride. Most of the
characters have strong feelings (love or hate) for some of the other characters,
and as the story unfolds the player will discover hidden relations between them.
The player will take the role of one out of three possible characters and will be
able to act freely in the mansion.

In order to demonstrate behaviors, the user observes a character from a third
person perspective and is able to control it using a GUI. The GUI consists of
a series of buttons and text fields that allow the user to perform the following
actions: speak, move forward, move backward, move left, move right, rotate, and
play an animation. Such an interface records a similar trace as for our WARGUS
domain (an example is shown in Table 2. The context associated with each logged
action describes the current game state and consists of information about the
map and characters. Each object and player in the map is logged with as much
information as possible (since it will help the CBR system to adapt actions at
run-time).

In order to carry out the annotation, some of the goals that have been used
are:

– Greet(character): representing that the action had the intention of greeting
another.
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Cycle Player Action Annotation

8 Mary Walk(”230,400,1920”, ”230,400,1920”, Mary) -

137 Mary Speak(Tracy, ”Hi Tracy”) Greet(Tracy)

378 Mary Wave () Introduce(Tracy)

500 Mary Speak(Tracy, ”I am Manuel Sharma”) -

678 Mary Smile () -

800 Mary Speak(Tracy, ”I am working as a technician”) -

938 Mary Speak(Tracy,”Could you pass me a drink?’) AskforObject(Tracy, drink)

... ... ... ...
Table 2. Snippet of a real trace generated after playing Murder Mystery .

– AskforObject(character, object): representing that the action had the in-
tention of asking for a particular object object from a character character.

– Introduce(character): the action had the intention of introducing to a par-
ticular character

– Insult(character): the action had the intention of insulting a particular char-
acter

– Hurt(character): the action had the intention of hurting a particular char-
acter.

In the same way as for WARGUS this trace would then be given to the
behavior learning module, that will learn behaviors from it. Figure 3 shows
an example of a learnt behavior in Murder Mystery. Although an extensive
evaluation of our system in the Murder Mystery domain is still part of our future
work, initial evaluations suggest that it is easier to author behaviors using our
demonstration interface than coding them by hand.

In an analogous way as for our WARGUS domain, in the Murder Mystery,
the game state associated with each action is stored, so that the behavior exe-
cution engine (a case-based planner) can adapt those actions.

Introduce(tracy)

{

Wave();

Speak(Tracy, "I am Manuel Sharma");

Smile();

Speak(Tracy, "I am working as a technician");

}

Fig. 3. Snippet of a behavior learnt after behavior demonstration in Murder Mystery .
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5 Related Work

Henry Lieberman describes a system called Tinker, that is able to learn from
examples that a programmer demonstrates. Using this framework, a programmer
can demonstrate sets of examples, starting with simple examples, and work up
to more complicated ones. Using these examples, Tinker learns how to operate
on its own. A more recent example is provided by Nakanishi et al. [7], who
designed a system that learns biped locomotion by observing humans walking.
Nakanishi et al. describe an approach of using dynamical movement primitives as
a central pattern generator, which are then used to learn the trajectories for the
legs in robot locomotion. Nicolescu [8] describes a modular architecture which
allows a robot to learn by generalizing information received from multiple types
of demonstrations, and allows the robot to practice under the demonstrator’s
supervision. This system, albeit in a robotic domain is quite similar to ours, and
provides a general way to learn primitive behaviors through demonstration in
order to accomplish a given task.

Floyd et. al. present an approach to train a RoboCup soccer-playing agent by
observing the behaviour of existing players and determining the spatial configu-
ration of the objects the existing players pay attention to [3]. Kaiser and Dillman
[5] presented a general approach to learning from demonstration using sensor-
based robots. They describe how skills can be acquired from humans, “learned”
in such a way that they can be used to achieve tasks, and refined so that the
agent’s performance will constantly improve. The system uses action primitives
that are very concrete and easy to predict, such as determining what angle to
move a robotic arm. In our system, action primitives are parameterized like talk-
ing to another character in the game, which can potentially have results that are
hard to predict. Finally, Floyd and Estefandiari [4] compare several techniques
for learning form demonstration (CBR, decision trees, support vector machines
and naive bayes), showing very strong results favoring case-based learners.

6 Conclusions and Future Work

Learning from demonstration is a powerful mechanism to quickly learn behaviors.
In this paper, we discuss how the principle of imitation learning can facilitate
the programming of computer game characters. Moreover, we demonstrated the
approach by reporting two implemented systems based on the same learning
from demonstration architecture.

One of the key ideas introduced in this paper is that by the use of annota-
tions in the demonstrations, the author can have control of the behaviors being
learnt during the learning from demonstration process. Behavior authoring is
ultimately a programming task, and as such is non-trivial when the set of be-
haviors that need to be authored are complex. However, we have seen that by
using case-based planning techniques, concrete behaviors demonstrated in con-
crete game situations can be reused by the system in a range of other game
situations, thus providing an easy way to author general behaviors.
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Part of our future work involve trying to reduce the annotation task to a
minimum, but that the author still has control over the behavior authoring
process. One of the ideas is to implement a mixed initiative approach where the
system will automatically annotate a trace, and the author will have the option
(it desired) of changing the annotations. We are also working on implementing
our approach in more domains to evaluate its strengths and weaknesses. In our
initial evaluations we have seen that our approach is good for high level behavior
demonstration, where as it is still not very good at low level reactive control.
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Abstract. SARTRE (Similarity Assessment Reasoning for Texas hold’em
via Recall of Experience) is a heads-up (two-player) poker-bot that plays
limit Texas Hold’em using the case-based reasoning methodology. This
paper presents an overview of the SARTRE system. As far as we are aware
SARTRE is the only poker-bot designed specifically to play heads-up

Texas Hold’em using a CBR foundation. The design and implementa-
tion of the current system is discussed. Case features are illustrated and
their reasons for selection are addressed. Finally, avenues for future areas
of investigation are then listed.

1 Introduction

This paper will describe the design and implementation of a heads-up (two-
player) poker-bot that plays limit Texas Hold’em using the case-based reasoning
methodology. SARTRE (Similarity Assessment Reasoning for Texas hold’em via
Recall of Experience) is the latest result of our ongoing research focused around
the investigation into the role of memory in game AI. SARTRE is specifically
tailored to play two-player poker, whereas our previous system, CASPER (CASe
based Poker playER) was more suited to full-table game play (8 - 10 players)
[1, 3]. Two-player poker offers its own unique challenges, where strategies for
successful play differ markedly from those employed at a full table [2]. For a
description of the rules of Texas Hold’em consult [1, 2].

2 Overview of SARTRE

A human poker player requires information to make their betting decisions. As
SARTRE is a computer program, the information required needs to be easily
recognised and able to be reasoned about algorithmically. Salient information
needs to be identified and used to affect SARTRE’S final decision. While too
much information is usually better than not enough, the utilisation of too much
information could result in undue complexity which may deteriorate SARTRE’S
performance.

The type of information that SARTRE has available at decision time includes
items from the following list:
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– The betting decisions of each player during the current hand.
– The betting decisions of each player for all hands that occurred previous to

the current hand.
– The current stage of the hand.
– The hole cards that are only visible by Sartre.
– The community cards that are visible by all players.

The authors have hand picked three key factors from the above list to repre-
sent indexed features that SARTRE uses to determine a solution for a particular
case:

1. The previous betting for the current hand.
2. The current strength of SARTRE’S hand given by combining personal hole

cards with the publicly available board cards.
3. Information about the state of the current community cards, called the tex-

ture of the board.

Qualitative feature descriptions have been favoured over quantitative descrip-
tions as they are more likely to be used by an expert, human player. Each case
feature is described in more detail below, including the representation we have
chosen to implement for the SARTRE system.

2.1 The previous betting for the current hand

The type of betting that can occur at each decision point in a hand consists
of a fold (f), check/call (c), or bet/raise (r). A combination of these symbols
corresponds to all the decisions made during a particular hand.

As SARTRE is specifically designed to play only heads-up poker the num-
ber of betting patterns that can occur is drastically reduced compared to the
combination of betting patterns that can occur at a table with ten players. An
example betting pattern is presented and analysed below. The total bets allowed
to be contributed by each player during each round is capped at four:

rrc-r

This particular example represents a feature that is used by SARTRE during
the flop. The betting that occurred during the pre-flop is separated from the
betting on the flop by a hyphen. This betting string can be described by the
following situation:

– SARTRE is in the small blind (dealer) and makes a forced bet of 0.5. The
opponent is in the big blind and makes a forced bet of 1.

– SARTRE is the first to act pre-flop and decides to raise. SARTRE has now
committed a total of 2 bets.

– SARTRE’S opponent re-raises by committing another 2 bets to the pot.
– SARTRE calls 1 more bet completing the pre-flop betting and leaving 6 total

bets in the pot.
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– As SARTRE is the dealer he acts last on all post-flop betting rounds. SARTRE’S
opponent has made 1 bet on the flop and it is now SARTRE’S turn to make
a decision.

The above example indicates a lot of information is contained within the bet-
ting pattern. We have chosen to represent each betting pattern as a path within
a betting tree. A betting tree succinctly enumerates all betting combinations up
until a certain point in the hand. A path within this tree represents the actual
decisions that were made by each player during this hand. This is represented
graphically in Fig. 1.

Fig. 1. A tree that describes betting decisions for two players during a hand of Texas
Hold’em Poker. The highlighted nodes are the actual decisions that were made by each
player.

Given this representation we can calculate the similarity between two sepa-
rate trees (a target tree and a source tree) by comparing the betting path within
each tree. If the betting path in the target tree is exactly the same as the betting
path within the source tree a similarity value of 1.0 is assigned. Currently, Sartre
will simply assign a value of 0.0 to any betting paths that are not exactly similar,
however, we plan to investigate less stringent approaches for future implementa-
tions. For example, if one betting path mostly resembles that of another, with a
small number of variations, a similarity value close to (but less than) 1.0 could
be assigned.

2.2 The current hand category

The second case feature used to determine a betting action is a qualitative
category describing SARTRE’S personal hand. During the pre-flop SARTRE’S
hand simply consists of his personal hole cards, whereas for the post-flop stages
of play SARTRE’S hand is constructed by combining his hole cards with the
publicly available community cards, the best 5 card combination is used.
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SARTRE’S best 5 cards are mapped to a category that describes the hand.
The classic hand categories in poker include no-pair, one-pair, two-pair, three-
of-a-kind, straight, flush, full-house, four-of-a-kind and finally a straight-flush.
Each category has a greater strength than the previous one, where a straight-
flush, consisting of the cards Ten, Jack, Queen, King, Ace, represents the
highest rank possible (i.e. a Royal Flush).

During the flop and the turn all the community cards have yet to be dealt
and therefore a player’s hand has the ability to improve from one category to
another, depending on which card is drawn next. It is therefore too simplistic to
only consider the current hand category, so further classification is required for
hands with the potential to improve. These types of hands are called drawing
hands (in poker terminology). SARTRE considers two types of drawing hands:
flush draws & straight draws. An example mapping is illustrated in Fig. 2.

Fig. 2. Mapping a combination of five cards to a category that represents the current
hand rank and the drawing strength of this hand.

The hand categories SARTRE uses to classify cards were decided upon by
the authors. Fig. 2. shows a combination of two categories: overcards + ace-
high-flush-draw-uses-both i.e. no pair has been made, but both hole cards have
a higher rank than the community cards and this hand has the potential to
become a flush.

Currently a simple rule-based system is used to decide which category a
combination of cards belongs to. Similarity for this feature is currently either
1.0 when the category of the target case is exactly that of the source case,
otherwise it is 0.0 when the categories are distinct.

2.3 The texture of the board

The final indexed feature attempts to summarise the state of the community
cards without considering the hole cards of a player. The texture of the board
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refers to salient information a human poker player would usually notice about
the public cards, such as whether a flush is possible. Once again a set of qual-
itative categories were hand-picked by the authors to map various boards into.
Some categories used by SARTRE’S current implementation that refer to flush
and straight possibilities are Is-Flush-Possible (where three cards of the same
suit are showing), Is-Flush-Highly-Possible (where four cards of the same suit
are showing) & Is-Straight-Possible (where three consecutive card values are
showing), Is-Straight-Highly-Possible (where four consecutive card values are
showing).

If two boards are mapped into the same category they are given a similarity
value of 1.0, whereas boards that map to separate categories have a similarity
of 0.0.

2.4 SARTRE’S Case-Base

SARTRE’S case-base is generated by analysing the game logs of previous AAAI
Computer Poker Competitions1. The current version of SARTRE uses approx-
imately 250,000 cases for each stage of the game (pre-flop, flop, turn, river).
Results against other computerised opponents will soon be available as we plan
for SARTRE to compete in the upcoming Computer Poker Competition to be
held at IJCAI ’09.

3 Future Work

Work on the SARTRE system is still in an early phase and there is much room
for investigation and improvement:

1. Experimental results are required. At present we have not had time to ex-
tensively measure SARTRE’S performance

2. Currently SARTRE’S similarity metrics are too stringent. Further work is
required to improve the calculation of similarity values.

3. SARTRE uses no opponent modelling capabilities at present. We plan to
augment SARTRE with a CBR opponent modelling system and assess the
impact on performance.
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Abstract. We present our views and ideas about a possible approach
to general game playing by utilising memory and analogy. We initially
discuss the importance of memory in game playing agents. The forms
that memory can take are examined and examples of successful agents
who utilise memory are presented. Following this we focus on experience-
based, lazy learners and justify why we believe they may be beneficial in
a general game playing domain. Analogical reasoning is then introduced
and its benefits considered. We conclude by formulating some example
analogies and speculating how an experience-based, lazy learner could
apply these to a general game playing environment.

1 Introduction

In this position paper we wish to describe the possibility of a lazy learning agent
used to play multiple, arbitrary games using memory and analogy. Memory refers
to the concept of storing scenarios in a database or case-base to represent an
agent’s knowledge. Analogy refers to the ability to recognise similarities between
separate problem domains and to generalise solutions from one domain to an-
other. Through examples and previous research we will attempt to outline how
this system could be constructed and the possible benefits of this approach.

The following sections begin with a summary of the types of memory an
agent has available and various systems that have achieved success through the
use of memory. Followed by a review of experience-based, lazy learners that have
been developed to play specific games such as chess, checkers and poker. Finally,
analogy is discussed where an attempt is made to generalise memories an agent
holds about a specific game to aid it in playing a game it has not previously
encountered.

2 Memory in Games

Memory in a game playing agent can refer to any kind of persistent knowledge
an agent has at it’s disposal that it does not need to deduce algorithmically.
Some examples include:

– Databases of powerful strategies in games such as chess or checkers.
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– Tables that record opponent based information in games such as poker.
– Or, a collection of cases, in a case-based reasoning system, illustrating various

plays and their level of success.

The addition of some kind of memory component to a game-playing agent
can be beneficial for numerous reasons. Some of which are outlined below:

– Memory can take the form of knowledge gained through expert play such
as in Grandmaster databases. Experts with years of game playing experi-
ence can encode their knowledge and strategies into databases which form
the basis of the agent’s memory. This provides the agent with a persistent
knowledge of the game that may not be available through other strategies
alone such as game-tree search. These proven lines of sophisticated play can
then be used by the agent to aid its game playing decisions.

– A memory component can be used to hold perfect information about a game
at a certain position and the outcome from that position i.e. win/loss/draw.
This improves the performance of the agent by allowing it to identify when
a win is available. If only draws or losses are present it also allows the agent
to avoid moves that will lead to a loss.

– Memory allows an agent to learn from experience. By maintaining a memory
the agent can record which decisions were beneficial and which were harmful.

– For games that rely heavily on how an opponent plays e.g. poker, memory is
imperative. An adaptive agent will be required to remember how an oppo-
nent has played in the past and what type of playing style they may employ.
Using this information a strong game-playing agent can then exploit weak
opponents and avoid being exploited itself. To achieve this the agent will
need to encode some sort of long-term memory about specific opponents as
well as general playing styles.

While it is true that for extremely simple games such as Tic-Tac-Toe opti-
mal agents can be constructed algorithmically without relying on any memory
component [12], this is not necessarily true for games that involve more so-
phisticated strategies such as Chess, Checkers or Go. As the complexity of the
game increases so does the resulting search space required for the game tree.
Reasonably complex, deterministic games such as checkers typically rely on the
use of the Alpha-Beta pruning algorithm to determine the next best move for
the agent to make, however as the number of ply required to search further
into the future increases so too does the computational complexity. World class
game playing agents such as Chinook in Checkers [15] have resorted to the use
of end-game databases to address this issue. End-game databases provide a per-
sistent memory of the exact outcome of a game from a certain position. The use
of this memory component has substantially improved the performance of the
agent [16]. The world-class chess machine Deep Blue also included an end-game
database although it’s success depended less upon it and more on the inclusion
of a database of Grandmaster games which were used to influence Deep Blue’s
decisions [4].
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Chess and checkers are regarded as deterministic games with perfect infor-
mation. There is no chance involved and both players can look upon the board
and get all the information they need to make the best move possible. A separate
category of games, classed as stochastic games with imperfect information are
different, in that elements of chance play a role and information is hidden from
the player. Poker is a game that involves chance and hidden information. Ap-
proaches to computer poker have mainly focussed around the use of game theory
and adaptive imperfect information search [2, 21]. To be successful at games like
poker a player has to be able to read his/her opponent, i.e. to compensate for
missing information they have to make decisions based upon how their opponent
has played in the past. We argue that at this point memory in a game playing
agent not only becomes beneficial, but imperative. An early attempt to solve this
problem was the poker playing program nicknamed Poki. Poki was developed by
the University of Alberta Computer Poker Research Group1 and used opponent
modelling tables to keep track of how opponents played [3]. This memory for an
opponent aided the agent in adapting its playing style accordingly.

The above examples have demonstrated the benefits that various forms of
memory can have. This idea can be extended by considering programs that make
decisions primarily based on memory, such as experience-based, lazy learners.

3 Lazy Learners

One approach to game AI focuses around the construction and traversal of game
trees [4]. Another approach is to use machine learning algorithms to develop
game playing agents [7, 18]. Many machine learning algorithms are classified as
eager learners. An eager learner learns an approximation to a target function
through training examples before any novel queries are encountered [11]. Lazy
learners have also been developed and applied to game playing [13, 14]. Lazy
learners usually bypass any computationally expensive training period and sim-
ply construct a local approximation to a target function when a new query is
encountered [1]. When considering the problem of playing multiple, arbitrary
games we believe that the use of lazy learners could prove beneficial due to the
fact that lazy learners are highly adaptive to novel situations [1]. Experienced
based or case-based systems can be considered lazy learners [10]. Detailed below
are a number of experience-based agents that have been developed for specific
games, with varying degrees of success.

Experience-based learning techniques were applied to the game of Othello in
[6] with some success. The result was a system called GINA. De Jong and Schultz
augmented a search-based Othello playing program with an experience base that
was added to as GINA played more games. Each experience in the experience
base was assigned a success rating which approximated the value that would
have been found in a minimax search tree, coupled with a frequency counter
that represented the confidence of the estimate. The results showed that the

1 http://poker.cs.ualberta.ca/
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use of experience-based learning was highly effective in improving both speed of
decision making and skill in the game of Othello when challenging non-adaptive,
minimax based opponents.

[13] produced CHEBR, a system to play the game of checkers via automatic
case elicitation, whereby an agent with no prior domain knowledge acquired
experience by simply playing games of checkers in real-time. CHEBR taught
itself to play checkers better than an agent with initial knowledge of the game.

[17] reasoned that approaches to computer chess that used alpha-beta prun-
ing algorithms employed a brute-force search strategy that considered many
unnecessary lines of play. Sinclair focussed on forward pruning using example-
based reasoning based on games played by human experts. An example base was
built by analysing a collection of 16,728 expert games using Principle Compo-
nent Analysis to reduce dimensionality and recording the move made given a
board position. A separate test set of unseen positions was then used to assess
the chosen move by the system. The results indicate that stronger moves were
generated during earlier stages of the game when the example base held many
instances and therefore similarity was high. However, this deteriorated as the
move number increased as the example base became more sparse. Sinclair con-
cludes that search based solutions do not transfer well to other problem domains
they weren’t designed for and proposes that example-based pruning may be well
suited to handle imperfect information and problems where domain knowledge
is incomplete [17].

Finally, case-based reasoning was applied to a stochastic, imperfect informa-
tion environment in [14, 20]. A case-based poker player was developed (Casper)
that made decisions in the game of Texas Hold’em by retrieving similar scenarios
from it’s memory and re-using these decisions. Casper was able to play evenly
against the University of Alberta’s Pokibot, upon which it was based, whilst
avoiding the need for an intensive knowledge engineering effort.

As mentioned before the approaches discussed above have all focussed on
specific domains. The next problem we wish to address is how an experience-
based approach could be extrapolated to handle playing any arbitrary game it
was presented with.

4 Analogy

Programs such as Casper, GINA and CHEBR described above have been cre-
ated to focus on one particular domain - poker, othello and checkers respectively.
Furthermore, one of the advantages of experience-based learning is an ability to
generalise well [10]. Therefore, it is our opinion that a system with an initial
memory of one or more game-related domains coupled with an ability to analo-
gise beyond that domain could be used to address the problem of general game
playing, where the same system uses knowledge it has obtained from previous
games to inform it’s decisions for a totally novel game.

Analogical reasoning has been successfully applied in the Prodigy/Analogy
system [19]. Veloso combined derivational analogy with a base-level planning sys-
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tem. Derivational analogy considers how a problem was solved rather than simply
reusing old solutions for new problems [5]. This is achieved by taking the prob-
lem solving context into account. [19] describes the use of the Prodigy/Analogy
system within a logistics transportation domain. When a problem is successfully
solved an episodic solution trace is retained in a case base. This trace highlights
justifications that support the decisions made. As new problems are encountered
similar episodes are retrieved and their justifications are interpreted within the
context of the new problem. One or more of the retrieved cases are then used to
guide the problem solving process. This analogical reasoning process has allowed
the successful transfer of skills within a complex domain, without a dependence
on axiomatic domain knowledge. Resulting in a large increase in the amount and
complexity of problems that can be solved compared to the base-level planning
system [19].

Hinrichs and Forbus combine experimentation, analogy and qualitative mod-
elling to the domain of a turn based strategy game [9]. The sub goal of optimizing
food production within the Freeciv [8] strategy game is evaluated. Hinrichs and
Forbus report that with the addition of learning from past failed cases, their
experimental results indicate an improvement in the task of optimizing food
production [9]. They propose that the use of analogy and qualitative reasoning
is a viable approach to transfer learning, whereby a system is trained on one set
of tasks and its learning subsequently measured on a set of related, but distinct
tasks.

Analogical reasoning could perhaps produce similar results in a general game
playing environment. Consider an example involving card games. The Casper
system [14] plays Texas Hold’em poker entirely from memory. Through Casper’s
collection of experiences it has learned that cards such as Jacks, Queens, Kings
and Aces are high valued cards. This knowledge could be generalised to other
poker variants or even other card games as an initial assumption. If in fact this
assumption proved incorrect (e.g. Aces are low) the system could compensate for
its initial incorrect assumption by it’s ability to quickly adapt to new situations.
Of course for general game playing, games entirely outside the realm of card-
games would need to also be considered. This requires further extrapolation,
however we believe this is not unreasonable. Take, for example, a situation where
we wish to generalise knowledge a system may have about card values to aid it in
playing a game that involves the throw of a dice. Given that the system assigns
high value to high card values an initial assumption the system could infer would
be that the same applies for dice values. Hence, the system would value rolling
double sixes opposed to double ones. By recording the outcome of a game, the
system could successively evaluate whether this analogy is relevant or not.

As the system played more and more games and accumulated more knowl-
edge about the games it has played it’s experience-base would grow, allowing
it to make further inferences and generalisations about different games it en-
countered. By consistently maintaining it’s knowledge-base the system could
drop analogies that proved incorrect and strengthen others that contributed to
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successful outcomes. It is hoped this process would improve the general game
playing abilities of the system.

We believe that an experience-based, lazy learner would provide the flexibility
required to handle the type of generalisation described above.

5 Conclusion

In conclusion, the idea of a lazy learning agent has been proposed that relies
on memory and analogy to generalise knowledge gained in one domain with the
intention of applying it to another. We believe this approach could be beneficial
to general game playing due to the fact that experience-based, lazy learners are
able to adapt well to new situations and have been shown to be successful in a
range of game environments e.g. deterministic vs. stochastic. Furthermore, ana-
logical reasoning has demonstrated an ability to generalise skills within complex
domains.

A discussion of the importance of memory in game-playing agents was pre-
sented. It was shown that memory can take many forms, but mostly relies on
the encoding of specific game knowledge into databases or case-bases. Successful
agents in board and card games have been used as examples to highlight the
types of memory available and how it has been used effectively.

The Prodigy/Analogy system was discussed as an example that has achieved
success via analogical reasoning. Finally, we speculated about the possibilities
of analogy coupled with experience-based learners to generalise game knowledge
which could be used as a basis for a general game playing agent.
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Abstract. Authoring the AI for non-player characters (NPCs) in modern video
games is an increasingly complex task. Designers and programmers must collab-
orate to resolve a tension between believable agents with emergent behaviours
and scripted story lines. Behaviour trees (BTs) have been proposed as an expres-
sive mechanism that let designers author complex behaviours along the lines of
the story they want to tell.
On the other hand, BTs appear too complex for non programmers. In this paper,
we propose the use of abstract cases automatically generated through planning
to assist designers when building BTs. In order to make this approach feasible
within state-of-the-art video game technology, we generate the planning domain
through an extension of the component-based approach, a widely used technique
for representing entities in commercial video games.

1 Introduction

According to the number of papers dedicated to the subject in the editions 3 and 4 of
the AI Game Programming Wisdom [8, 9], Behaviour Trees (BTs) are the technology of
choice for designing the AI of NPCs in the game industry. BTs are proposed as an evo-
lution for hierarchical finite state machines (HFSM) intended to solve their scalability
problems by emphasizing behaviour reuse.

Behaviour trees have been proposed as an expressive mechanism that let designers
author complex behaviours along the lines of the story they want to tell, but at the same
time, BTs appear as a too complex mechanism for non programmers [2, 3]. Commercial
game development teams usually build some support tools in the form of tree editors,
where the designer can choose from a set of predefined composite nodes, conditions to
be checked, and basic actions that can be included in the tree. Nevertheless, in practice,
there is a tension between the freedom that the designers require to include their narra-
tive in the game and the effort required from programmers to debug faulty AI authored
by non-programmers.

In this paper we propose the use of ontologies and planning techniques to assist
game designers when authoring the AI for non-player characters. The design of BTs

? Supported by the Spanish Ministry of Science and Education (TIN2006-15140-C03-02 and
TIN2006-15202-C03-03)
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is usually an interactive process in which the designer incrementally adds new tree
branches to make the NPC react to new situations. We propose an automatic way to
compute abstract cases or solutions to those new situations, that designers may adapt
before incorporating them to the current BT.

A drawback for using declarative knowledge-intensive AI techniques in games is
the additional effort required to model the domain. In this case we require having a
model of the actions that NPCs can do in the game world. In order to close this gap
between academic and industrial game AI, we propose generating the planning domain
through an extension of the component-based approach for representing entities, which
is widely used in commercial video games.

The rest of the paper runs as follows. Next section introduces the two techniques
from commercial video games incorporated into our approach: component-based game
entities, and behaviour trees. Section 3 describes the main ideas of our proposal for
authoring BTs from automatically generated abstract cases. Sections 4 and 5 provide
the details and exemplify the approach, first describing the generation of the planning
domain and then the use of abstract cases to author behaviour trees. Last section reviews
related work and concludes the paper.

2 Background

2.1 Components

In the development of a virtual environment, the layer responsible of the management
of the entities is usually created using an object-oriented programming language such as
C++. Over the years this object-management system has been based on an inheritance
hierarchy, where all different kinds of entities derive from the same base class often
called CEntity.

Some of the consequences of this extensive use of class inheritance are, among
others, an increase in the compilation time [5], a code base difficult to understand and
big base classes. To mention just two examples, the base class of Half-Life 1 had 87
methods and 20 public attributes while Sims 1 ended up with more than 100 methods.

Due to all these problems developers tend to use a different approach, the so called
component-based systems [13, 10]. Instead of having entities of a concrete class which
define their exact behaviour, now each entity is just a component container where every
functionality, skill or ability that the entity has, is implemented by a component. From
the developer point of view, every component inherits from the IComponent class or
interface, while an entity becomes just a list of IComponents.

As entities are now just a list of components, the concrete components (or abilities)
that constitute them may be specified in an external file that is processed in execution
time. This approach eases the creation of new kind of entities, because it does not re-
quire any development task but just the selection of the different skills we want our new
entity to have from a set of components. In order to allow fine-grained adjustment of
the behaviour (or skills) of different entities, their definition may also set the values of
different attributes that components use as parameters of their behaviours.

Both, the list of components of an entity and the initial values of their parameters,
are usually stored in a separated file that can be seen as the file that describes the main
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<b l u e p r i n t >
<e n t i t y t y p e =” g o b l i n ” ontType =” Gobl in ” p a r e n t O n t =” Monster”>

<components l i s t =” Take , MoveTo , TakeCover , MeleeAt tack ,
LongRangeAttack , Charge−At , . . . ” / >

<a t t r i b u t e s >
< a t t r i b name = ” s t r e n g t h ” v a l u e = ” weak”/>
< a t t r i b name = ” weapon−t e c h ”

v a l u e = ” r u d i m e n t a r y , e l a b o r a t e ”/>
< a t t r i b name = ” h e i g h t ” v a l u e = ” s h o r t ”/>
. . .

</ a t t r i b u t e s >
</ e n t i t y >
. . .
</ b l u e p r i n t s >

Fig. 1. Partial list of blueprints file

characteristics of every entity. That file, usually known as the blueprint, is parsed by the
game engine at the beginning of its execution. When the game loads a new level from
the map file, it iterates over the list of the level entities and uses the blueprint file for
creating and launching them.

Figure 1 lists a portion of one of such files that describes the goblin entity. The de-
scription of the entity has two main parts, the list of components and the list of attributes.
Goblins have components that allow them, among other things, to go through the envi-
ronment and to pick up objects. All these skills are parameterized in the attributes
section. For example, the strength attribute influences the Take component, while
the height predefines the kind of objects the TakeCover component should con-
sider as protections.

2.2 Behaviour Trees

BTs define an AI driven by goals, in which complex behaviours can be created com-
bining simpler ones using a hierarchical approach. Nodes in a BT represent behaviours,
where an inner node is a composite behaviour and a leaf in the tree represents an action.
To promote reusability, behaviours do not include the conditions that lead to transi-
tions. Those conditions are represented as guards in nodes of the tree so that the same
behaviour can be used in different contexts with different guards. To further promote
reusability, behaviours may be parameterized, so that in a particular context parameters
are bound to actual values in the map. This way, a node in such a behaviour tree is
represented through: a behaviour (be it composite or a primitive action); bindings for
the parameters of that behaviour; and a guard condition that must be true at run time for
that behaviour to be activated.

From the different models of execution for BTs, we choose one where a BT has
an active branch, going from the root to a leaf, of behaviours being executed. Every
tick of the game, some guards may get evaluated and some behaviours may finish, be it
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Fig. 2. Ontology that defines the domain vocabulary

successfully or with failure, eventually leading to the expansion of a new active branch
in the tree.

Although more complex types of composites are described in the literature, for the
goals of this paper we only require three types of composites: sequences, static priority
list and dynamic priority list. A sequence composite behaviour executes its children in
the order they are defined, succeeding when every children succeeds and terminating
with failure whenever one of the children fails. Children behaviours of a sequence are
not guarded by conditions. A static priority list is a composite node that evaluates its
children guards in order and activates the first child whose guard is true. A dynamic
priority list, in its turn, re-evaluates the guards of its children with higher priority (the
first child being the one with highest priority) than the active one, and switches to a
higher priority child whenever possible.

3 Generating Abstract Cases to Support BT Creation

The creation of BTs is a difficult task that designers usually perform by means of a try-
and-fail process. The consequence is that the final quality of the BTs depends to a large
extent upon the ability and experience of designers. Our proposal consists in helping
them by means of abstract cases that are automatically computed using planning and
ontologies. This way, we suggest sets of solutions that designers can adapt and add to
the current BT.

In order to use planning we need to describe the domain and planning actions using
a formal language.The description of a planning domain includes two main parts: (a)
the description of the predicates that conform the domain vocabulary and how they are
related among them, and (b) a set of planning actions. We propose the use of ontologies
to represent the first part, that is, the vocabulary and the domain constraints. Figure 2
shows an example of ontology that intuitively describes different components of a game.
The set of planning actions, on the other hand, is strongly related to the available basic
behaviours in the game. Planning actions are described in terms of preconditions and
effects using the vocabulary available in the domain ontology.
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Fig. 3. Interactive process to create Behaviour Trees

Figure 3 summarizes our proposal to support the AI designer during the creation of
BTs. By means of a graphical interface, that can be a simplified version of the game
interface, the designer sets up a particular game scenario and some goals. Next, we au-
tomatically generate the equivalent symbolic description using the planning language,
and by means of a planner, we compute all the possible plans that solve the problem.
The planner that we use, DLPlan1, is able to generalize the resulting plans using the
domain ontology. This way, plans presented to the designer are not only specific plans
for the current scenario but general strategies or abstract cases that can be reused in
a broader set of situations (this will be described in detail later in Section 5). Then
the designer can use those cases to complete the BT that is currently building. Let’s
remember that BTs are useful in a broad set of scenarios and thus, this is actually an
interactive process in which the designer proposes different scenarios to the system and
incrementally completes the BT using the retrieved solutions.

Finally, the process by which abstract cases are integrated to the current BT is,
nowadays, manual, the designer is the only responsible of changing the BT to add the
new branches. It is important to remark that the planner works with a limited model of
the game, while the designer can take into account many more factors (like story plot
or special situations) in order to select behaviours, modify preconditions under certain
circumstances and set the priority of each alternative. The planner output, therefore,
only shows different solutions that the designer must modify, validate or reject. Anyway,
preconditions of the planning operators and the generalized plans computed by DLPlan
are usually a good source of inspiration to define the guards of new nodes in the tree.

4 Generating the Planning Domain

To be able to use planning techniques, we need a symbolic representation of the world as
well as the actions that each type of entity can perform. The basic approach is to create
this description from scratch. However, this information is, at least partially, already in
the C++ classes that programmers have to implement to develop the game and in the
configuration files that define the different types of entities.

Our proposal is to use this information in order to automatically generate all the
information required by the planner. In order to do that we have to minimally extend
the information contained in the components implementation and blueprint file.

1 Freely available at http://sourceforge.net/projects/dlplan/
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The process starts with a base domain ontology that can be seen as the basic vocab-
ulary of the game genre and it is independent of the concrete game being developed.
This domain ontology is taken for granted and it includes the basic vocabulary for de-
scribing the new type of entities and actions that the game will incorporate. In other
words, we start with an ontology similar to the one in Figure 2 but without the leaves
that correspond to the concrete types of entities in the game.

In order to populate the ontology with the new entities, we use the blueprints file.
As we showed in Section 2.1, this file has an entry per game entity, describing the set of
components and attributes it has. The only new information we need to add to this file
is two special fields in every entity, ontType and parentOnt, that set the corresponding
symbolic name for this entity in the ontology and the branch or branches in which it
must be added. This way, we can now add automatically new concepts in the ontology
to represent these new types of entities.

Once the entity has been added to the ontology, we can also add information about
their properties and the actions that they can carry out. This is done iterating over the
list of components that the entity has, asking them which information has to be in-
jected to the corresponding ontological entity. As an example, we would add the de-
scription of the Goblin entity that appears in Figure 1 with canWalk, canTake,
hasStrength.weak and other properties.

As regards the operators the planner uses, we can extract them from the compo-
nents. Most of the components are in fact the responsible of the execution of one or
more actions over the environment. They first check if the action can be carried out
and then execute it. Our method of automatically generating the planning operators
consists in extending the components with an extra task: their self-description. In that
sense, every component that represents a behaviour must be able to provide, through its
programming interface, the planning action that describes it.

Figure 4 shows the operator description that components MoveTo, TakeCover
and Take generate. The preconditions are specified in terms of the entities’ properties.

5 Plan Generation and BT Authoring

This section describes how to build BTs using our approach, i.e., taking advantage
of planning techniques to support designers during the process. Next, we introduce a
concrete example in which a BT must be created to control a greedy goblin that has
entered in a room to discover a diamond in the opposite corner. We will assume the
existence of a graphical interface (As complex games usually provide [6]) to define
different initial states and goals without having to deal with logical predicates but just
setting items and units in the map and defining theirs attributes.

Let’s start with the simplest situation, where the goblin and the diamond are in the
same room and there are no enemies near. This goblin is a warrior well armed with a
short sword, a small knife, a short bow and a sling. The room, in turn, contains some
furniture: a table, two chairs and a bookcase. Although the designer does not know it,
behind the scene this information is been automatically translated to a symbolic repre-
sentation for the planer using the vocabulary in the ontology. Now, when the designer
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WALK−TO(?who: alive, ?target: entity )
vars : ?r
pre : canWalk (?who), inRoom(?who, ?r), inRoom(?target , ?r ), aloneInRoom(?who)
post : nextTo(?who, ? target )

TAKE−COVER(?who: alive, ?c: cover)
vars : ?r , ?s1 , ?s2
pre : canTakeCover(?who), uncovered(?who), inRoom(?who, ?r), inRoom(?c, ?r ),

cover(?c ), hasSize(?who, ?s1 ), hasSize(?c , ?s2 ), lessEqSize (?s1, ?s2)
post : covered(?who)

TAKE(?who: alive, ?what: resource )
vars : ?w, ?s
pre : canTake(?who), nextTo(?who,?what), hasWeight(?what, ?w),

hasStrength (?who, ?s ), enoughStrength(?s , ?w)
post : inInventary (?who, ?what)

Fig. 4. Planning operators corresponding to some basic behaviours.

defines the goal (the goblin gets the diamond), the planner shows the only possible plan:
walk until the diamond location and take it:

1. WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

Actually, using the abstraction capabilities of DLPlan we are able to point out that
this plan is applicable in several more scenarios, because the plan only requires goblin1
to be an entity that can walk and take things and that is alone in the room, and dia-
mon1 to be a small item. The generalization process followed by DLPlan to reach this
conclusion is based on the ontological domain definition and it is described in [11].

Using this information, the designer builds the red branch, with dashed borders, of
the BT shown in Figure 5, that represents the only plan available in this scenario. It is
important to mention that plans generated using the planner are sequences of actions
that correspond to the leaves of the BT. The definition of internal nodes in the tree to
group basic actions and to represent different alternatives is responsibility of designers.

Next, the designer must complete this basic BT to make it useful in other scenarios
as well, for example when there is an enemy in the same room that has already detected
the goblin. This time the planner computes several more possible plans:

1. ChargeAt(goblin1,sword1,enemy1), WalkTo(goblin1,diamon1),
Take(goblin1,diamon1)

2. ChargeAt(goblin1,knife1,enemy1), WalkTo(goblin1,diamon1),
Take(goblin1,diamon1)

3. TakeCover(goblin1,table1), LRAttack(goblin1,bow1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

4. TakeCover(goblin1,table1), LRAttack(goblin1,sling1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

5. TakeCover(goblin1,bookcase1), LRAttack(goblin1,bow1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)
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Fig. 5. Example of BT creation from different plans

6. TakeCover(goblin1,bookcase1), LRAttack(goblin1,sling1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

It is important to mention that during the computation of these plans the planner has
performed some interesting inferences using the domain knowledge. For example, the
planner has used the table and the bookcase as possible covers and different weapons
have been classified in melee or long range weapons. With those inferences, the six
generated plans are in fact two different strategies parameterized with different values:
charge against the enemy and then take the diamond; or look for a cover, attack the
enemy from the distance and then take the diamond:

1. ChargeAt(goblin1,sword1,enemy1), WalkTo(goblin1,diamon1),
Take(goblin1,diamon1)

2. TakeCover(goblin1,table1), LRAttack(goblin1,bow1,enemy1),
WalkTo(goblin1,diamon1), Take(goblin1,diamon1)

Again, using the abstraction capabilities of DLPlan, those plans are applicable in
more general scenarios than the current one, in this example sword1 represents any
melee weapon and bow1 any long range weapon.
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The computation of plans and the later generalization is performed behind the scene,
and so, the designer only sees the generalized plans. Then, he has to complete the previ-
ous behaviour tree to incorporate the new possibilities. The resulting BT is built adding
the orange branches, with continuous borders, shown in Figure 5. Basically, the previ-
ous branch is only applicable if there are no enemies in the room, and in other case we
have to kill the enemies first.

Finally, the designer wants to complete the BT with new branches that will be exe-
cuted when there is an enemy in the room but he has not detected the goblin yet. This
time, the planner computes several solutions that can be summarized in three strategies:
(1) take a cover, attack from the distance, go until the diamond and take it; (2) sneak
until the enemy, stab him, go until the diamond and take it; and (3) sneak until the
diamond and take it (without killing the enemy).

Next, the designer adds these new alternatives to the BT, obtaining something sim-
ilar to the Figure 5 . In this case, the strategy of looking for a cover and attacking using
a long range weapon was already in the previous BT so we only need to add the other
two plans (green branches with dotted borders).

6 Related Work and Conclusions

Authoring the AI for non-player characters in modern video games is an increasingly
complex task. Behaviour Trees, as successor of Hierarchical Finite State Machines, are
a promising and emergent technology to represent the complex behaviours that the mar-
ket demands. However, designers that have to build these BT usually do not have a pro-
gramming background and do not find them intuitive enough. Consequently, we have to
provide the designers with good tools to support the BT creation process. In particular,
we propose the combination of planning and ontologies to propose abstract cases to the
designer, that will incorporate them into the BT after the required adaptations.

We have described an interactive process in which the designer proposes different
scenarios and goals and the planner computes all the possible solutions and generates
abstractions for the initial state. Then the designer uses that information to build a more
robust and versatile BT that represents different plans as different branches. The use
of off-line planning techniques, let us to explore the space of design possibilities, and
does not have the computational cost of planning during the game execution. The use
of ontologies, on the other hand, provides an intuitive way to describe scenarios and
interact with the planner. In order to make this approach feasible within state-of-the-art
video game technology, we generate the planning domain through an extension of the
component-based approach for representing entities which is widely used in commer-
cial video games.

Related approaches have been described in [7, 4]. Pizzi et al. [7] use a planner to
compute every combination of actions to solve each level, and show them to the human
designer like a comic, to let him check if there are any gaps in the storyline or in the
design of the level. Another related work is the one described in [4] where the authors
propose the use of planning to coordinate the behaviours for NPCs that are not main
characters in the storyline of role games. Our approach does not generate the full be-
haviour for an NPC as [4], but proposes particular plans for particular situations, and
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the human designer is responsible for incorporating those traces into the tree he is de-
signing. On the other hand, we differ from [7] because we intend to assist the designer
on building the behaviour for an NPC, instead of supporting a kind of validation of a
game level by exploring the solutions that the player may try, so that the designer may
choose to re-design the level in order to avoid certain solutions.

Regarding CBR in games, most of the works in literature focus on how to use cases
during the execution of the game, either to improve the quality of the final AI or to im-
prove the performance of the AI engine. In [1], cases consist of strategies applicable to
specific situations in the real-time strategy game Stratagus. Using these strategies, they
were able to beat opponents considered “very hard”. Another interesting work presents
the multi-layered architecture CARL [12], that combines CBR and reinforcement learn-
ing to achieve a transfer-learning goal in another real time strategy game.

As future work we will study how to improve the interface between the planner
and the BT authoring tool, and how to semi-automate the translation process between
both representations. We are also interested in developing debugging tools to help the
designer to understand the inferences that the planner does why the planner proposes
some solutions and rejects others in particular scenarios.
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Abstract. Real-time strategy (RTS) gameplay can be divided into 
macromanagement and micromanagement. Other researches have employed 
Case-based reasoning (CBR) and case-based planning in real-time strategy 
games that have beaten static scripted computer opponents. Unlike much of the 
previous work where CBR and case-based planning is used to improve the 
macromanagement in RTS games, we present a CBR system that can be used to 
improve the micromanagement quality in RTS games. We explore various ways 
of case matching mechanisms suited for a micromanagement environment. By 
managing to beat a hard-coded computer opponent we conclude that our 
approach can be used to aid human players against computer opponents and 
increase the quality of the micromanagement of a computer player. Our 
experiments have been conducted within the Warcraft 3 gaming environment. 

Keywords: case-based reasoning, real-time strategy games, micromanagement 

1   Introduction 

The computer player performance in the popular real-time strategy (RTS) game genre 
has always been poor. Although AI techniques have successfully been applied in 
other related game genres like classic board games, the computer players in RTS 
games (often commonly referred to as game AI) are still lagging behind and can 
easily be defeated by amateurs [4]. Unlike games like chess where each player waits 
until the opponent makes his move, game flow in RTS games is simultaneous and 
continuous. Players usually compete within areas of resource gathering, structure 
building and army management, watching hundreds or even thousands of interacting 
objects from a top-down perspective. Due to the genre’s nature, the game AI has to 
make decisions in real-time in an inaccessible, non-deterministic, dynamic and 
continuous environment with vast search spaces. Here traditional search methods no 
longer apply [4, 6, 8].  

RTS gameplay can further be divided into macromanagement and 
micromanagement. Micromanagement is the way a player manages his or her units 
during combat or resource gathering. In the RTS game context a unit is a single 
character that may have several associated attributes like attack type or movement 
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speed. In contrast to macromanagement, which focuses on overall game strategies 
involving a player’s army like positioning or army composition, micromanagement 
describes all the small details that involve the individual units themselves (enemy unit 
targeting, spell casting etc.). The macromanagement has been addressed by many 
studies of CBR in relation to RTS games [5, 6, 7]. However, very little has been done 
in relation to micromanagement which is usually just handled by the game itself.  

In the study presented here a case-based reasoning system has been implemented in 
the game Warcraft 3. The system focuses on the micromanagement of units during 
battles. Specifically, we are interested in how case-based reasoning can improve the 
quality of micromanagement in a real-time strategy game. We study how to beat the 
already implemented game AI in Warcraft 3 as well as how a CBR system can be 
used to aid human players. To avoid confusion, the already implemented game AI in 
Warcraft 3 will be referred to as “computer opponent” while our implemented CBR 
system will be referred to as “CBR player”.  

The rest of this paper is structured as follows: Chapter 2 gives a brief introduction 
to micromanagement in Warcraft 3. In Chapter 3, 4, 5 and 6 we present our 
implemented CBR system, with the results presented in Chapter 7. Chapter 8 
continues with a discussion of the results. Finally Chapter 9 summarizes and provides 
conclusions about the project. 

2   Background 

Warcraft 3: Reign of Chaos is an RTS computer game released by Blizzard 
Entertainment in July 2002. During typical “melee” gameplay in Warcraft 3 each 
player starts with a main building and five workers. By gathering resources new 
buildings can be constructed and the player gains access to new units, technologies 
and structures (Figure 1). By specific build strategies and unit control in battle each 
player tries to get the upper hand to win the game by eventually destroying all 
opponents [2, 3]. The way Warcraft 3 is constructed makes micromanagement one of 
the most important aspects of the game. A micromanaging player can easily defeat a 
non-micromanaging player without loosing a single unit in most battle setups.  

Before choosing Warcraft 3 as our game environment we also considered using the 
Wargus/Stratagus environment [10], an open source clone of the game Warcraft 2 
(older version of Warcraft 3), and ORTS [11], an open source programming 
environment for RTS games. Wargus has been successfully used in other studies that 
show how a CBR approach can beat scripted computer opponents [6]. However, those 
environments focus mostly on other aspects of RTS games than micromanagement in 
battle [9]. Wargus is mostly designed for macromanagement while ORTS is focusing 
more on low level tasks like pathfinding, formations and resource gathering.  

From a micromanagement perspective, environments like Wargus compared to 
Warcraft 3, are not very friendly for human players. Compared to Warcraft 3, units in 
Wargus die quickly, the interface does not give a good overview of unit status or 
support efficient unit management. Under such conditions, a human player has 
problems to react in time and can not micromanage efficiently. Since both Wargus 
and ORTS are open source, they can be converted to a suitable micromanagement 
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environment for our needs. The problem is the amount of work needed to do so. On 
the other hand, since Warcraft 3 is not open source, the whole CBR system must be 
created from scratch by tools offered by Warcraft 3. Luckily, Warcraft 3 has an 
internal scripting language [13] that makes this possible. It is also worth mentioning 
that despite its age, Warcraft 3 is still a popular game. This makes it easy to find 
suitable human testers for systems implemented in its game environment. Because of 
Warcraft 3’s human-friendly interface, suitable human tester availability and due to 
our study’s time limitation, we decided to use Warcraft 3 as out game environment. 

 

Fig. 1. A screenshot from Warcraft 3. 

3   System Architecture 

When designing and implementing our system we had to keep in mind that it would 
run on an end-user’s computer inside the Warcraft 3 game. Therefore we wanted our 
CBR system to be simple and efficient. We also limited our game environment from 
factors irrelevant to micromanagement. The system uses the three steps in the 4R 
CBR model [1] and can be summarized by the following algorithm: 
 
1. Store the current game state as a new unsolved case in memory. 
2. Compare the new case to the existing cases in memory and retrieve the most 

similar one. 
3. Map the solution from the chosen case and execute the retrieved case. 
4. If in training mode and a problem is observed, add a new case to the system. 
5. Wait 1 second then go to 1. 
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Fig. 2. Overview of the CBR system. 

Figure 2 shows a more detailed diagram of the CBR system. Every second, the 
current game state is abstracted into a case and compared to previously stored and 
solved cases. The most similar case is retrieved and the solution provided by that case 
is executed. At any time during execution new cases can be added. This is typically 
done when the system is executing a wrong case or a new case is needed (decided by 
an expert). Adding a case is done by halting the game and entering a new strategy that 
is supposed to be followed next. For a screenshot of the CBR system see Figure 3. 

4   Case Structure and Indexing 

The game state relevant to our system consists of units battling each other in a 
battlefield area (the battlefield in our system is a square shaped region where the 
battle takes place). We are not interested in a player’s resources, structures or units 
outside the battlefield. Our choice of relevant attributes that were added to the case 
descriptions describing the game state were “unit type”, unit remaining “hit points” 
(determines the amount of damage a unit can withstand), unit remaining “mana 
points” (mana in Warcraft 3 is “magical energy” that some units can use to cast 
spells) and “unit position” relative to the battlefield (x and y coordinate).  

Our case structure is a simplified version of the proposed structure by Cheng et al. 
[5] and consists of a condition part, description part and a solution part. The condition 
part of a case consists of a set of conditions that have to be fulfilled to be able to 
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execute the solution part of the case. This is also the primary indexing part of our 
cases, i.e. only cases where the condition parts can be fulfilled are compared to the 
current game state. If the solution part of a case has an action that orders a unit to cast 
a certain spell, the condition part needs to check whether such a unit exists on the 
battlefield and if it exists, whether it has enough mana points to cast the spell. The 
description part of a case simply describes the situation when the case was learned. It 
consists of two arrays, one for each player, which stores our chosen attributes (unit 
type, remaining hit points, remaining mana points, x-coordinate and y-coordinate for 
all units involved). The description part is used for case matching. Finally, the 
solution part consists of a strategy that contains actions and behaviors. Actions are 
simply individual unit orders like attacking an enemy unit, moving to a specific point, 
healing a friendly unit etc. A behavior is a set of actions that trigger when some 
condition or conditions are met. Behaviors are used to both decrease system reaction 
time (currently 1 second) and the number of cases. Something important might 
happen that requires a fast response between the 1-second intervals our CBR system 
currently uses. By using behaviors it is possible to react quickly by setting the 
important happening as a condition. An example of a behavior of a unit might be to 
retreat when getting low on health or cast a spell when having enough mana points. 
Using behaviors can also potentially decrease the number of cases needed. For 
example if a player has ten different units in his or her army and wants to retreat with 
a unit once it gets low on hit points, at least ten cases must be learned (one for each 
unit when its hit points are at a certain low value). By setting an escape behavior on 
the units involved, only one case would be needed. 

5   Similarity Metric 

Our case retrieval process uses a nearest neighbor algorithm. It is a similar algorithm 
that Ontañón et al. use in their project [7]. The difference is mainly that our approach 
does not use goals (therefore the part of the equation matching goals is not included). 
The similarity metric is as follows: 
 

d(c1, c2) = dGS(c1.U, c2.U) (1) 

 
Here c1 and c2 are the compared cases while c1.U and c2.U are the sets of units 

contained in those cases. dGS( ) is a Euclidean distance between game states 
(between units). To measure distance between two units the following distance is used 
(2.1 if same unit type, 2.2 otherwise): 

 

dGS(u1, u2) = ((pi - qi) / Pi)^2∑  . (2.1) 

dGS(u1, u2) = 1∑  . (2.2) 
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Fig. 3. A screenshot from the CBR system during training. Left: similarity trace generated by 
comparing a new unsolved case to existing solved cases. Upper right: helping tool used by the 
expert during training. Lower right: overview over learned cases. 

u1 and u2 are the units compared. Pi is the maximum value of the attribute i (pi and 
qi are the values of attribute i belonging to the compared units). When units are 
different, the distances between their corresponding attributes is set to 1. 

This metric favors cases with equal amount of units. The similarity metric can have 
a value between 0 and 2√n. Here n is the maximum number of units contained in 
either the compared case or the current game state. n usually has values between 4 
and 40, which is the amount of units involved in a typical Warcraft 3 battle. Similarity 
values of 2√n can be obtained by comparing two totally different cases, where n is the 
number of units in the largest case (the case containing most units). During case 
retrieval all executable cases are compared, by use of the described metric, with the 
current game state, and the most similar case (the case with the smallest d(c1, c2) 
value) is chosen. If no case is found, the units just follow their old orders from the last 
case executed. 

6   Case Matching 

The case matching process starts by retrieving the subset of cases from the case base 
which fulfill the condition part of the new case. This requires a 100% match and 
increases the performance of the system as well as prevents selection of cases that can 
not be executed. The similarity assessment is then executed among these cases based 
on the similarity of the description part of the cases (hit points, mana points, unit type 
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and position). We implemented four different case matching methods, as detailed by 
Szczepański [12]: 

 
1. Unit sorting. Units are constantly sorted by remaining hit points. The existing cases 

are also sorted in the same way. During matching the first unit in the new case is 
matched with the first unit in an old case etc. 

2. Unit similarity. Most similar units matched together, same metric as described in 
Chapter 5. The existing cases are not sorted. 

3. Commitment. Units are numerated before battle, numeration does not change. 
During matching equally numerated units are compared. 

4. Unit sorting with enemy in reverse order. Similar approach as 1. Differs by sorting 
of enemy units (sorted inversely). 

 
Approach 1 and 4 are motivated by one of the most important principles of 

micromanagement: killing one unit at the time reduces the DPS (damage per second) 
of the enemy army faster that killing several units at the time (it is assumed that 
killing n units at the time takes n times longer than killing one unit). This is because 
in Warcraft 3 a unit deals the same amount of damage regardless of its remaining hit 
points unless it is dead. Approach 2 tried to find the most similar units in the current 
new case (current game state) and the retrieved case when applying strategies and 
behaviors. The 3rd approach was the simplest possible. Units were enumerated before 
battle and the enumeration did not change.  

Each matching approach was tested in a very simple setting of two teams of 5 units 
battling each other. On that basis approach 4 was selected because it was the approach 
that needed the least amount of cases to beat a computer opponent. Enemy units are 
sorted such that the first unit has the least remaining hit points while the CBR 
system’s units are sorted in the opposite way (the first unit has the most remaining hit 
points). This makes the cases reusable (attacking units with lowest remaining hit 
points is most often the correct/optimal play). The presorting of units in cases also 
serves the role of case adaptation. This is because units from the new case that are 
matched together with units from the retrieved case also receive the corresponding 
actions and behaviors from the solution part of the retrieved case (unit type must be 
the same). 

7   Testing 

The main purpose of the tests was to compare the performance of our CBR system 
against human players to the performance of the computer opponent in Warcraft 3 in 
the same setting. Having our limited case representation in mind (no information 
about terrain etc.) and that our CBR system focuses purely on micromanagement, we 
isolated the testing battlefield to a perfectly flat rectangular area. The battlefield, 
shown in Figure 3, contains two armies (controlled by the CBR player and the 
computer opponent) fighting each other in a mirror battle (both armies are equal). The 
testing was divided into four parts. We started by training the CBR system against a 
computer player. We then tested the trained system against the computer player 
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without training.  Next, both the CBR  system  and  the computer player were tested 
against human opponents. Finally, to test the applicability of the CBR system as an 
aiding tool, both human players and the CBR system were tested in a cooperative 
mode against the computer player. A test proceeded as long as there were units on the 
battlefield belonging to different players. The human players were divided into three 
categories: novice, casual and expert players. A player would be considered novice if 
he had some minor RTS experience while expert would be a person able to easily beat 
an “insane” computer opponent (the hardest difficulty of a computer opponent in 
Warcraft 3). We had 10 persons for the tests. Those were students (the novice players) 
and people from the Warcraft 3 gaming community (the casual and expert players). 

The CBR player was trained by playing repeatedly against a computer opponent. 
Whenever the system did execute an inappropriate case an expert halted the game and 
added a new case. Whether or not an executed case was inappropriate with respect to 
the current game state, was solely determined by the expert player. After learning 25 
cases, our system was able to beat the game AI in Warcraft 3 in our setting (details in 
Table 1). A screenshot from the training of the CBR system is shown in Figure 3. 

Table 1. Testing resuslts during training against the computer opponent. 

Training step Cases added Units lost by CBR system Computer units killed 
1 7 All 7 
2 6 All 11 
3 5 All 6 
4 3 All 7 
5 3 All 7 
6 1 5 All 

 
When finished with the training, we tested the trained CBR player against the 

insane computer opponent. The CBR player won all of the 10 games by an average 
loss of 2.5 units out of 14 per game. Next, we performed tests where human players 
played against a computer opponent. The feedback received from novice players was 
that the micromanagement provided by the insane computer opponent was simply too 
hard to beat. Similar feedback was received from the casual players. The expert 
players, on the other hand, complained that the insane computer opponent was too 
easy to beat (the expert players often managed to beat the computer opponent without 
loosing a single unit). The same response was received when human testers played 
against the CBR player. The major difference was that the expert players needed 
some games to figure out how to beat the CBR system. They did not manage to beat 
the CBR player without loosing only a few units. Finally players played with the CBR 
player on their side such that the CBR player was given the control of all unselected 
units. Interestingly, all groups of players managed to beat the insane computer 
opponent. The dependency observed was that the novice and casual players did better 
in this setting than the experienced players. The experienced players found this setting 
very disturbing because the CBR player was destroying their executed strategies. One 
example of this was when an expert ordered a near-death unit to retreat while a couple 
of seconds later the CBR player brought it back into battle. The novice and the casual 
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players liked this setting because they could relax and focus only on a few units 
instead of the whole army. 

8   Discussion 

Our approach managed to create a working system that was capable of beating both 
computer and novice/casual human players. The system also added more challenge to 
the micromanagement for experienced players. Having the CBR system on their side, 
novice and casual players were able to easily beat the insane computer opponent. By 
using a setup that gives a novice or casual player aid from a CBR player, while 
putting the CBR player against expert players, one should be able to increase the 
entertainment value of a played RTS game. However it is also important to note that 
since our number of human testers was low, the results are a mere indication of what 
to expect from our CBR system in the future. 

Though working, the CBR system also has some weaknesses that were 
encountered during the training in Chapter 7. During the development phase the unit 
setup was rather simple and the five attributes used (unit type, hit points left, mana 
points left, x position and y position) sufficed. Those attributes do not give any 
information about the past history of what the various units have been doing for the 
last few seconds. This means that our CBR system does not distinguish between a 
very active, moving unit and a passive, stationary unit. The system will continue to 
attack a unit independent on whether or not the attacked unit has been moving around 
in circles, avoiding most of the attacks. We also observed that our similarity metric 
was inefficient in many situations. This was because we compared the position x and 
position y attributes directly instead of looking at the configuration and patterns of 
units on the battlefield. Using unit positions directly without abstracting it into more 
complex structures like unit formations, caused bad case reuse. 

We also encountered a problem with unnecessary and unintended unit movement. 
Unit behaviors and actions are defined by the position in the unit list sorted by the 
attribute “remaining hit points”. When units swap places in this list, they also get new 
corresponding actions assigned. Repositioning is needed when such units are far from 
each other. If such units swap a lot, most of the game time will be used for moving 
units back and forth resulting in huge damage loss. To avoid this problem, an expert 
needs to foresee this and adjust the strategy such that swaps in the unit list sorted by 
the attribute “remaining hit points” occur as seldom as possible. 

9   Conclusion 

The work presented in this paper shows how a CBR system focusing on 
micromanagement for the RTS game Warcraft 3 can outperform the original game AI 
in addition to novice and casual human players. Even though we encountered some 
problems during testing against human players, our approach looks promising.  

There are several ways our system can be improved. To prevent unit chasing and 
inefficient case choosing, our case representation can be extended to include 
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information about both opponent playing style and unit activity attributes. To avoid 
classifying units that run small distances back and forth as very active units, it is 
important to not only consider the total distance traveled but also the effective change 
in position during a time interval. An increased reusability of cases might be obtained 
by comparing unit position attributes as patterns and not directly. Better/new case 
adaptation approach is also needed to reduce unnecessary unit movement. One 
solution could be to have a dynamic case adaptation that sorts by remaining hit points 
when the unit count is low, but changes to some more suited case adaptation approach 
when the number of units increases. Complex actions/behaviors that need longer time 
to complete are not supported by our approach. Combining macromanagement with 
micromanagement might be one way to solve this. Another opportunity is to convert 
our approach into a case-based planning system. 
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Preface

Knowledge discovery is a key element and challenge in the Case Based Rea-
soning problem solving process. By its nature, knowledge discovery is usually
uncertain and in order to make effective use of discovered knowledge, the types
of uncertainty need to be determined and dealt with using appropriate methods
and techniques. Discoveries can be naturally imprecise, stochastic, fuzzy and
subject to prescribed tolerances. Uncertainty can also affect the useful applica-
tion of knowledge discoveries in the CBR cycle and can raise issues of confidence,
possibly making the ensuing reasoning unconvincing to its end users. Further on,
similarity also needs to deal with uncertainty, especially in knowledge areas with
complex, approximate, imprecise cases and heterogeneous domains: The domain
knowledge underlying the specification of similarity measures or the adaptation
of retrieved solutions is usually uncertain and incomplete. Moreover, as problem
solving in CBR is primarily of heuristic nature, various aspects of uncertainty
also emerge within the case-based processing of knowledge. Indeed, these sources
of uncertainty are inherent to CBR and actually concern all phases of the case-
based problem-solving process and are relevant in all CBR knowledge containers.

Case-based reasoning must face the challenge to deal with uncertain, incomplete,
and vague information, which leads to the need of suitable methods for model-
ing and reasoning under uncertainty, appropriately complemented by tools for
learning and knowledge discovery. Over the past years there has been increased
interest in formalizing parts of the CBR methodology within different frame-
works of reasoning under uncertainty, and in building hybrid approaches by
combining CBR with methods of uncertain and approximate reasoning and soft
computing.

The objective of the workshop is to provide an opportunity for exchanging
ideas related to the application of various techniques of uncertainty management,
knowledge discovery, and similarity in CBR. The workshop aims at providing a
forum for the discussion of recent advances in this research field and to offer an
opportunity for researchers and practitioners to identify new promising research
directions.

This workshop is a follow-up event of the workshops organized at the ECCBR’06
conference in Ölüdeniz/Fethiye, Turkey (namely the “Uncertainty and Knowl-
edge Discovery in CBR” Workshop), the ICCBR’07 conference in Belfast, Ireland
(the “Uncertainty and Fuzziness in Case-Based Reasoning” and the “Knowledge
Discovery and Similarity” workshop) as well as the ECCBR’08 joint-workshop on
“Uncertainty, Similarity, and Knowledge Discovery in CBR” in Trier, Germany.

Just like its forerunner, it aims at providing a forum for the discussion of
recent advances in the application of uncertainty and knowledge discovery tech-
niques in case-based reasoning, and to offer an opportunity for researchers and
practitioners to identify new promising research directions. Among the submis-
sions that we received, four contributions have eventually been accepted.

151



The first paper of Ulf Müller, Thomas Barth and Bernhard Seeger discusses
the retrieval of 3D shapes using geometrical similarity search based on M-tree-
based indexing. They present specific requirements for indexing-methods that
can be used for 3D product data retrieval. The second workshop paper by Su-
tanu Chakraborti goes back to the roots of CBR and picks up on computa-
tional models of human memory introduced by Roger Schank. The paper carries
Schank’s ideas further and transfers them to a dynamical systems approach as
a non-conventional model of memory based reasoning as well as it comments on
the strength and weaknesses of this approach.

The remaining two papers focus on knowledge discovery and how to cope with
uncertainty in CBR applications. Stelios Kapetanakis, Miltos Petridis, J Ma and
Liz Bacon present an intelligent workflow monitoring system, which analysis and
subsequently reduces the number not-finished workflows of an exam moderation
system. They use a graph representation to model temporal relationships within
workflows and show that the analysis of past workflow event logs can reduce
the uncertainty in similarity based matching and improve the efficiency of the
reasoning process. In the fourth workshop paper Rong Hu, Brian Mac Namee
and Sarah Jane Delany present an active learning strategy that selects new
examples using k-NN based confidence measures. In this paper they deal with
the aspect that active learning selection strategies that measure certainty using
factors rather than classification scores are more effective.

In closing this preface, we would like to recognize all the colleagues who
helped to review the submissions and to guarantee the quality of the papers
that have been included.

Kerstin Bach July 2009
Miltos Petridis
Michael Richter
Rosina Weber
Eyke Hüllermeier
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Abstract. Increasing the efficiency of knowledge-intensive processes is a major 

challenge especially in those domains where expert knowledge is the decisive 

factor for the successful and efficient fulfillment of complex tasks. In the 

engineering domain, one of the most knowledge-intensive and time-consuming 

core processes is the cost estimation, design, and construction of a product and 

its production tools (e.g. an automotive supplier part) answering a customer’s 

specific request. Most of the knowledge necessary to fulfill these processes and 

which is in turn generated in the course of these processes is represented 

through the product’s three-dimensional geometry. Hence, efficient retrieval of 

geometrical data is a key issue when supporting these processes with a case-

based reasoning (CBR) approach. CBR techniques for supporting these 

processes enable a process participant to analyze whether there is the 

opportunity to speed up such a knowledge-intensive and time-consuming 

process by reusing sufficiently similar, previously generated product-related 

data and/or documents representing sophisticated expert knowledge. 

In this paper we describe the specific requirements for adequate indexing-

methods to be used in our system for 3D product data retrieval. An M-tree-

based indexing structure is presented to support the k-nearest neighbor search 

answering a given query by a 3D geometry. As a proof of concept the M-tree 

indexing method was implemented in the context of our search engine and 

validated using the Purdue Engineering Shape Benchmark dataset. 

Keywords: Geometrical similarity search, shape-based indexing, M-tree, 

product data retrieval 

1 Introduction 

The continuously increasing need for the optimization of processes – especially in the 

presence of knowledge-intensive tasks within these processes – already led to various 

approaches for managing the necessary knowledge. Among those one can roughly 

distinguish between organisational approaches and technically oriented approaches 
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focusing on retrieving data representing the necessary knowledge to solve a given 

task. 

Due to the high degree of knowledge intensity of their processes and tasks, 

enterprises in the manufacturing industry – e.g. automotive manufacturers as well as 

suppliers – seek a way to accelerate and improve them. One approach to achieve a 

substantial improvement is to optimize and increase the knowledge management. In 

previous papers we have discussed a similarity search engine to support the 

knowledge management during the Product Lifecycle (PLC) by techniques from 

Case-Based Reasoning (CBR, [1]). The developed search engine and the related 

methods for similarity analysis as core parts of the PROXIMA framework [2] are 

capable of searching various data types relevant in Product Data and Product 

Lifecycle Management (PDM/PLM) such as numerical, alphanumerical and 

geometrical data related to products and their manufacturing processes. In the context 

of the design and construction processes in engineering, one main aspect of assessing 

similarity between two products is the similarity of their geometry represented by 

three-dimensional models (3D shapes). As a brief example for this CBR approach to 

efficient process support, one can think about the gain in efficiency when retrieving 

geometrical information about similar products by manually searching in large 

amounts of CAD files spread across several file servers or even searching in 

collections of printed drawings and communicating to colleagues about certain 

features of a product compared to the use of a search engine in a structured product 

data base. Since engineers spend about 30% of their time on searching for various 

kinds of information, improving this search process is of major importance to 

companies and their highly-skilled engineers. 

A large number of methods have been developed to compute the “distance” (as a 

measure for similarity) between 3D shapes and to retrieve similar shapes from a given 

database [3, 4]. All these different methods have in common that the calculation 

necessary to compute the actual similarity takes a lot of effort since high-dimensional 

descriptors containing e.g. statistical measures of the color distribution must be 

derived from the 3D models. A subsequent challenge to the efficient retrieval of 

geometrical data is the efficient similarity search within large datasets containing 

complex descriptors [5]. 

Responding to these challenges, the following paper discusses requirements for 

indexing methods handling large datasets of complex, high-dimensional descriptors. 

The M-tree indexing method is identified as one way to answer these requirements. 

Accordingly, the remainder of this paper is organized as follows. Section 2 surveys 

related work and compares our approach with similar approaches. In section 3, 

specific requirements for indexing large datasets containing 3D shape descriptors are 

derived. An M-tree based index structure for 3D shape descriptors that is answering 

those requirements is presented in Section 4. Section 5 contains the experimental 

validation of this approach using the implementation of the M-tree within the 

similarity search and the Engineering Shape Benchmark dataset. Section 6 concludes 

this paper with a brief summary and directions for future work. 
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2 Related Work 

Azuaje et al. classify the retrieval of cases from a given case base into three main 

groups: Distance-based, indexing-based and hybrid approaches [6]. The simplest 

approach is the distance-based approach where the distance between two cases can be 

calculated by measuring the distance between the attributes describing the case. Most 

3D retrieval systems follow this kind of strategy for shape retrieval [7-11]. Two 

different types of retrieval are used in this context: Retrieval by an especially created 

3D shape descriptor [9] or retrieval by example. This example can be an existing 3D 

model [8, 9], a 3D model created from scratch or 2D sketches of a 3D model prepared 

by the user [7, 8].  

A drawback of all of the aforementioned systems is the increasing time for 

answering a request with an increasing number of entities in the databases. There are 

only a few approaches which try to avoid this problem of increasing request times by 

shifting the retrieval strategy from distance-based to index-based [12-18]. Two 

examples for index-based retrieval on 2D data are the approaches by Mahmoundi and 

Daoudi [12] and Garcia-Pèrez et al. [13]. In both cases an M-tree is used to store 

image descriptors. Garcia-Pèrez et al. motivate the usage of the M-tree with their 

high-dimensional but non-vector structured descriptor. Another approach is presented 

by Wong et al. [14] where a Self Organizing Map (SOM) is used to reorganize the 3D 

models in a hierarchical structure. In [15] a similarity search engine for multimedia 

data is presented which uses a density-based clustering algorithm for structuring the 

databases. A clustering algorithm for CAD databases was also topic of research done 

by Chakraborty [16]. The described systems use a shape similarity measure to classify 

3D models. In [17] an early attempt of a shape-based search system is shown which is 

based on the R-tree, a feature-based index structure for high dimensional data. In [18] 

Berthold et al. describe the X-Tree as an advancement compared to the R-tree. 

All the aforementioned approaches to efficient 3D shape retrieval can be classified 

into three groups based on their indexing strategy: First, clustering-based approaches 

grouping similar objects. Clustering-based methods utilize distance functions which 

can be formulated independent from domain-specifics which are beneficial when 

considering datasets from various domains. But retrieving 3D shapes based on a 

clustered dataset implies a large computational effort necessary to update the clusters 

each time the dataset is modified (e.g. computing the n×n similarity matrix for a 

dataset with n 3D shapes). In a practical use case with large datasets, this would lead 

to inacceptable response times. 

The second group contains multi-dimensional feature-based trees like the R- or the 

X-tree. These are only applicable to feature-based datasets, a prerequisite which 

cannot be guaranteed in the context of shape-based retrieval. 

Third, M-tree based approaches can be identified as being capable of handling 

high-dimensional descriptors and flexible in terms of the descriptors which can be 

indexed. Because of the fact that different types of shape descriptors perform different 

on datasets consisting of different, domain-specific 3D shapes [19] it is necessary to 

evaluate and apply an indexing method which can be applied to different types of 
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descriptors from the case bases containing cases with shapes from probably different 

domains. 

3 Requirements for Indexing Methods on Datasets containing 

Complex 3D Shape Descriptors 

When thinking about any kind of information retrieval e.g. for documents, images or 

3D shapes, the two main requirements are certainly efficiency and accuracy. To 

validate the accuracy of a selected descriptor method, various benchmarks have been 

developed during the last years (s. e.g. [19, 20, 21]). Most recent approaches have 

focused on analyzing the efficiency of a single distance computation and the accuracy 

of the retrieval but the efficiency analysis of the whole retrieval process and the 

development of a specialized index structure were not included. 

The majority of methods which are used to numerically represent the 

characteristics of a 3D model are based on feature vectors [3, 4]. Considering this it is 

not surprising that most attempts to organize shape descriptors in an index structure 

are also feature-based. The usage of feature vectors is a standard technique for 

multimedia retrieval in case it is not possible to compare two objects (e.g. 3D models) 

directly because of their complexity [5]. Besides the feature-based approaches there 

exist shape matching methods which are based on graph structures, view-based 

descriptors or histograms [3, 4, 22]. The variety of domains and applications using 3D 

models results in various techniques to summarize and compute the domain-specific 

similarity. Hence, an index structure is required which is suitable to index datasets 

containing probably different types of descriptors from different application 

domains. This requirement makes feature-based approaches which map the feature 

values into a multidimensional space almost inapplicable in our context. 

In contrast to these approaches, a technique is preferred allowing the distance 

function to be treated as a black box to create the index structure without regarding 

domain-specific features. In addition to this requirement, the index structure should be 

based on the overall similarity and not only on similarity considering a subset of all 

available attributes. The usage of range queries and k nearest-neighbour queries 

has to be supported and it should be able to handle large amounts of data. This means 

it should be able to deal with a dynamically changing dataset as it is the case when 

considering the retrieval of 3D shapes from a product database. Efficient insert, delete 

and retrieval operations should be available. 

One index technique which satisfies these requirements is the previously discussed 

M-tree.  

4 3D Shape Indexing using the M-tree 

The most common strategy for 3D shape retrieval is to start a request with a query or 

an example. As already mentioned in most existing system this approach is distance- 

and not index-based. An innovative and effective index structure is the M-Tree [23], 
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which efficiently supports proximity queries on very large data sets by employing a 

distance function only.  

The M-tree can be viewed as generalization of the B+-tree for metric data, where 

only a metric distance function dist has to be provided by the user. The data objects 

are kept in pages (of fixed size) that represent the leaves of a balanced tree with 

logarithmic height. The index nodes contain routing entries, which consists of a 

routing element and a pointer to a subtree. Each of the routing elements itself is 

represented as a triple (C, r, dP), where C is an object and r is the radius of a ball with 

center O. The invariant of the M-tree guarantees that the data objects in the associated 

subtree are in the ball, i. e., dist(C,O) ≤ r for all objects O that are in the leaves of the 

subtree. The parameter dP represents the distance from C to the center stored in the 

corresponding routing element of the node. This parameter is used for efficient 

processing of queries, which will be explained in the next paragraph. 
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Fig. 1. M-tree Example 

An example of an M-tree for a set of 8 points {P1,…,P8} is illustrated in Fig. 1. On 

the left hand side, the points and their enclosing circles C1,…,C6 are plotted, whereas 

on the right hand side the tree-structure is depicted. For sake of simplicity we set the 

minimum node capacity to 2, which is generally much higher for M-trees. Note that 

circle C1 is represented by its center P7 and its radius dist(P7,P5). The associated 

subtree is rooted at node E and consists of leaves A and B. The circle is actually the 

minimum bounding circle with center P7 that contains the points in the corresponding 

leaves.  

M-trees support distance queries and nearest neighbor queries on metric data sets, 

see [24]. Let us illustrate the basic idea for processing distance queries. Given a query 

object Q and a distance ε, a distance query returns all objects O with dist(Q,O) ≤ ε. 

Note that the query region can be viewed as a ball with radius ε and center Q. The 

processing of the query starts by examining the entries in the root of the M-tree. We 

use the following important property to prune entire subtrees: a data object of a 

subtree does not qualify for the query, when the corresponding ball does not have a 

common intersection with the query ball. Therefore, we check the balls of the entries 

whether they intersect with query ball. Only if this is true, the query is forwarded to 
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the associated subtree in a recursive fashion. From this description of the distance 

query, we can derive an important design goal for creating an M-tree: The balls within 

the routing entries should be as small as possible. This design goal is difficult to 

achieve, but clever heuristics have been proposed [24].  

The major cost factor for processing queries is actually to minimize expensive 

distance calculations. The parameter dP, which is kept in the routing information of 

an entry, is actually used for pruning the associated subtree without any kind of 

distance calculations. This can be achieved by making use of the triangle quality. 

5 Experimental Results 

For our experiments we use the Purdue Engineering Shape Benchmark (ESB) [20], an 

established dataset consisting of engineering models. The dataset contains about 866 

models divided into three main classes and 45 subclasses. To measure the similarity 

between two shapes an image-based descriptor is used which is based on a 

combination of image descriptors from the MPEG-7 standard together with a 2D 

Fourier descriptor.  

5.1 The Image-based Shape Descriptor Used in the Experiments 

The method used to determine the distance between two 3D models is based on visual 

similarity (view-based). The main idea is: “If two 3D models are similar, they also 

look similar from all viewing angles.” [22] To measure the similarity between 

different 3D models, we calculate the similarity between twenty different images 

taken of the product model. The feature extraction process (s. Fig. 2) starts with a 

normalization algorithm. This is essential to avoid problems resulting from 

translation, rotation and scaling invariances.  

Normalization Picture Creation Descriptor Creation

 

Product 

Geometry

Normalized 

Geometry

Color Layout

Edge Histogram

Fourier Descriptor (x1, x2, x3, …)

 

Fig. 2. Descriptor Creation Process 

The method to translate and rotate the 3D model is based on the Principal 

Component Analysis (PCA) [25] but is extended by a scaling procedure. After the 

normalization phase, the feature extraction starts with the image creation. Chen uses 

in [21] a dodecahedron to create twenty images for the LFD. In our approach we use 

the same dodecahedron to create images of the 3D model but we use not only black 

and white pictures we use grayscale pictures to be able to use texture and color based 

descriptors. The last two steps of the process consist of feature extraction and storing. 

The descriptor used to summarize an image and to represent a 3D model is a 
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combination of three different descriptors: Edge Histogram [26, 27] a texture based 

image descriptor, Color Layout [27, 28] a color based image descriptor and a Fourier 

descriptor which is used to describe the contour of an image [29]. Each one of these 

descriptors has already been tested in previously published papers [26-30]. In our 

earlier work two of the proposed methods Color Layout and Edge Histogram were 

well tested on the Princeton Shape Benchmark [30]. The global descriptor consists of 

the average similarity of the three similarities. 

5.2 Experimental Results for the M-tree-based Approach 

In order to evaluate the M-tree indexing algorithm we used the ESB dataset. Linear 

scanning of this dataset (i.e. comparing one query object against all the descriptors in 

the dataset) needs 866 comparisons with an average duration of 2.18 msec per 

element. This time includes the time spent on I/O access1. We tested our M-Tree 

index structure with a maximum leaf size of 100 elements before a node has to be 

split. The height of the created tree was five and the used shape descriptor was the one 

described in section 5.1. For each level of the tree, two comparisons are necessary to 

determine the branch to be chosen. If the 100 most similar elements should be 

retrieved from the database then two times the height plus 100 comparisons are 

required. In Fig. 3 the four 3D models selected as queries from the dataset are 

displayed. Table 1 contains the results of four different search runs (given response 

time is the average of ten independent runs of the search engine with and without M-

tree-based indexing). The achieved reduction of response time is in all of the four 

tested cases well over 70%. Compared to the previously used linear search in the 

dataset this reduction was expected but nevertheless validates the M-tree based 

approach to be very useful also in this context. With an increasing size of the database 

the reduction is expected to be even higher than observed in this case. 

SCREW_LINK43_TO_SPAC
ER66_UPPERgroschopp_IGK65-40-4pole1215744_15MM_PHILLIPSHEAD_SCR

EWDRIVER

 

Fig. 3. 3D models used for the evaluation. 

 

                                                           
1 The tests were done on an Intel Core 2 machine at 2.17GHz, 2GB of Ram and Java 6.0 

Virtual Machine 
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Table 1. Response time for 3D shape retrieval with and without the M-tree index. 

Query 
Time without 

M-tree [ms] 

Time with 

M-tree 

[ms] 

Time 

reduction 

[%] 

groschopp_IGK65-40-4pole 1929,70 424,10 78,02 

1215744_1 1921,70 441,60 77,02 

5MM_PHILLIPSHEAD_SCREWD

RIVER 
1799,20 451,90 74,88 

SCREW_LINK43_TO_SPACER66

_UPPER 
1894,60 511,00 73,03 

6 Conclusions and Future Work 

In this paper we presented certain requirements and an adequate indexing method to 

improve the performance of a similarity search engine for 3D models. This similarity 

search for 3D models is one essential part when supporting knowledge-intensive 

processes in engineering. Since the similarity analysis of 3D shapes is based on high-

dimensional descriptors, the indexing structure is in the focus of research. Due to the 

fact that conventional index structures like the R-tree or the R*-tree are not adequate 

for retrieval dealing with high-dimensional 3D shape descriptors, special index 

structures are required. An M-tree based index structure for 3D shape descriptors is 

identified as one promising approach to answer the requirements for indexing 

structures of 3D shape descriptors. It was validated that the response time can be 

substantially reduced using the M-tree indexing structure for indexing the 

Engineering Shape Benchmark dataset. 

For the future it is planned to further improve the M-tree based index structure 

itself and to combine the presented method with similar techniques for numerical and 

alphanumerical product data retrieval. One reason against utilizing a cluster-based 

strategy – as already briefly discussed in this paper – is the high effort necessary to 

perform a single cluster analysis as a prerequisite for each search process. To reduce 

this effort it is planned to evaluate different techniques for supervised and 

unsupervised classification like e.g. neural networks. For improving the system’s 

usability, in a next step it will be possible to use a clustering algorithm for result set 

categorization as it is shown for visualizing search results of e.g. internet searches in 

[31]. Since the 3D shapes are coming from different domains (e.g. metal forming, 

casting) different similarity measures have to be used. Hence, one future challenge is 

the automatic adjustment of generic similarity measures enabling an improved 

adaptation of our search engine to datasets from different domains or even multi-

domain datasets. The search in graph-structured data like product structures, bills of 

material, or working plans is also in focus of future research. 

160



References 

1. Aamodt, A., Plaza, E.: Case Based Reasoning: Foundational Issues, 

Methodological Variations, and System Approaches. J. AI Communications 7, pp. 

39-59. (1994) 

2. Lütke Entrup, C., Barth, T., Schäfer, W.: Towards a Process Model for Identifying 

Knowledge-Related Structures in Product Data. In: Reimer, U., Karagiannis, D. 

(eds.) PAKM 2006. LNCS, vol. 4333, pp. 189-200. Springer, Berlin (2006) 

3. Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., Ramani, K.: Three Dimensional 

Shape Searching: State-of-the-art Review and Future Trends. J. Computer-Aided 

Design 37, pp. 509-530. (2005) 

4. Tangelder, J. W., Veltkamp, R., C.: A survey of content based 3D shape retrieval 

methods. J. Multimedia Tools and Applications 39, pp. 441-471. (2008) 

5. Bustos, B., Keim, D. A., Saupe, D., Schreck, T., Vranic, D. V.: Feature-Based 

Similarity Search in 3D Object Databases. J. ACM Computing Surveys 37, pp. 

345-387. (2005) 

6. Azuaje, F.; Dubitzky, W., Black, N., Adamson, K.: Retrieval strategies for case-

based reasoning: a categorized bibliography. J. The Knowledge Engineering 

Review 15, pp. 371-379 (2000) 

7. 3D model retrieval system, http://3d.csie.ntu.edu.tw/~dynamic/cgi-

bin/DatabaseII_v1.8/ 

8. 3D model search engine, http://shape.cs.princeton.edu 

9. 3D model similarity search engine, http://merkur01.inf.uni-konstanz.de/CCCC 

10. 3D search tool, http://3d-search.iti.gr/3DSearch 

11. Victory Project, http://www.victory-eu.org:8080/victory/ 

12. Mahmoudi, S., Daoudi, M.: Retrieval by shape using CSS and M-tree. In: 

3rd International Workshop on Content-Based Multimedia Indexing, pp. 297-302. 

(2003) 

13. Garcia-Pèrez, D., Mosquera, A., Berretti, ST., Del Bimbo, A.: Evaluation of 

a M-Tree in a Content-Based Image Retrieval System. In: Workshop on Efficiency 

Issues in Information Retrieval (2008) 

14. Wong, H.-S., Cheung, K.K.T., Sha, Y., Ho-Shing Ip, H.: Indexing and 

retrieval of 3D models by unsupervised clustering with hierarchical SOM. In: 17th 

International Conference on Pattern Recognition, pp. 613-616. (2004) 

15. Brecheisen, S., Kriegel, H.-P., Kröger, P., Pfeifle, M., Schubert, M., Zimek, 

A.: Density-Based Data Analysis and Similarity Search. In: Petrushin V. A., Khan 

L. (eds.) Multimedia Data Mining and Knowledge Discovery, pp. 94-115. 

Springer, London (2007) 

16.  Chakraborty, T.: Shape-Based Clustering Of Enterprise CAD Databases. J. 

Computer-Aided Design and Applications 2, pp. 145-154 (2005) 

17. Iyer, N., Kalyanaraman, Y., Lou, K., Jayanti, S., and Ramani, K.: Early 

results with a 3D Engineering Shape Search System. In: International Symposium 

on Product Lifecycle Management (2003) 

161



18. Berchtold S., Keim D. A., Kriegel H.-P.: The X-Tree: An Index Structure for 

High-Dimensional Data. In: 22nd International Conference on Very Large Data 

Bases, pp. 28-39. (1996) 

19. Jayanti, S., Kalyanaraman, K., Iyer, N., Ramani, K.: Developing an 

Engineering Shape Benchmark for CAD Models. J. Computer-Aided Design 38, 

939-953. (2006) 

20. Shilane, P., Min, P., Kazhdan, M., Funkhouser, M.: The Princeton Shape 

Benchmark. In: Shape Modeling International, pp. 167-178. (2004) 

21. SHREC - Shape Retrieval, http://www.aimatshape.net/event/SHREC 

22. Chen, D.-Y.: Three-Dimensional Model Shape Description and Retrieval 

Based on LightField Descriptors. (Ph.D. Thesis), NTU CSIE (2003) 

23. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An Efficient Access Method for 

Similarity Search in Metric Spaces, In: 23rd International Conference on Very 

Large Data Bases, pp. 426-435. (1997) 

24. Hjaltason, G. R., Samet, H.: Index-driven similarity search in metric spaces. 

J. ACM Transactions on Database Systems 28, pp. 517-580. (2003) 

25. Vranić, D., V.: 3D Model Retrieval. (Ph.D. Thesis),  University of Leipzig 

(2004) 

26. Won, C. S., Park, D. K., Park S.-J.: Efficient Use of MPEG-7 Edge 

Histogram Descriptor, J. ETRI Journal 24, pp.23-30 (2002) 

27. Manjunath, B.S.; Salembier, P.; Sikora, T.: Introduction to MPEG-7: 

Multimedia Content Description Interface. John Wiley (2002) 

28. Manjunath, B. S., Ohm, J.-R., Vasudevan, V., Yamada, A.: Color and texture 

descriptors. J. IEEE Transactions on Circuits and Systems for Video Technology 

11, pp.703-715. (2001) 

29. Zhang, D., Lu. G.: A Comparative Study of Fourier Descriptors for Shape 

Representation and Retrieval. In: 5th Asian Conference on Computer Vision, pp. 

pp. 646-651. (2002) 

30. Müller, U., Lütke Entrup, C., Barth, T., Grauer, M.: Applying Image-based 

Retrieval for Knowledge Reuse in Supporting Product-Process Design in Industry. 

In: 8th International Conference on Application of Fuzzy Systems and Soft 

Computing, pp. 396-404. (2008) 

31. Kules, W., Wilson, M. L., Schraefel, M., Shneiderman, B.: From Keyword 

Search to Exploration: How Result Visualization Aids Discovery on the Web. 

Technical Report, School of Electronics and Computer Science, University of 

Southampton (2008) 

162



Memory Based Reasoning: A Dynamical Systems 
Perspective

Sutanu Chakraborti

Department of Computer Science and Engineering 
Indian Institute of Technology, Madras

Chennai – 36
Email: sutanuc@iitm.ac.in

Abstract While CBR has been successful in several domains, it has failed to 
measure up to the cognitive and psychological models of human reminding, that 
inspired it in the first place. This paper explores the potential of Dynamical 
Systems theory in arriving at more cognitively sound realizations of Memory 
Based Reasoning.  

1 Introduction

Case-Based Reasoning (CBR) was inspired by seminal work on computational 
models of human memory by Roger Schank in the late seventies and early eighties
[8]. However, with the passage of time, many of his observations which are 
interesting from a cognitive standpoint got watered down, making room for 
implementations that are strongly dictated by pragmatics of real-world application 
needs. In this short paper, I revisit some of the cognitive premises of Memory-Based 
Reasoning (MBR) and examine in that light why traditional case representations and 
similarity models are inadequate in simulating dynamics of human memories. I then 
present a model of memory based on Nonlinear Dynamics, and present parallels 
between parameter-learning in this approach and evolution of knowledge containers
[9] in CBR. Strengths and weaknesses of the proposed approach are then identified, 
along with scope for future work.  A note regarding the style of presentation: the 
intention of this paper is to trigger discussion in the CBR community, rather than 
present finished work. So mathematical rigour has been eschewed when an example 
or illustration suffices to convey the central idea. 

The debate around whether it is at all desirable to try and build models that 
emulate psychological models of our memories demands a mention at the outset. 
While aeroplanes do not flap their wings as birds do, Jurafsky and Martin [10] rightly 
observe that aeroplanes do have wings like birds, in the first place. Building 
computational analogs of human memories can lead us to better models (our parallel 
to mechanics of flight) ,which on their own, or in conjunction with existing MBR 
formalisms, can potentially lead to better working implementations. 

The paper is organized as follows. In Section 2, we motivate the need for a 
fresh approach to MBR by identifying aspects of human memory that are not realized 
by most CBR implementations. Section 3 presents the key idea behind using
Dynamical Systems Approach for MBR, and shows how the CBR notions of cases, 
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similarities and nearest neighbour retrieval can be modelled using this new formalism. 
Section 4 discusses the strengths and weaknesses of this new model, especially with 
reference to the observations in Section 2. Section 5 concludes the paper. 

2 Human Memory vs. CBR 

Most CBR systems use a feature value representation for storing cases. Given a new 
problem situation, similar cases are retrieved. Similarity between cases is evaluated 
by computing feature-specific (local) similarities which are weighted and combined to 
yield global similarities. Some CBR implementations also involve an adaptation step 
to repair the solution suggested based on differences between the current problem and 
the retrieved case(s). It needs to be emphasized that similarity is used as a surrogate 
for the utility of the retrieved case in solving the new problem, since utility is harder 
to estimate [4]. 

Run-of-the-mill CBR systems differ significantly from psychological models of 
human memory in at least the following aspects: 

1. Human memory proactively generalizes specific instances, in a way that 
makes it more effective for anticipated problem solving tasks. While 
individual visits to restaurants may be forgotten, these episodes are 
generalized to help us in creating expectations. Any episode that 
significantly defies these expectations will also be indexed. Thus episodes 
contribute to generalizing; generalizing leads to expecting; expectations 
failures need to be explained and can potentially lead to revision of our 
generalizations, which in turn changes our expectations. This is the central 
concept of learning in Schank’s thesis [8].    Generalization also has a 
favourable influence on storage requirements, sometimes referred to as 
cognitive economy. Generalization of cases is often ignored in CBR, and is 
not regarded as a key step in the Retrieve, Ruse, Revise, Retain cycle of 
CBR [4].    

2. Human memory is known to be strongly associative [5]. In contrast cases in 
most CBR systems exist irrespective of each other. Thus, case-base 
maintenance tasks like addition or deletion of cases [11] can be carried out 
without affecting the other cases of the case-base1. A cognitively sound case 
addition should potentially (though not necessarily) generalize or alter 
existing cases, and consequently lead to reorganization of the casebase.

3. Unlike most CBR systems, we are particularly bad at enumerating items 
(cases)  in our memory, rather descriptions of episodes are constructed 
accessing the entire episode [5] 

                                                

1 Addition or deletion of cases obviously has an impact on cases retrieved in response 
to a query, and thus affect the CBR performance implicitly. However, no 
reorganization of the casebase takes place and the existing cases remain unchanged. 
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4. The same structures are used by our memories for both processing (throw up 
expectations and retrieve) and for storage. This is true for many neural 
network architectures, which embed learning, recall and storage in the same 
architecture. In contrast, most CBR systems currently maintain indices (with 
associated access mechanisms) separately from the cases. Lenz [5] notes that 
while discrimination networks come closer to human memories in this 
respect, they are restricted by imposing an order in which descriptions have 
to be entered. 

5. Not all human reminding can be explicitized. Schank identifies two 
categories of knowledge that we are rationally unaware of possessing --
nonconscious and physical knowledge. These knowledge forms are involved 
when one is reminded of a musical note or when one chooses strokes in 
playing tennis respectively. In contrast, the ability to explain retrieval is 
regarded a strength of CBR vis a vis black box approaches like neural 
networks, though this arguably narrows down the ability of CBR to model  
human reminding across diverse tasks.  

3 The Dynamical Systems Idea 

A dynamical system is characterized by a set of variables that evolve over time. 
Dynamical systems are described using differential equations for continuous time 
evolution, or using difference equations for discrete time evolution.  The equation 
below describe a dynamical systems, that could be linear or non-linear based on the 
nature of the function v(x):

v(x)
dt

dx
 (1)

The complexity of a dynamical system is determined mainly by two factors: (a) the 
number of variables and (b) the degree of nonlinearity. An excellent introduction to 
the field is the textbook by Strogatz [7]; below I summarize some key ideas and show 
how they are relevant to building computational models of memory. 

It is useful to picture a dynamical system geometrically; this helps us gain 
qualitative insights into the system behaviour without solving the equation(s) 
analytically. For example, the dynamical system 

(x)
dt

dx
sin (2)

can be represented as a phase portrait shown in Figure 1. 

Imagine a fluid that flows along x axis with the velocity 
dt

dx
given by 

Equation 1. When 
dt

dx
 is positive, x must be increasing and hence the flow is to the 

right. When 
dt

dx
 is negative, the flow is to the left. When 

dt

dx
 = 0, we have fixed 

points where there is no flow. Points A and C are called stable fixed points or 
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attractors since all flows around them are directed towards them; point B is called an
unstable fixed points or repeller since particles move away from it. We also get 
qualitative pictures as follows: A particle originating at E tends to speed up as it 
moves right till it reaches D when it starts slowing down, eventually coming to rest at 
A. 

The notion of attractors is important for our discussion since cases in CBR 
can be treated as attractors in an n-dimensional space, over which a vector field is 
defined as a differential (or difference) equation. Any case c defines a region around 
it, such that all flows originating from any point in that region will be directed 
towards that case. We call this the effective neighbourhood of that case and denote it 
by EN(c). In effect, any query that falls in EN(c) will lead to retrieval of case c after 
certain time steps; the convergence time is governed by the nature of the vector field 
and the distance of the query from c. Figure 1 illustrates EN(A). A steeper gradient 
around an attractor leads to a faster convergence and hence models higher similarities
of neigbouring points to the attractor.  Figure 2 below shows neighbourhood regions 
of cases as defined by a 1-NN retrieval scheme in the original decision theoretic 
space; these regions correspond closely to our idea of effective neighbourhood. 

Fig.1. Cases and Effective Neighbourhood in a Phase Portrait (a modified version of 
phase portrait in [1]           

Fig. 2. Nearest neighbour regions of cases according to two distance measures (adapted 
from [2]) 
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Learning in the dynamical systems model involves changing parameters defining the 
differential equation. Bifurcations refer to the qualitative changes in dynamics based 
on parameters. Of particular interest is the saddle node bifurcation which can be used 
to model case addition and deletion in terms of creation or destruction of stable fixed 
points. This is illustrated in Figure 3, where different values of the parameter r can 
lead to very different vector fields. Also, one or more attractors can merge to form a 
new attractor; this process can model generalization as explained in Section 2.

  

Choice of parameters also implicitly capture the knowledge of case similarities. 
Parameter changes lead to updating similarities; it can lead to a change in the 
effective neighbourhood of the case, or in the rate of convergence of flows originating 
at queries to neighbouring cases. 

Given a differential system, the forward problem is to find a set of cases that 
correspond to the attractors of the system. From a practical standpoint, the reverse 
problem is more interesting: given a set of cases, determine the equations defining a 
dynamical system whose attractors correspond to the given cases. Of several possible 
systems that satisfy this primary criterion, we need to identify those that best satisfy
the domain needs as characterized by the knowledge of similarities between cases. 
More generally, any kind of domain knowledge has the effect of constraining the set 
of dynamical systems which qualify as potential candidates. We start with a 
dynamical system defined by a set of parameters, which are updated based on the 
feedback received from the environment that the system interacts with. As a model of 
memory, the system allows creation and deletion of cases, relocation of cases to 

Fig. 3. Saddle node bifurcation (a modified version of figure in [3]) can be used to model 
case deletion (as we move from (a) to (c)) or case addition (from (c) to (a)). The system 

involved is 2xr
dt

dx
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nearby locations, generalization of existing cases resulting in compaction, and 
evolution of similarity knowledge as described above, all aimed at improving the
effectiveness of the system in solving unseen problems based on reminding.  

4 Discussion

The idea of using attractors to model memories can be traced back to a class of neural 
networks called attractor networks, of which the Hopfield Network [6] is an instance. 
To my knowledge, parallels of these approaches with CBR have not been explored so 
far. Unlike the approaches presented in this paper, memories in attractor networks are 
static and pre-specified, and hence these approaches do not lend to evolution of 
similarity functions or case transformations. However such works lay foundations for 
analytic techniques involved in designing dynamical systems given a set of attractors, 
which fall outside the scope of the current paper. 

Till now we have discussed retrieval of single cases in response to a query. 
An issue that merits some discussion is that of retrieval of multiple cases relevant to a 
query. This is possible by generating several pseudo-queries such that each of these 
pseudo-queries is a slight perturbation in the query vector. The set of cases to which 
the pseudo-queries independently converge refines the retrieval set. A similar 
approach can be used to model similarities between cases, which are otherwise not 
reachable from one another since each defines a stable fixed point. The cost of a 
perturbation, along with the time steps for convergence to the case as dictated by the 
gradient  (refer Section 3) defines the similarity between the cases.

The dynamical systems approach can be used to model reminding across 
diverse topics in the course of conversations. For this, we allow each attractor to 
define an entry point for a new dynamical system with its own set of attractors. Thus, 
we have a set of dynamical systems each having two sets of attractors: the first that 
define memory within context, and the second that allow, with non-zero probability, a 
drift into another context. Thus we arrive at a networked set of dynamical systems 
participating in cross-contextual reminding, with the latter category of attractors 
facilitating jumps from one context (alternately one system) to another. Figure 4 
shows an example with 4 contexts, each having its own set of cases as stable fixed 
points shown as solid circles.  The arrows in this figure show how a chain of 
remindings can be modelled across several contexts. For example, cases A, C and E in 
Context 1 allow, with non-zero probabilities, a drift into contexts 2, 3 and 4 
respectively.  

A majority of similarity models used in CBR are based on decision theoretic 
or syntactic formalisms. The first involve positioning objects in a (weighted) feature 
space, and using the distance between objects to model similarity. The second involve 
computing the cost of transforming one object to the other using a set of fixed-cost 
primitive operators; an example is the use of edit distances. A strength of these 
approaches is their ability to explain retrieval. In contrast, the dynamical systems 
approach aims at a cognitively sound retrieval scheme, while apparently losing out on 
transparency.  However, cognitive studies have revealed that generating explanations 
is often a posterior process, and can have very little to do with the central process 
involved in reminding. Humans are reminded of related episodes or descriptions 
without being aware of the processes and knowledge that took part in reminding. 
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When asked for an explanation, the reminding is attributed to one of several possible
correspondences between the problem situation and the retrieved case. It appears 
possible to generate similar explanations for remindings in the dynamical memory 
model, based on query perturbations and qualitative rendering of the underlying 
mechanics, e.g. steep slope in the phase portrait leading to a case can map to higher 
similarity of that case with cases in its effective neighbourhood.

         The proposed approach overcomes several limitations of current CBR models, 
as identified in Section 2. Firstly, processing and storage use the same mechanisms. 
The knowledge of cases and similarities is implicitly embodied in the phase portrait.  
The sequence of steps involved in retrieval is governed by the vector field (phase 
portrait). Generalization of cases and incremental learning of similarity knowledge 
can be realized using parameter learning. Generalization happens when stable fixed 
points corresponding to two or more cases get merged into one stable fixed point. The 
nuances corresponding to each specific case is lost. As we observed before, similarity 
knowledge is captured in the parameters of the equations defining the vector field. 
Case additions and deletions involve changing the parameters as well, leading to 
changes in the vector field, and thus have local or global repercussions. The system is 
good at reconstructive reminding; a partial description which acts as a trigger 
converges onto the attractor defined by the relevant memory. This is sometimes 
referred to as case completion [5]. As with humans, not all reminding is transparent, 
though partial explanations can be generated a posteriori. As discussed earlier in this 
section, the possibility of modeling cross-contextual reminding, a distinguishing 
feature of human memory [8], is another interesting fallout. However, realizing a non 
trivial memory model over sizeable number of cases using the dynamical systems 
approach would require us to develop analytic tools that scale up to real world needs. 
The multiple-systems approach described above for facilitating cross-contextual 
reminding point to the possibility of partitioning the problem into smaller sub-
problems at design time.

Fig. 4.. Cross Contextual Reminding
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5. Conclusion 

The paper positions the dynamical systems approach as a non-conventional model of 
memory based reasoning.  This line of research can potentially lead to new 
computational models of human reminding, with a more well-founded psychological 
and cognitive basis. 
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Abstract. This paper presents an approach for intelligent diagnosis and monitoring of 
workflows based on incomplete operation data in the form of temporal log data. The 
representation of workflows in this research using graphs is explained. The workflow 
process is orchestrated by a software system using BPEL technologies in a service 
oriented architecture. Episodic cases are represented in terms of events and their 
corresponding temporal relationships. The matching and CBR retrieval mechanisms 
used in this research are explained and the architecture of an integrated intelligent 
monitoring system is shown. The paper contains a simple evaluation of the approach 
based on a university quality assurance exam moderation system. Finally, further 
work on the system and the extension to an intelligent monitoring and process 
optimisation system is presented. 

Keywords: Case Based Reasoning, Business Workflows, Temporal Reasoning, 
Uncertainty, Graph Similarity. 

1 Introduction 

Modern business processes are increasingly being monitored and managed using computer 
systems. In order for this to happen effectively, business processes need to be more 
formally defined and structured events relating to their operation are should also be 
captured and reported to the various business process stakeholders and managers. 

Business processes are typically defined and represented in terms of a series of 
workflows and temporal relationships and constraints between them. Business processes 
can be defined using UML diagrams such as activity diagrams and represented formally 
using newly emerged business process representation standards. The Business Process 
Modelling Notation (BPMN) developed by the  Business Process Management Initiative 
(BPMI) and Object Management Group (OMG) provides a standard for the graphical 
representation of workflow based business processes[1].  Workflow based business process 
representation is possible with standards covering the definition, orchestration and 
choreography of business processes.  

Over the last few years, a number of standards have emerged and are widely accepted 
and supported by mainly Service Oriented Architecture (SOA) based enterprise 
technologies and systems. The OASIS Business Process Execution Language (BPEL), short 
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for Web Services BPEL (WS-BPEL) is a key orchestration technology [2]. The Workflow 
Management Coalition (WfMC) backed XML Process Definition Language (XPDL) is a 
format standardised to interchange Business Process definitions between different 
workflow products and systems. 

Modern enterprise systems are able to separate the definition of workflow based business 
processes from the software implementing the operation of these workflows, offering much 
more flexibility and agility than was possible in older systems. This allows enterprise 
computer systems to monitor and control business processes and workflows within an 
organisation. Additionally, this allows for the agile change of workflows to adapt to the 
changing business needs of an organisation. 

Case Based Reasoning (CBR) has been proposed as a natural approach to the recall, 
reuse and adaptation of workflows and knowledge associated with their structure.  Minor et 
al [4] proposed a CBR approach to the reuse and adaptation of agile workflows based on a 
graph representation of workflows and structural similarity measures. The definition of 
similarity measures for structured representations of cases in CBR has been proposed [5] 
and applied to many real life applications requiring reuse of domain knowledge associated 
with rich structure based cases [6],[7].  

A key issue associated with the monitoring and control of workflows is that these are 
very often adapted and overridden to deal with unanticipated problems and changes in the 
operating environment. This is particularly the case in the aspects of workflows that 
directly interact with human roles. Most business process management systems have 
override options allowing managers to bypass or adapt workflows to deal with operational 
problems and priorities. Additionally, workflows are liable to change as the business 
requirements change and in many case workflows involving processes from different parts 
of an organisation, or between collaborating organisations can “tangle”, requiring the need 
for synchronisation and mutual adaptation to allow for compatible synergy. 

The flexibility and adaptability of workflows provides challenges in the effective 
monitoring of a business process. Typically, workflow management systems provide 
outputs in terms of event logs of actions occurring during the execution of a workflow. 
These could refer to an action (such as a sign-off action or uploading a document), or a 
communication (such as a transaction initiation or email being initiated and sent). The 
challenge in monitoring workflows using event information is that even where the 
workflow structure is well defined and understood, the trace of events/actions does not 
usually contain the context behind any decisions that caused these events/actions to occur. 
Additionally, there are often a lot of contextual information and communications that are 
not captured by the system. For example, some actions can be performed manually and 
informal communications/meetings between workflow workers may not be captured by the 
system. Knowledge of the workflow structure and orchestration of workflows does not 
necessarily define uniquely the choreography and operation of the workflows. 

The effective monitoring of workflows is therefore required to deal with uncertainty 
stemming from these issues.  

The approach proposed in this paper is based on a CBR process requiring similarity 
measures informed from knowledge discovery of norms and problems from past operation. 
The CBR approach proposed uses a graph based representation of cases based on events, 
actions,intervals and their temporal relationships.  
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Section 2 discusses the exam moderation business process application domain that is 
used to evaluate the approach.  Section 3 presents the proposed workflow and event log 
case representation and similarity measures used. Section 4 presents the architecture of the 
workflow intelligent monitoring system  CBR-WIMS that has been developed to evaluate 
this work. Section 5 presents an evaluation based on two workflow monitoring 
experiments.  

2 The Exam Moderation Business Process Workflows 

In order to evaluate the approach proposed in this research, it was decided to use the 
University of Greenwich, School of Computing and Mathematical Science exam 
moderation system. This is an automated web enabled secure system that allows course 
(module) coordinators, course moderators, exam drafters (typically senior managers), 
admin staff and external examiners to upload, modify, approve and lock student exam 
papers. The system automates the whole process and provides an audit trail of events 
generated by workflow stakeholders and the system. The system orchestrates a formal 
process made up of workflows. The process can be defined and displayed formally in terms 
of a UML activity diagram (Fig. 1). The system tracks most workflow actions in terms of 
timed events. Mostof these generate targeted email communications to workflow 
stakeholders, some for information and others requiring specific further actions from these 
stakeholders.  

For example, the action of a new exam version upload from a course coordinator is 
notified to the moderator, drafter and admin staff. This can prompt the moderator to 
approve the uploaded version or upload a new version. However, the coordinator can also 
upload a new version and admin staff may also decide to format the uploaded version and 
upload it as a newer version. The system captures all versions, workflow actions, emails 
sent and there is a facility to record free form comments to document versions and/or 
workflow actions. 

2.1 Uncertainty in Workflows 

The overall exam moderation workflow process is formally defined and constrained by 
the system operation. There are also some limited facilities for manual override by the 
system administrator. However, the overall process in conjunction with the actions and 
communications audit trail do not uniquely explain the exact cause of individual actions 
and cannot predict reliably what the next event/action will be and when this is likely to 
occur. Most of the uncertainty stems from the problem that a significant part of the 
workflow occurs in isolation from the system. The system does not capture all of the 
contextual knowledge associated with workflows. A lot of the communications between 
workflow stakeholders can occur outside the system e.g. direct emails, physical meetings 
and phone calls adding to the uncertainty associated with past or anticipated events and the 
clear definition of the current state. 

Discussions with workflow monitoring managers showed that patterns of events 
indicated, but not defined uniquely the current context and state of a workflow. Managers 
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were able to guess from looking at the workflow events and communications audit what the 
context and current state of a workflow was and point to possible problems. Most problems 
occur due to human misunderstanding of the current state and confusion with roles and 
responsibilities and usually result to the stalling of a workflow. Managers will then try to 
restart the process by adding comments to the system, or initiate new actions and 
communications. However, this depends on managers realizing that such a problem has 
occurred. 

Fig. 1. The exam moderation process activities and workflows (simplified) 

A typical problem series of event could be one where a stakeholder has missed reading 
an email requiring an action. In that case, the workflow would stall until a manager or 
another stakeholder spots the problem and produces a manual action (such as sending an 
email) to get the workflow moving again. For example, a course coordinator upload 
notification may have been missed by a moderator who would then not read the new 
version and either approve or try to amend by a new upload as s/he needs to do. In that 
case, the coordinator may take no further action and other stakeholders will not act 
expecting an action from the moderator to occur. 

A key problem with uncertainty about the current status of a workflow is that due to the 
expected normal delay between workflow events/actions, it may not be clear at a given 
point in time whether the workflow has stalled or the moderator is just slow at responding 
to the original action of the coordinator upload. This can only be resolved in a stochastic 
way based on retrieved knowledge from a similar series of events in past workflows for that 
moderator in addition to norms?. 

Discussions with system managers indicated that some of the uncertainty associated with 
expected response delays can be reduced by using past experience about response profiles 
and norms for individual stakeholders. Data mining or statistical analysis of the information 
obtained from past workflows for individual system users, in a particular workflow role, 
can provide the most likely response and likely response time for the user in a new 
workflow context. This can then be used to provide a more reliable similarity measure for 
the effective comparison between a new, unknown workflow state and past cases as part of 
a case-based reasoning retrieval process. 
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2.2 The CBR Workflow Monitoring System 

The aim of the CBR Workflow Intelligent Monitoring System (CBR-WIMS) is to 
provide an automatic monitoring system that will notify managers and stakeholders of 
potential problems with the workflow and provide advice on actions that can remedy a 
perceived problem. 

The monitoring system is designed to work based on experience of past event/action 
temporal sequences and the associated contextual knowledge and classification in a Case-
Based Reasoning system. Similarity measures allow the retrieval of close matches and their 
associated workflow knowledge. This allows the classification of a sequence as a particular 
type of problem that needs to be reported to the monitoring system. Additionally, it is 
intended that any associated knowledge or plan of action can be retrieved, adapted and 
reused in terms of a recommendation for remedial action on the workflow. 

The CBR monitoring system uses similarity measures based on a linear graph 
representation of temporal events in a workflow normalized by experience from past 
behaviour on individual user workflow participation patterns. 

3 Workflow and Event Log Representation and Similarity 
Measures 

In CBR-WIMS workflows are defined using UML activity diagrams and mapped through 
Business Process Management Notation (BPMN)[1] into Web-Services Business Process 
Execution Language (WS-BPEL) [2] and stored within the system. The storage of 
workflows is temporal as a number of workflow versions can be stored to allow for 
modifications of the workflow following business process changes and their application to 
different contexts of use for a particular process. For example, variants of the exam process 
workflows can be defined to allow for specific types of exams, such as ones that require 
external validation or collaboration for courses delivered in partnership with other 
institutions. Similarity measures between workflow representations can be defined on a 
graph representation of workflow processes using an exhaustive graph similarity search 
algorithm based on the Maximum Common Subgraph [7]. This allows the reuse of 
knowledge about workflows between different workflow processes and variants however, it  
is beyond the scope of the work presented in this paper. 

The workflows stored in WS-BPEL are used by CBR-WIMS to automatically 
orchestrate the execution of workflows in the system. 

The representation of events in the workflow event log uses a general time theory, based 
on intervals [8]. In the theory used here, the temporal relationships have been reduced from 
the ones proposed by Allen [9] to just one, the “meets” relationship.  

The general time theory takes both points and intervals as primitive. It consists of a triad 
(T, Meets, Dur), where: 

─ T is a non-empty set of time elements; 
─ Meets is a binary order relation over T; 
─ Dur is a function from T to R0

+, the set of non-negative real numbers. 
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A time element t is called an interval if Dur(t) > 0; otherwise, t is called a point.  
This approach has been shown to be suitable for defining temporal similarity measures 

in the context of a CBR system based on the graph representation of events and intervals 
and their temporal relationships and similarity measures based on graph matching  
techniques such as the Maximum Common Subgraph (MCSG)[11][7]. Additionally, such a 
graph can be checked for consistency of temporal references using linear programming 
techniques [11]. 

For example, consider a scenario with a temporal reference (T, M, D), where: 
T = {t1, t2, t3, t4, t5, t6, t7, t8, t9}; 
M = {Meets(t1, t2), Meets(t1, t3), Meets(t2, t5), 

Meets(t2, t6), Meets(t3, t4), Meets(t4, t7), 
Meets(t5, t8), Meets(t6, t7), Meets(t7, t8); 

D = {Dur(t2) = 1, Dur(t4) = 0.5, Dur(t6) = 0, Dur(t8) = 0.3} 
The graphical representation of temporal reference (T, M, D) is shown in Fig. 2: 

Fig. 2. Graph representation of temporal relationships 

The Maximum Common Subgraph similarity between two such graphs can be defined as: 
 
 
 
        (1) 
 
 

where count(G) represents the number of edges in graph G and σ(C,C’) is the similarity 
measure, 0≤ σ(C,C’) ≤ 1, between two individual edges (intervals or events) C and C’. 

In the case of time stamped events produced by the workflow event log, the duration of 
each interval can be calculated, so the graphs are collapsed into a single timeline. In this 
case, the similarity measure is easier to calculate as the MCS is a common segment made 
up of events and intervals in a given order in each of the compared workflow logs. In this 
common graph segment each edge (event or interval) has a similarity measure to its 
counterpart in the other log that exceeds a given threshold value ε. Eq. 1 above can still be 
used to provide the overall similarity between the two workflows. 

4 The Architecture of the Workflow Intelligent Monitoring System   

CBR-WIMS is an Intelligent Workflow Monitoring System incorporating a CBR 
component. The role of the system is to assist the transparent management of workflows in 
a business process and to orchestrate, choreograph, operate, monitor and adapt the 
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workflows to meet changing business processes and unanticipated operational problems 
and inconsistencies. Fig. 3 below shows the overall architecture and components of CBR-
WIMS. The system allows process managers to create, modify and adapt workflows to suit 
the changing business needs, and/or to allow for variations related to special business 
requirements. Workflow descriptions are stored in a temporal repository and can be used 
for looking up past business processes and to provide historical context for past event logs 
of operations. 

The main part of the system controls the operation of the workflows. It responds to 
actions of various actors to the system and communicates messages about the operation of 
the system to them. The control system has a workflow orchestrator component that looks 
up the current workflow definition and orchestrates responses by invoking specific Web 
Services. The control component also manages and updates the data stored and current state 
of the workflow operation and provides an event audit log of the key events and actions that 
occur within the operation of the workflow. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. The Intelligent Workflow Management System Architecture 
 
The workflow monitoring and intervention controller monitors, reports, and proposes 

possible remedial actions to the workflow operation manager. The monitoring system uses 
a CBR system to retrieve past useful experience about workflow problems occurred in the 
past by retrieving similar sequences of events/actions in the events log for a given 
workflow (or workflow part) compared to the current state and recent sequence of 
events/actions in the operation of the workflow. If a fault or possible problem pattern is 
detected, this is reported to the workflow operations manager together with the retrieved 
similar cases and associated recorded experience of any known remedy/course of action. 

In order to deal with the uncertain and contextual dimension of workflow similarity, the 
CBR system relies on knowledge discovered from past cases about workflow norms and 
user profiles created by statistical and data mining pre-processing. The pre-processing 
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component analyses operational logs and attempts to discover knowledge about norms and 
patterns of operation that can be used in the calculation of the similarity measures for the 
CBR process. This is particularly important for the monitoring process as any “interesting” 
or “abnormal” states need to be seen in the context of what has been normal or abnormal 
behaviour in past event sequence cases. 

5 Workflow Monitoring Experiments and Evaluation 

In order to evaluate the suitability of the approach proposed in this paper, a number of 
simple experiments were conducted using the CBR-WIMS system. A simplified workflow 
process based on the exam moderation problem was constructed and a simulation was used 
to produce a series of workflow case studies. 320 simple event logs of workflows were 
produced to serve as cases in the case base. Each case was labelled as either “stalled” or 
“not stalled” to indicate the presence or not of a problem in the workflow execution. Only 
exam upload actions were considered and only the last 3 such uploads in a series of 
workflow events were used to represent each case. A workflow event log audit trace is 
represented as: 

(Action1, Actor1, Interval1, Action2, Actor2, Interval2, Action3, Actor3,Interval3) 
An example of this would be (intervals are in days): 
(CoordUpload,John,3, ModUpload, Phil, 0,CoordUpload, John, 5) 
In the first instance the name of the person involved was ignored, focusing solely on the 

role involved in the action. The similarity measure between two actions A1 and A2 is 
defined as: 

σ(A1,A2) = 1 if A1= A2 and σ(A1, A2)= 0 if A1≠ A2 
The similarity measure between two intervals I1 and I2 is defined as: 
σ(I1, I2) = 1- |I1-I2|)/(|I1|+|I2|), max(|I1|,|I2|)>0,  σ (0, 0)=1 
The Maximum Common Subgraph (MCSG) between cases C and C’ is assembled 

starting right (latest) to left (earliest) calculating similarity measures matching each interval 
and action in C to the corresponding one in C’, stopping when the similarity between two 
edges falls under a threshold set at 0.5.For example, given the following two cases: 

C= (CoordUpload,John,3, ModUpload, Phil, 0,CoordUpload, John, 5) and 
C’=( ModUpload,Phil,4, ModUpload, Phil, 0,CoordUpload, Mary, 3) 
Assembling the MCSG: 

1. •(5, 3)=1-2/8=0.75 
2. •(CoordUpload, CoordUpload) = 1 
3. •(0, 0)=1 
4. •(ModUpload, ModUpload) = 1 
5. •(4, 3)=1-1/7=0.857 
6. •(CoordUpload, ModUpload) = 0 .. MCSG Matching stops 

So, the overall similarity between C and C’ from eq. 1 is: 
S(C,C’) = (0.75+1+1+1+0.857)2/62=0.59 
The 320 cases were split randomly into a case base of 300 cases and 20 test target cases. 

Using the KNN algorithm for K=3, the three nearest neighbours to every target case were 
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used to classify the target case as “stalled” or “not stalled” using simple voting. The results 
were compared against the known classification for the target cases. This evaluation run 
was repeated 10 times and the results of the classification were averaged over the 10 runs. 

Table 1. below shows the results of the evaluation runs: 
 Average number of cases / 20 % 
Target Cases Correctly classified 13.8 69 
Missed positives 5 25 
False positives 1.2 6 

Table 1. First Evaluation results – no normalisation for person profiles 

For the second set of experiments, the interval similarity measures were normalised to 
take into account the different rates of responses expected from different workflow actors. 
A Data analysis of the cases classified workflow actors into: 

Fast responders: 0-2 days / Medium responders: 2-4 days / Slow responders: over 4 days 
For these cases, the interval duration I for each interval was replaced by the difference of 

the actual duration minus the nominal duration for the relevant type of workflow actor: 
Fast responders: 1 day / Medium responders: 3 days / Slow responders: over 5 days 
So assuming that if in the example above analysis of past behaviour has shown that John 

is a fast responder and Phil is a slow responder, the case is represented as: 
C= (CoordUpload,John,2, ModUpload, Phil, 5,CoordUpload, John, 4) 
This way the similarity measure is modified to provide a context based on knowledge 

discovered from past cases. The results of running a similar set of experiments as in the first 
iteration are summarised in Table 2. 
 Average number of cases / 20 % 
Target Cases Correctly classified 15.3 76.5 
Missed positives 3.8 19 
False positives 0.9 4.5 

Table 2. Second Evaluation results – normalised for person profiles 

It can be seen that the overall number of target cases correctly classified has increased, 
mainly by the corresponding reduction of missed positives. 

This preliminary evaluation is encouraging. Further evaluation using a larger dataset 
from actual (not simulated) workflow event audit logs is planned to evaluate this approach 
further. In the planned work, larger segments of event log will be used in the case 
represenation involving the full set of possible exam moderation actions and events to 
predict the exact type of workflow disruption. 

6 Conclusions 

This paper discussed an approach for intelligent diagnosis and monitoring of workflows 
based on incomplete operation data in the form of temporal log data. This was based on a 
graph representation of workflows using temporal relationships. The workflow process is 
orchestrated by a software system using BPEL technologies in service oriented architecture 
in the CBR-WINS system. The matching and similarity measures presented here showed in 
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a preliminary evaluation that they are capable of classifying problems correctly in a 
simplified workflow process. In particular it was shown that an analysis of past workflow 
event logs can provide norms and context that can reduce the uncertainty in similarity based 
matching and improve the efficiency of the reasoning process. 

Further work will concentrate on further and more realistic evaluation of the approach 
based on more complex case representation and similarity matching. Work on further 
building and automating the CBR-WINS system will allow the extension to provide 
intelligent advice to operators in addition to the existing simple monitoring action. Other 
work direction will cover the challenge of explaining the reasoning results and advice to the 
workflow operation managers, the combination of constraints and temporal consistency 
checking and the combination of workflow event log temporal knowledge with other 
uncertain temporal knowledge available about a workflow. Finally, the reuse of knowledge 
across different workflows, concentrating on changed workflows and variants will be 
investigated. 
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Abstract. Active learning is a process through which classifiers can be
built from collections of unlabelled examples through the cooperation of
a human oracle who can label a small number of examples selected as
most informative. Typically the most informative examples are selected
through uncertainty sampling based on classification scores. However,
previous work has shown that, contrary to expectations, there is not a
direct relationship between classification scores and classification confi-
dence. Fortunately, there exists a collection of particularly effective tech-
niques for building measures of classification confidence from the simi-
larity information generated by k-NN classifiers. This paper investigates
using these confidence measures in a new active learning sampling selec-
tion strategy, and shows how the performance of this strategy is better
than one based on uncertainty sampling using classification scores.

1 Introduction

Active Learning (AL) [1] attempts to overcome the problem that in supervised
learning labelled datasets can be difficult or expensive to obtain. AL attempts
to build labelled datasets by selecting only the most informative examples in
a larger unlabelled example set for labelling by an oracle, typically a human
expert. The most common selection strategy for picking these most informative
examples is uncertainty sampling [2] in which examples are selected based on
the certainty with which a classifier can classify them.

The typical approach to uncertainty sampling is to use the output of a rank-
ing classifier that produces numeric classification scores (e.g. k-Nearest Neigh-
bour, Näıve Bayes or Support Vector Machines) as a measure of classification
confidence. However, Delany et al. [3] have shown that there is not a direct rela-
tionship between classification scores and classification confidence. This suggests
that AL selection strategies that measure certainty using factors other than clas-
sification scores would be more effective. Delany et al. [3] show that an aggregate
of five basic confidence measures used with k-NN classifiers are particularly ef-
fective in estimating classification confidence. In this paper we investigate an
AL selection strategy based on these confidence measures, and evaluate whether
this performs better than a selection strategy based on classification scores.

Section 2 will discuss AL in more detail and provide examples of how AL
has been used in Case-Based Reasoning (CBR). Section 3 will then discuss the

181



confidence measures that will be used in our selection strategy. Section 4 will
describe our overall AL approach including the details of how the confidence
measures are integrated into the selection process. This confidence-based selec-
tion strategy has been evaluated against a strategy based on classification scores
using a number of text datasets and the results of these evaluations will be pre-
sented and discussed in Section 5. Finally, we conclude and outline our intended
directions for future work in Section 6.

2 AL and CBR

The principle aim of AL is to build quality classifiers using as few labelled train-
ing examples as possible. The most common AL scenario is pool-based AL [2, 4]
which assumes that the learner has access to a large pool of unlabelled examples
from the beginning of the process and this is the scenario considered in this
work.

The pool-based AL process begins by selecting a small number of examples
from the pool, that the oracle is asked to label to form the initial labelled set,
or case base. The labelled set is used to build a classifier which in turn is used
to calculate the informativeness of each example remaining in the pool. The
informativeness of an example is a measure of how useful to the training process
it would be to solicit the oracle for a label for that example. The most informative
examples from the pool are then labelled by the oracle, removed from the pool,
and added to the labelled set. A new classifier is then built using the labelled
set and the process iterates until a stopping criteria is reached — for example
the oracle exceeds a label budget, or labelling further examples is not deemed
sufficiently informative.

The predominant research issue in pool-based AL is determining the best
selection strategy for choosing those examples most informative to the train-
ing process. Uncertainty sampling, first proposed by Lewis and Gale [2], is the
most widely used approach. Uncertainty sampling uses ranking classifiers that
associate a certainty score with each classification. The certainty score, P (C|e),
indicates the certainty of the system that example e belongs to class C. Certainty
scores fall into the range [0, 1] where 0 indicates that the system is certain that
the example does not belong to the class in question, and 1 indicates that it is
certain that it does. At each iteration of the AL process the certainty scores of
each example are computed and those for which classifications are least certain
(i.e. those with scores closest to 0.5) are selected for labelling. The philosophy
behind this approach is that a better classifier can be built by reducing the un-
certainty in the dataset. The advantages of the uncertainty sampling approach
include its simplicity and fast execution speed.

Other selection strategies include version space reduction [1] in which exam-
ples that best reduce the version space associated with a classifier are selected;
Query-By-Committee (QBC) [5] in which the examples that give rise to the most
disagreement in an ensemble of classifiers are selected; the use of Expectation-
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Maximization (EM) [6]; and the inclusion of density information to select those
examples in most densely populated regions of the example space [7].

Although just about any classifier can be used in the AL process, the CBR
approach to classification is particularly attractive as certainty scores are easily
calculated, and the repeated classifier retraining required in AL is especially
efficient — new examples are simply added to the case base. Two of the earliest
examples of using CBR and AL together were by Hasenjager & Ritter [8] who
contrasted local learning approaches against global ones; and Lindenbaun et al.
[9] who developed AL strategies for nearest neighbour classifiers. More recent
examples of the use of CBR and AL together include their combination for
the semantic labelling of text [10]; solving problems in drug development [11];
creating case retention strategies for CBR [12]; and supervised network intrusion
detection [13].

Earlier work by Li et al. [14] proposed a confidence-based AL approach to
image segmentation which calibrates the classification scores of SVM classifiers
to classification confidence [15]. The overall benefits of using classifiers properly
calibrated to produce class-membership probabilities is discussed in [16].

3 Confidence Measures

To attach confidence to classification scores Delany et al. [3] proposed five basic
confidence measures that can be used with k-NN classifiers and showed that an
aggregate of these is particularly effective. The use of aggregate measures is also
supported by the work of Cheetham & Price [17] who presented a similar result,
using different measures.

The objective of the k-NN measures is to assign higher confidence to those
examples that are ‘close’ (i.e. with high similarity) to examples of its predicted
class, and are ‘far’ (i.e. low similarity) from examples of a different class. The
closer a target example is to examples of a different class, the higher the chance
that the target example is lying near or at the decision surface. Whereas the
closer an example is to other examples of the same class, the higher the likelihood
that it is further from the decision surface. All the k-NN measures perform some
calculation on a ranked list of neighbours of a target example using a combination
of:

– the distance between an example and its nearest neighbours (NNi(t) denotes
the ith nearest neighbour of example t),

– the distance between the target example t and its nearest like neighbours
(NLNi(t) denotes the ith nearest like neighbour to example t),

– the distance between an example and its nearest unlike neighbours (NUNi(t)
denotes the ith nearest unlike neighbour to example t).

Preliminary experiments using the five measures proposed in [3] showed a
high correlation between three of them, and so we chose to use the three of the
five that are least correlated in our evaluations. Full details on each measure can
be found in [3].
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Average NUN Index (M1) The Average Nearest Unlike Neighbour Index
(Avg NUN Index) is a measure of how close the first k NUNs are to the target
example t as given in Equation 1.

AvgNUNIndex(t, k) =
∑k

i=1 IndexOfNUN i(t)
k

(1)

where IndexOfNUN i(t) is the index of the ith nearest unlike neighbour of target
example t, the index being the ordinal ranking of the example in the list of NNs.

Similarity Ratio (M2) The Similarity Ratio measure calculates the ratio of
the similarity between the target example t and its k NLNs to the similarity
between the target example and its k NUNs, as given in Equation 2.

SimRatio(t, k) =
∑k

i=1 Sim(t,NLNi(t)) + ǫ∑k
i=1 Sim(t,NUNi(t)) + ǫ

(2)

where Sim(a, b) is the similarity between examples a and b and ǫ is a smoothing
value to allow for situations where an example may have no NLNs or NUNs
(ǫ = 0.0001 is used in all of our evaluations).

Similarity Ratio Within K (M3) The Similarity Ratio Within K is similar
to the Similarity Ratio as described above except that, rather than consider the
first k NLNs and the first k NUNs of a target example t, it uses only the NLNs
and NUNs from the first k neighbours. It is defined in Equation 3.

SimRatioK(t, k) =
∑k

i=1 Sim(t,NNi(t))δt,NNi(t)

ǫ +
∑k

i=1 Sim(t,NNi(t))(1 − δt,NNi(t))
(3)

where Sim(a, b) is as above, δab is Kronecker’s delta where δab = 1 if the class
of a is the same as the class of b and 0 otherwise, and ǫ is a smoothing value to
allow for situations where an example may have no NUNs (ǫ = 0.0001 is used).

4 Approach

The important aspects of the AL process are: forming the initial case base,
building a classifier to label all examples in the pool, and selecting examples for
labelling by the oracle. This section will describe our approach to each of these
(further details are available in [18]).

4.1 Initial Case Base Selection and Classifier

The AL process begins with a small set of examples labelled by the oracle which
is the initial case base. While this selection can be performed at random, it offers
an opportunity to prime the AL process through informed selection. Previous
work has shown that using clustering to select the initial case base gives better
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results than random selection [19] . However, this can lead to highly inconsistent
results over many trials as clustering is quite unstable, especially when dealing
with high dimensional textual data. For this reason, we use the furthest-first
initialisation algorithm [20] which is deterministic and will always return the
same initial case base for a given dataset.

At every iteration of the AL process all of the unlabelled examples remaining
in the pool are classified using a classifier trained on the examples labelled by
the oracle so far. In our system the classifier used to do this is a k-NN classifier
using distance weighted voting [21] with k = 5.

4.2 The Confidence-Based Selection Strategy

Before any of the confidence measures described in Section 3 can be used to
calculate classification confidence it is necessary to identify for each measure
a confidence threshold value for each of the possible classes. Predictions with
confidence values higher than the predicted class’s threshold are considered con-
fident, while those with values below are considered non-confident. The threshold
value for a particular class is that value that results in the highest proportion of
correctly predicted examples of a particular class when there were no incorrect
predictions. The confidence thresholds are referred to as thresij for each confi-
dence measure Mi (i = 1 . . . n), and each class j = 1 . . . c. Specific details on the
approach used for setting the threshold level for a class are described in [3].

Our ACM Selection (ACMS) strategy aggregates the three confidence mea-
sures used into a new selection strategy. First each example ek in the pool is
classified using the initial case base and the value for each confidence measure
mik is calculated. Based on the predicted class of the example the appropriate
threshold value is checked for each of the measures. If any one of the measures
indicates confidence, i.e. mik > thresij for any i = 1 . . . n and j = the predicted
class, then we consider that the example has been classified with confidence, and
it gets added to the confident set. Otherwise, it gets added to the non-confident
set.

A single rank(ek) value is associated with each ek example. For an example
ek classified with confidence, rank(ek) is assigned the value that indicates most
confidence, i.e. rank(ek) = max(mik) for those Mi’s that indicate confidence;
while the one used for an example in the non-confident set should be the mik that
indicates least confidence (i.e. rank(ek) = min(mik) for those Mi’s that do not
indicate confidence). Different strategies for combining confidence measures were
considered in preliminary experiments which showed the min/max combination
to be consistently best.

In order to be able to compare mik across different confidence measures, the
values of mik for each Mi are normalised using statistical normalisation after
performing a log transformation to correct those with skewed distributions.

Once all pool examples have been classified, the one that the classifier is
least confident of is the example in the non-confident set that has the smallest
rank(ek) value. If the non-confident set is empty, the least confident example is
the one in the confident set with the smallest rank(ek) value. This is the example
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that is presented to the oracle for labelling before the process repeats until the
stopping criteria is met. The algorithm for our ACMS strategy is presented in
Algorithm 1.

5 Evaluation

The two objectives to the evaluations described here were to confirm the su-
periority of using an aggregate confidence measure over using single confidence
measures; and to compare the performance of our ACMS approach with an un-
certainty sampling approach based on classification scores.

In order to conduct a comprehensive analysis, we tested various algorithms on
seven datasets: a spam dataset [22]; four binary classification textual datasets de-
rived from the 20-Newsgroup collection1; and two binary classification datasets
from the Reuters collection2. The properties of each dataset and the average
accuracy achieved in five iterations of 10-fold cross validation using a 5-NN clas-
sifier are shown in Table 1 (accuracies are included as an indication of the diffi-
culty of each classification problem). Each dataset was pre-processed to remove
stop-words and stemmed using Porter stemming.

To evaluate the system, we simulated the labelling process and compared the
results with the actual labels in each dataset. The accuracy of the labelling is
used to evaluate the performance of the system, calculated as Accuracy = C/N
where N is the number of examples in the dataset (including the examples in
the initial case base) and C is the number of correctly labelled examples. Both
manually and automatically labelled examples are included in this calculation to
avoid the accuracy figure becoming unstable in the latter stages of the process.
The accuracy is recorded after each manual labelling.

At present we use a simple stopping criterion that allows the human oracle
to only provide a specified number of labels, a label budget. We set the label
budget to 110 which includes 10 initial labels and 100 during the AL process.

We evaluated the performance of sampling selection strategies using each
individual confidence measure and using the aggregation of the measures on all
of the datasets. Illustrative results on two datasets are shown in Figure 1. The
results indicate that ACMS is at least as good as but generally dominates the
individual measures. Furthermore, we found that the ACMS strategy is more
stable than using individual measures.

Figure 2 shows the results of comparing the ACMS strategy with the more
typical Uncertainty Sampling (US) strategy using classification scores. A Ran-
dom Sampling (RS) strategy, which randomly picks the example to label, is also
included as a baseline. The accuracy graph for the ACMS strategy dominates
the graph for the RS strategy in all cases, and the graph for the US strategy
for five (WinXwin, Comp, Vehicle, Reuters, Spam) of the seven datasets. Inter-
estingly, across all ACMS experiments the average effectiveness — how often

1 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html
2 http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Input: An initial labelled case base CB, an unlabelled pool P of p examples, a
k-NN classifier C for classes 1 . . . c, a stopping criterion S, a batch size b,
a set of confidence measures Mi, i = 1 . . . n

Output: A labelled case base
while S is not met do

foreach confidence measure Mi, i = 1 . . . n do
Identify the threshold: find thresij and kij , for j = 1 . . . c;

end
foreach example ek ∈ P do

ConfSet = ∅, NonConfSet = ∅, Selected = ∅;
Classify ek using the classifier C;
Calculate mik using kij for i = 1 . . . n and j = predicted class of ek;
if mik > thresij for any i = 1 . . . n and j = predicted class of ek then

ConfSet = ConfSet + ek ;
Set the ranking score: rank(ek) = max(mik);

else
NonConfSet = NonConfSet + ek;
Set the ranking score: rank(ek) = min(mik);

end

end
foreach l, l = 1 . . . b do

if NonConfSet == ∅ then
Selected = Selected + e where
rank(e) = min(rank(ek)), ek ∈ ConfSet;

else
Selected = Selected + e where
rank(e) = min(rank(ek)), ek ∈ NonConfSet;

end

end
Label each el ∈ Selected ;
CB = CB ∪ Selected , P = P/Selected ;

end
Algorithm 1: The algorithm for the Aggregated Confidence Measure Selection
(ACMS) strategy

Table 1. Benchmark Datasets.

Dataset Task Examples Features Accuracy

WinXwin comp.os.ms-windows.misc vs.
comp.windows.x

496 8557 91.14%

Comp comp.sys.ibm.pc.hardware vs.
comp.sys.mac.hardware

500 7044 85.56%

Talk talk.religion.misc vs. alt.atheism 500 9000 93.92%

Vehicle rec.autos vs. rec.motorcycles 500 8059 92.96%

Reuters acq vs. earn 500 3692 89.56%

RCV1 g151 vs. g158 500 6135 95.36%

Spam spam vs. non-spam 500 18888 96.80%
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(a) Talk Dataset (b) Vehicle Dataset

Fig. 1. Comparison of Individual Confidence Measures and the ACM as the Sampling
Selection Strategy

the rank(ek) given to a case by ACMS is determined by a particular confidence
measure — of M1, M2 and M3 are 38.87% 34.57% and 26.56% respectively.

6 Conclusions and Future Work

In this paper, we propose a new selection strategy for active learning using k-NN
based confidence measures. The experimental results show that an aggregated
confidence measure is more effective than single confidence measures. We also
show that ACMS generally outperforms the more typical uncertainty sampling
approach using classification scores. Although the algorithm is computationally
expensive, the use of k-NN classifier makes it possible to cache and re-use case
similarities making ACMS computationally feasible, even for large datasets. Fur-
thermore, a larger batch size b can be used to reduce the computational load.

There are three main areas we intend to explore in the future. Firstly, the
furthest-first method may include outliers in the initial case base which may
limit the exploitation capability of the AL process. To solve this problem, more
sophisticated initial case base selection strategies will be considered. However,
the stability problems with clustering textual data must be overcome.

Secondly, ACMS focuses on refining the decision boundary. However, there
is a balance to be achieved between this and the exploration of new regions in
the decision space that the current classifier may not perform well on. We will
consider using additional information, such as density information to allow our
AL process to explore more while maintaining good performance.

Finally, the work described here has focussed on binary classification, but we
intend to extend this to multi-class situations in the near future.

Acknowledgments. This material is based upon works supported by the Sci-
ence Foundation Ireland under Grant No. 07/RFP/CMSF718.
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(a) WinXwin Dataset (b) Comp Dataset

(c) Talk Dataset (d) Vehicle Dataset

(e) Reuters Dataset (f) RCV1 Dataset

(g) Spam Dataset

Fig. 2. Comparison of ACMS, US and RS selection strategies
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Preface

The research community working on health sciences applications of case-
based reasoning (CBR) has been very active recently, as evidenced by special
issues hosted by first class Artificial Intelligence (AI) journals, as well as by
books currently being edited on the topic. It is now a tradition that the commu-
nity meets yearly at the workshops on CBR in the health sciences, held during
ECCBR/ICCBR conferences. As a matter of fact, this workshop is the seventh
in a series of exciting workshops, the first six of which were held at ICCBR-
03, in Trondheim, Norway, at ECCBR-04, in Madrid, Spain, at ICCBR-05, in
Chicago, USA, at ECCBR-06, in Oludeniz, Turkey, at ICCBR-07, in Belfast,
Northern Ireland, and at ECCBR-08, in Trier, Germany.

Five papers are to be presented at this seventh workshop on CBR in the
health sciences. These papers represent the research and experience of 18 authors
working in four different countries on a wide range of problems and projects, and
illustrate some of the major trends of current research in the area.

The first paper (by Bichindaritz et al.) is motivated precisely by the signifi-
cant number of recently published research contributions to CBR in the health
sciences, which requires a classification and literature analysis effort. To this end,
the authors have proposed a proper classification and indexing system, and have
then applied it to discover research trends in the field.

The large scientific production in this field clearly demonstrates how well
suited CBR is for medical applications. As a matter of fact, some medical CBR
tools are already in routine clinical use, while other research prototypes aim to
move beyond the laboratory into clinical practice and commercialization. This is
the aim of the project described in the second paper (by Marling et al.), which
reports on a research study being realized to evaluate a case-based decision sup-
port system for managing diabetes patients, as a pre-liminary step for designing
a clinical trial.

The success of a CBR tool for supporting medical decision making can be
further in-creased by defining a close synergy between CBR itself and other AI
methodologies. This claim is supported by the other papers to be presented at the
workshop. In the third paper (by Ahmed et al.), CBR is combined with several
techniques, such as textual information retrieval, rule-based reasoning and fuzzy
logic, to enable a more reliable and efficient diagnosis and treatment of stress. In
the fourth paper (by Nicolas et al.), classification rules are adopted to combine
the results of two independent CBR systems, in order to improve the correct-
ness of skin cancer diagnosis and classification. Finally, in the fifth paper (by
Houeland et al.), CBR as well as rule-based and probabilistic model-based rea-
soning are integrated in a meta-level reasoning architecture for clinical decision
support, in which the reasoning process can be automatically and continuously
improved in time.
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Overall, these papers represent an excellent sample of the most recent ad-
vances of CBR in the health sciences, and promise very interesting discussions
and interaction among the major contributors in this niche of CBR research.

Cindy Marling July 2009
Stefania Montani
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Abstr act. Research in case-based reasoning in the health sciences started about 
20 years ago and has been steadily expanding during these years. This paper de-
scribes the state of the research through an analysis of its mainstream literature. 
The methodology followed involves first the definition of a classification and 
indexing scheme for this research area using a tiered approach to paper catego-
rization based on application domain, purpose of the research, memory organi-
zation, reasoning characteristics, system design, and research theme. This paper 
analyzes the literature trends in terms of research themes, application domains, 
application purposes, evolution of number of papers and authors. 

Keywords: case-based reasoning in the health sciences, classification 

1 Introduction 

The field of Case-Based Reasoning in the Health Sciences (CBR-HS) [1] has seen a 
tremendous growth in the last decade. Six special conference workshops have been 
held consecutively from 2003 focused solely on this topic and are accessible through 
Cbr-biomed.org Web portal [2]. A special issue on CBR-HS was published in the 
Journal of Artificial Intelligence in Medicine [3] and a second one in the Computa-
tional Intelligence journal [4]. Most recently, yet another special issue has been pub-
lished in the Applied Intelligence journal [5]. Moreover CBR-HS papers are often 
published in different artificial intelligence and health informatics journals and confe-
rences. We developed a classification and indexing scheme for CBR research in the 
Health Sciences to make possible the meta-analysis of this interdisciplinary research 
area [1]. This paper details knowledge of CBR-HS gained by using this classification 
scheme and the research trends identified in terms of application domains, application 
purposes, evolution of number of papers, citations, and research themes. 

2 Methods 

The specific application of CBR to the health sciences has been discussed in several 
surveys [6, 7, 8, 9, 10, 11]. However recent trend analyzes in CBR as a whole failed 
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to identify CBR-HS as a sub-research area through automatic methods [12]. This may 
in particular be due to the variety of application domains comprising the health 
sciences, which prompts for the need for indexing systems capable in particular to 
group documents related to, for example, oncology, diabetology, phrenology and so 
forth. Therefore we developed a classification and indexing system capable of drilling 
down and rolling up in its different components and presented in detail elsewhere [1]. 
This domain-specific indexing is enabled by the use of one of the most used classifi-
cation schemes in the health sciences: the Medical Subject Headings (MeSH) [13]. 
Like most other classifications, it uses a tree like structure where broader categories 
are narrowed down with each branch and branches are represented by dots. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. CBR Health Sciences tiered classification scheme 

The papers selected for CBR-HS cover all the 16 ECCBR and ICCBR conferences 
until 2008, the 6 Workshops on CBR in Health Sciences, the 4 special issues on CBR 
in the Health Sciences, the 2 DARPA workshops of 1989 and 1991, and the survey 
papers on CBR in the Health Sciences. 117 papers were indexed with the CBR-HS 
classification scheme, presented in the next section. Therefore the tables below show-
ing the terminology learned have been refined on these 117 papers.  

3 Classification System 

Figure 1 presents the tiered architecture of the CBR-HS classification scheme. There 
are five distinct categories (domain, purpose, memory and case management, reason-
ing, and system design) defined in this section. In addition, a research theme is se-
lected to characterize the main research hypothesis and findings of the paper. 

DOMAIN
Code = { MeSH

Terms }
YEAR

PURPOSE
Code = { 0 to ∞}

MEMORY
FLAGS

Code = { 0 to ∞}

REASONING
Code = { 0 to ∞}

SYSTEM 
DESIGN

Code = { 0 to ∞}
FLAGS
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Table 1. Sample Purpose Classifications 

Code Purpose Code Purpose 
10 Medical Purpose 20.2       Evaluation 
10.1      Decision Support 20.2.1             System Level Testing 
10.1.1          Diagnosis 20.2.2             Pilot Testing 
10.1.2          Treatment/therapy 20.2.3             Clinical Trial 
10.1.3          Prognosis 20.2.4             Routine Clinical Use 
10.1.4          Follow-up 20.3       Concept 
10.1.5          Classification 20.4       Method 
10.2      Tutoring 20.5       Survey 
10.3      Epidemiology 30 Bioinformatics Purpose 
10.4      Research support 30.1       Proteomics 
10.5      Image interpretation 30.2       Phylogenetics 
20 Research Purpose 30.3       Genomics 
20.1       Formalization 40 Research Theme 

Domain 

The range of domains in the health sciences fields is vast and, as a result, it was cho-
sen as the first level of classification. However, rather than creating a new set of de-
scriptors, it is proposed to use the MeSH descriptors, of which there are over 24,000 
that cover just about every aspect of the health sciences. Along with the domain, 
another primary means of discriminating the relevance of an article is its publication 
date. Since the date plays no real role in classifying an article, the date has no field of 
its own, but instead is combined with the Domain. 

Purpose 

The purposes, or tasks, of CBR systems have been thoroughly discussed in many ar-
ticles summarizing the CBR-HS domain. One of the first papers to survey the field in 
1998, by Gierl et al., used the purpose as the primary means to subdivide the different 
systems [6]. In their paper, Gierl et al. specified four main purposes: diagnosis, classi-
fication, planning, and tutoring. Later, both Holt et al. 2006 and Nilsson and Sollen-
born 2004 used the same four descriptors. In the early years the majority of systems 
were diagnostic in nature, but in recent years more therapeutic and treatment systems 
have been developed [14]. Table 1 presents examples of purpose classifications. Plan-
ning has been replaced here by treatment since most of the time planning refers to 
treatment planning. However, planning tasks may involve not only treatment but also 
other aspects such as diagnosis assessment, which often consists in a series of exams 
and labs orchestrated in a plan. Planning is a classical major task performed by artifi-
cial intelligence systems. Therefore planning is listed in our system as a design option 
and thus can be added to the treatment choice in the purpose dimension. 
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Table 2. Sample Memory and Case Management Classifications 

Code Memory Organization Code Memory Organization 
10 Flat T Time Series 
20 Hierarchical A Text 
20.1 Decision Tree M Microarray 
20.2 Concept Lattice V Attribute/Values 
20.3 Conceptual Clustering Tree N Plans 
30 Network Mem

ory 
Struc
tures 
Flag 

 

40 Inverted Index G Ground Cases 
Case Representation Flag  P 
I Images L Clusters 
S Signals O Concepts 

CBR systems generally support either medical clinical work, research, or bioin-
formatics. Therefore we have added these as top level purpose categories. In the clin-
ic, decision support systems support mostly diagnosis, treatment, prognosis, follow-
up, and/or classification, such as in image interpretation. Well known diagnostic sys-
tems include CARE-PARTNER [15], and AUGUSTE [16]. Well known classification 
systems include PROTOS [17] and IMAGECREEK [18]. Well known treatment 
planning systems include T-IDDM [19]. Several systems provide multi-expertise, 
such as CARE-PARTNER [15] ensuring diagnosis and treatment planning. Well 
known tutoring systems include ICONS [20].  

More recent articles require to differentiate between the purpose of the system de-
veloped, which is generally a clinical purpose, from the purpose of the research paper, 
which can be, among others, a survey paper or a classification paper like this one. 
Some papers focus on formalization such as KASIMIR [21]. Among these, the evalu-
ation of a system can be performed more or less thoroughly. This is an important di-
mension to note about a research paper: whether the system was tested only at the sys-
tem level, which is the most frequent, at the pilot testing level, at the clinical trial 
level, or finally whether the system is in routine clinical use.  

Table 3. Sample Reasoning Classifications 

Code Reasoning 
10 Retrieve 
10.1 Index 
10.2 Similarity measure 
20 Reuse 
20.1 Adaptation 
20.2 Interpretation 
30 Revise 
40 Retain 
40.1 Maintenance 
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Finally, a paper is generally identified by a research theme by its authors. By in-
dexing a set of 117 papers currently in our database, we have identified major re-
search themes, such as CBR and electronic medical records (EMR), knowledge 
morphing, CBR and clinical guidelines, or application of a generic CBR framework. 

Table 4. System Design Classifications 

Code Construction Code Construction 
10 Pure CBR 60 Information Retrieval Combi-

nation 
20 Rule Based Combi-

nation 
70 Explanation Combination 

30 Model Based Com-
bination 

CBR Role Flag  

40 Data Mining Combi-
nation 

P Primary Technology 

40.1 Conceptual Cluster-
ing 

S Secondary Technology 

40.2 Neural Networks E Equivalent Role Technology 
40.3 Nearest Neighbor CBR Additional 

Technology Flag 
 

40.4 Decision Tree T CBR is Separate 
40.5 Bayesian Networks F CBR is Combined 
50 Planning Combina-

tion 
  

Memory and Case Management 

This is a very broad category and could easily be subdivided. It encompasses both 
how the cases are represented and also how they are organized in memory for retriev-
al purposes and more (see Table 2). As a result, it is made up of more than one code. 
The first part of the code represents the format of the cases. The primary types being 
images, signals, mass spectrometry, microarray, time series data and regular 
attribute/values pairs, which is used by the majority of the systems. Similar to the dif-
ferent formats of data are the flags that represent what kinds of memory structures the 
CBR system uses to represent the data, such as ground cases (G), prototypical cases 
(P), clusters (L), or concepts (O). Lastly, when it comes to memory management there 
are potentially an infinite number of possibilities, some of which may never have 
been used before. The main types, however, represent how the memory is organized, 
whether it is flat or hierarchical, what kind of hierarchical structure, such as decision 
tree, concept lattice, conceptual clustering tree, or others.  

Reasoning 

This category regroups the inferential aspects of the CBR. Classically, retrieve, reuse, 
revise, and retain have been described. Nevertheless, researchers have often added 
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many more aspects to the inferences, such that it is best to keep this category open to 
important variations (see table 3). Each of these parts of the reasoning cycle can be 
hierarchically refined so that a tree is formed here also. 

 
Fig. 2. CBR Health Sciences tiered classification scheme 

System Design 

The construction of the CBR system specifies what technologies it uses. This area of 
classification may not seem intuitive at first, but upon the examination of CBR sys-
tems it can be seen that many use a combination of technologies, not just case-based 
reasoning. The most common technology used in conjunction with CBR is rule-based 
reasoning; however some systems combine CBR with information retrieval, data min-
ing, or other artificial intelligence methods. See table 4 for an example of different 
possible construction classifications. If the construction of the system does use addi-
tional technologies, a flag should be appended to the end of the code to denote wheth-
er the case-based reasoning is executed separately. Also, an additional flag is used to 
designate CBR’s role in the system, whether primary, secondary, or equivalent. 

5 Research Trends 

Trend tracking comprises domains, purposes, memory, reasoning, and system design. 
First some figures are provided about this domain. 

Statistics 

The 117 selected papers were written by 132 different authors from over the world. 
However, a grouping of papers by author clearly identifies a group of researchers con-
tributing particularly actively to CBR-HS research (see Figure 2). The average num-
ber of papers per author is 2.19, and the range 1 to 21.  
    The number of papers by year has seen a rapid increase after 2003 – corresponding 
to the first workshop on CBR-HS (see Figure 3). 

0
10
20
30

Number of papers

Number of 
papers

200



 
Fig. 3. CBR Health Sciences evolution of the number of papers per year 

Domains 

The 117 papers cover 41 domains all together. Although the domains of application 
all belong to the Health Sciences, some domains are more represented than the other 
ones. The most represented domain is medicine with 26 papers as a whole, which cor-
responds to either survey papers, or general frameworks and concepts applicable to 
any health sciences domains. Close second comes oncology (24 papers), then further 
come stress medicine (13 papers), transplantation (8 papers), diabetology (7 papers), 
fungi detection (6 papers), breast cancer (6 papers), nephrology (6 papers), genomics 
(5 papers), and infectious diseases (4 papers). All the other domains count less than 4 
papers. It is interesting to note in particular that cancer, being a very prominent dis-
ease, is studied by several CBR-HS teams in the world. 

Purpose 

Among the 24 purposes listed for these papers, 30 papers propose treatments / thera-
pies, 23 papers refer globally to decision support, 21 papers perform diagnoses, 18 
papers perform classification tasks, and 11 papers are survey papers. Image interpreta-
tion also accounts for 9 papers, and research support for 6 papers. 

Memory 

Memory structures and organization refers to 17 different concepts. The most 
represented is prototypes (24 papers), closely followed by time series (20 papers). 
Further come images (12 papers), text (6 papers), microarray data (5 papers), clusters 
(3 papers), generalized cases (3), inverted indexes (2 papers), networks (2 papers), 
and genomic sequences (2 papers). The other listed memory structures are graphs, 
multimedia data, plans, structured cases, and visio-spatial cases. 
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Reasoning 

Surprisingly, for a methodology like CBR where research is very active in all reason-
ing cycles phases, in CBR-HS the vast majority of systems refer to retrieval only (61 
papers). Maintenance is also well represented (11 papers), and adaptation (8 papers). 
Further are represented: indexing (3 papers), retain (3 papers), similarity measures (2 
papers), and revision (2 papers). However many systems also perform additional rea-
soning steps, even though the papers studied did not detail these steps, focusing on re-
trieval aspects instead. 

System design 

Main characteristics of developed systems include temporal abstraction (22 papers), 
knowledge-based systems combination (18 papers), prototype and generalized case 
mining (10 papers), temporal reasoning (7 papers), fuzzy logic (6 papers), information 
retrieval combination (6 papers), knowledge acquisition combination (5 papers), and 
in 3 papers: clinical guidelines integration, feature selection, distributed cases, neural 
networks combination, and planning combination. 38 different types of system design 
were identified, most of them dealing with some data mining / knowledge discovery 
combination, and as seen above temporal abstraction / temporal reasoning. However 
two categories are specific to medical domains: clinical guidelines integration, and 
electronic medical records integration. 

Research themes 

So far, the research themes are coded in free text format. More work remains to be 
done to categorize this part of each paper. One possibility to simplify the problem is 
to select one particular research focus among the dimensions of the paper: domain, 
purpose, memory, reasoning, and system design. With this simplification, the research 
themes are in majority oriented toward design (61 papers), purpose (38 papers), in-
cluding 11 survey papers, and reasoning (14 papers). It is not surprising that no paper 
actually focuses exclusively on the application domain – this kind of publication 
would be better suited for a medical journal in a medical specialty. However it is sur-
prising that so many papers focus on design aspects most of the time dealing with 
some combination with another methodology of artificial intelligence (data mining, 
knowledge discovery, temporal reasoning and abstraction, knowledge based systems) 
or beyond, such as information retrieval and databases. Only 14 papers focus on some 
reasoning step – in practice only adaptation and retrieval – using methods intrinsic to 
CBR. The group of papers focusing on the paper purpose regroup such large sub-
groups as decision-support capability, classification, image understanding, survey pa-
pers, papers exploring different roles of CBR, and research support. The memory di-
mension is almost always connected with either some design aspect such as prototype 
learning, some reasoning aspect such as using prototypes to guide retrieval, or some 
purpose aspect, such as decision support. Indeed the memory needs to prove useful to 
the system in some way, since these papers are applied.  
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Fig. 4. CBR Health Sciences domains 

6 Conclusion 

The CBR-HS classification system is being incrementally built. The different catego-
ries and each category’s list of descriptors is by no means exhaustive. However it 
proved useful for indexing and tracking CBR-HS research literature. With its systems 
of tiers, some of which may be omitted, this system is very flexible and can index ei-
ther fielded applications, frameworks, or survey papers. This study has identified in-
teresting trends characteristic of applied domains such as health sciences domains. 
Our next goals are to use this classification to index the numerous CBR-HS papers 
published outside of the venues selected for this pilot study, to perform a citation 
analysis on this exhaustive pool of papers, as well as to cluster the research themes 
identified. This analysis of CBR-HS literature will also permit to identify potential fu-
ture research directions. 
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Abstract. A clinical research study is underway to evaluate a medical
case-based decision support system in the domain of diabetes manage-
ment. Thirty patients with type 1 diabetes on insulin pump therapy are
participating in the study to evaluate the 4 Diabetes Support System.
System evaluation is especially important in medical domains, because
systems must demonstrate positive impact on patient outcomes if they
are to be used in practice. This study follows a preliminary system eval-
uation and precedes a full randomized clinical trial to quantify clinical
outcomes. An overview of the 4 Diabetes Support System, the evaluation
study protocol, and preliminary results of the evaluation are presented.

1 Introduction

In a medical domain, the ultimate success of a case-based decision support sys-
tem is determined by its impact on patient outcomes. Patients who use a system
should have some measurable advantage over those who do not, in terms of
health, longevity, quality of life and/or cost of health care. As explained in [1],
measuring the clinical outcomes of a system requires a randomized clinical trial,
in which some patients use the system and others do not. However, because such
a trial is expensive, in terms of time and human resources, the evaluation process
may be phased. In the first phase, it is important to thoroughly evaluate the sys-
tem in terms of its accuracy and usability. This is essential not only to maximize
the success of the later trial, but also to minimize any potential negative impact
on patients participating in the trial.

The Data-Driven Diabetes Decision Support (4 Diabetes Support) System
aims to help physicians manage patients with type 1 diabetes on insulin pump
therapy. These patients need to vigilantly monitor their blood glucose levels,
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keeping them as close to normal as possible, to avoid serious diabetic compli-
cations. Helping these patients make therapy adjustments to combat problems
in blood glucose control is a data intensive, time-consuming task for physicians.
A preliminary clinical study was conducted in which a prototype of the 4 Dia-
betes Support System was constructed [2–4]. Because preliminary results were
encouraging, a second clinical study is underway to evaluate and enhance this
prototype, prior to the conduct of a randomized clinical trial. This paper briefly
reviews the 4 Diabetes Support System, describes the evaluation protocol, and
presents preliminary findings of the evaluation.

2 The 4 Diabetes Support System

This section gives a brief overview of the 4 Diabetes Support System. The 4 Di-
abetes Support System prototype was built during a preliminary clinical study
in which 20 patients with type 1 diabetes on insulin pump therapy participated.
Fifty cases of problems in blood glucose control, with their associated solutions
and clinical outcomes, were compiled into a central case base. Specific problems
are rich in context and vary widely. However, they revolve around hyperglycemia,
hypoglycemia, and fluctuations between the two. Hyperglycemia, or high blood
glucose, is responsible for serious long-term complications of diabetes, including
blindness, neuropathy, and heart failure. Hypoglycemia, or low blood glucose,
may result from insulin treatment to control hyperglycemia. Its effects are more
immediate, including weakness, confusion, dizziness, sweating, shaking, and, if
not treated promptly, loss of consciousness or seizure. Physicians propose ad-
justments to therapy as solutions to combat these problems. Adjustments are
changes involving insulin, food and/or exercise.

An overview of the system operation can be seen in Figure 1. Patients en-
ter daily glucose, insulin and life event data into an Oracle database via a Web
browser. Data from a continuous glucose monitoring system (CGMS) is uploaded
directly from the patient’s monitoring device to the database. The situation as-
sessment module analyzes the data to detect the problems in glucose control
that a patient is experiencing. This module contains 12 problem detection rou-
tines, as listed in Figure 2. After detection, these problems are presented to the
physician for review. The physician selects the most critical problem or problems
for the patient. The next step performed by the system is to retrieve the closest
matching case for each selected problem. A standard two-step retrieval method,
with a nearest neighbor algorithm, is used, as reported in [3].

Results of the preliminary evaluation were encouraging, but problems were
also identified. Participating patients completed an exit survey, which indicated
acceptance of the concept of automated decision support. The time required for
data entry was noted as a potential impediment to use, however. It took patients
between 15 and 60 minutes per day to enter data, and some patients who did not
complete the entire protocol cited the time required for data entry as a reason. A
panel of three physicians and one advance practice nurse specializing in diabetes
reviewed a random sample of problems detected by the situation assessment
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Fig. 1. Overview of System Operation

1. Over-correction for hypoglycemia
2. Post-exercise hypoglycemia
3. Possible pump or infusion set malfunction
4. Over-correction for hyperglycemia
5. Pre-waking hypoglycemia
6. Over-bolus for a meal
7. Hyperglycemia upon awakening
8. Hypoglycemia upon awakening
9. Pre-meal hyperglycemia

10. Pre-meal hypoglycemia
11. Post-meal hyperglycemia
12. Post-meal hypoglycemia

Fig. 2. Situation Assessment Routines
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module. They considered the problems to be correctly identified 77.5% of the
time, and thought it would be useful to call the problems to the attention of a
physician 90% of the time. Leave one out testing was performed to evaluate the
case retrieval module. Three diabetes specialists reviewed a random sample of
cases with their nearest neighbors. They considered the cases to be similar 80%
of the time, and thought that the solutions stored in matching cases would be
helpful in solving the original problems 70% of the time. It was noted that not
all cases had usefully matching nearest neighbors, and the need to expand the
case base was identified. A concern was raised that the test data used was for
patients who had contributed data for building the system.

3 The Evaluation Study Protocol

The evaluation study aims to more fully evaluate the performance of the 4 Dia-
betes Support System prototype, identify future development needs, and reduce
the data entry burden for patients. Thirty patients with type 1 diabetes on
insulin pump therapy were recruited into the evaluation study. Patients who
participated in the initial study were excluded, so that the system could be
tested on data for patients whose problems had not been included in the case
base.

Each patient visited the Appalachian Rural Health Institute Diabetes and
Endocrine Center for an initial visit. At this visit, following informed consent,
each patient completed a brief multiple choice inventory designed to gauge the
patient’s perception of his or her current diabetes control and its impact on
quality of life. The HbA1c, a measure of long-term blood glucose control, was
obtained. Next, the patient provided background information about his or her
current health status, diabetes treatment, and typical daily routines. The times
the patient normally awakes, goes to sleep, works or attends school, exercises
and eats were recorded.

Each patient was then shown how to automatically transfer data from his
or her insulin pump to Medtronic’s CareLink data management Web site [5].
CareLink is a commercially available data collection and visualization tool that
is free to patients who use Medtronic insulin pumps. It consists of separate,
but connected, modules for patients and physicians, CareLink Personal [6] and
CareLink Pro [7], respectively. Data is wirelessly transmitted from the patient’s
pump to CareLink Personal via a USB download device. This data can then be
viewed graphically and in log form by the patient in CareLink Personal and by
the patient’s physician in CareLink Pro. The patient was asked to send data to
CareLink once a week for the next four weeks. This data was later extracted,
de-identified, and incorporated into the experimental database.

To ease the data entry burden, patients were not asked to input their life
events on a daily basis. The simplifying assumption was made that the patient
slept, worked, exercised and ate at the times given by their typical daily schedule.
Patients were asked to email their physicians with any unusual life events they
felt might be impacting their blood glucose levels.
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Once a week, data was aggregated and presented for physician review. Prob-
lems identified by the situation assessment module were discussed at each weekly
review meeting. For each problem detected by the system, the participating pa-
tient’s physician was asked if it was (a) correct and (b) useful to detect that
problem for the patient. Problems that were recognized by the physicians but
were not automatically detected by the system were also recorded. These repre-
sent future development needs.

Later, the system’s ability to retrieve useful cases for the detected problems
was tested. This was not done at weekly meetings because solutions are normally
sought for only a patient’s most critical problems. For thoroughness of evalua-
tion, however, solutions were sought for each type of problem detected for each
patient. These were initially reviewed by the knowledge engineering team and
are awaiting full review by the physicians.

4 Preliminary Results of the Evaluation

Situation assessment data has been tabulated for the first 20 patients who partic-
ipated in the evaluation study. Eighteen of these patients completed the full five
weeks of observation. Of the two who did not, one was mistakenly enrolled with
an incompatible pump type and the other switched pumps midway through the
study, losing some of the data. No patients withdrew due to the time required
to provide the requested data. This was viewed as a positive finding, because in
the preliminary study, 40% of the patients did not complete the entire proto-
col. Some cited the time required to enter daily data as an impediment to their
participation.

The 12 situation assessment routines, listed in Figure 2, found a total of 222
possible problems for the 18 patients. Of the 222 problems detected, 189 were
evaluated by the physician of the patient for whom the problem was found. The
physicians concluded that 186 of the 189, or 98.4% of the evaluated problem
detections were correct and three were incorrect. In regards to whether the de-
tections were useful, physicians rated 181, or 95.8% as useful, six as not useful
and two as possibly useful. The details compiled by problem detection routine
are seen in Table 1, and by patient in Table 2.

The correctness of the problem detections appears to be better than in the
preliminary study. This may be due, in part, to bug fixes, and in part to differ-
ences in the way the correctness was evaluated. Only the patient’s own physician,
who was most familiar with the patient’s actual problems, was asked to verify
correctness of the problems detected.

It should also be noted that there is no way to accurately determine the num-
ber of problems experienced by patients that were not detected by the system.
Physicians do not have time to manually detect the large number of problems
that could occur in patient data. That is one of the driving factors behind pro-
viding automated problem detection in the first place. However, there is reason
to believe that many actual problems were missed. The problem detection rou-
tines found fewer problems per patient than were found in the preliminary study.
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Correct to Detect Useful to Detect

Routine Total Yes No Maybe Yes No Maybe Not Evaluated

1 0 0 0 0 0 0 0 0
2 18 15 1 0 15 1 0 2
3 21 10 2 0 10 2 0 9
4 7 7 0 0 7 0 0 0
5 1 0 0 0 0 0 0 1
6 1 1 0 0 0 0 1 0
7 18 18 0 0 18 0 0 0
8 48 40 0 0 40 0 0 8
9 22 18 0 0 15 3 0 4
10 51 46 0 0 45 0 1 5
11 2 2 0 0 2 0 0 0
12 33 28 0 0 28 0 0 5

Totals 222 186 3 0 181 6 2 33

Table 1. Results by Situation Assessment Routine

Correct to Detect Useful to Detect

Patient Total Yes No Maybe Yes No Maybe Not Evaluated

1 9 9 0 0 9 0 0 0
3 2 1 0 0 1 0 0 1
4 9 9 0 0 9 0 0 0
5 6 6 0 0 6 0 0 0
7 12 10 0 0 9 0 1 2
8 9 9 0 0 9 0 0 0
9 19 19 0 0 19 0 0 0
10 9 7 0 0 6 0 1 2
11 21 12 0 0 12 0 0 9
12 45 41 3 0 41 3 0 1
13 9 4 0 0 4 0 0 5
14 0 0 0 0 0 0 0 0
15 14 13 0 0 13 0 0 1
16 15 11 0 0 11 0 0 4
17 16 12 0 0 9 3 0 4
18 9 8 0 0 8 0 0 1
19 3 1 0 0 1 0 0 2
20 15 14 0 0 14 0 0 1

Totals 222 186 3 0 181 6 2 33

Table 2. Results by Patient
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An average of 12.3 problems per patient were detected in this study versus 29.3
problems per patient in the earlier study. Even pro-rating for the difference in
the length of the studies, this study found 50.5% fewer problems per patient [8].

Lack of life-event data appears to account for many missed problem de-
tections. In the preliminary study, patients provided additional life-event data,
including their actual daily work and exercise schedules. Because it was time-
consuming for patients to provide this data, the current study was designed to
determine the impact of using typical daily schedules instead. For all four of
the meal related routines and the low after exercise routine, it is disadvanta-
geous not having a patient’s actual schedule. Assumptions are made that the
patient is exercising every time they plan to, and that recorded carbohydrate
intakes within one hour of their usual meal time are actual meals. Carbohydrate
intakes recorded at other times are assumed to be snacks. This prevents the
system from detecting pre-meal, post-meal, and post-exercise problems when a
patient’s schedule varies from normal.

While physicians have yet to fully evaluate the case retrieval module of the
system, initial observations indicate that the system is not finding matching cases
as well as it did in the preliminary study. While CBR, in general, may be robust
to missing values, the missing life event data appears to have provided essen-
tial context for describing, differentiating, and comparing cases. While generally
matching cases are found, more specifically matching cases may be overlooked.
Another problem is that the 12 problem detection routines do not account for
all of the problems in the case base. Rather, they were developed to account
for the most common problems. This effectively makes the case base smaller,
as some cases are never good matches for any of the problems detected. While
these are negative findings, they do clarify the needs to acquire more life event
data, expand the case base, and develop additional problem detection routines.

The system demonstrated its potential benefit when a participating patient
was hospitalized with diabetic ketoacidosis. This patient’s pump had malfunc-
tioned, so that his insulin was not delivered, and his blood glucose rose. The
patient knew that his blood glucose was high, but he did not know that the
pump was not delivering the insulin with which he tried to correct his hyper-
glycemia. He went into diabetic ketoacidosis and experienced an acute coronary
event with a silent heart attack. Running retroactively, the system was able to
detect the pump problem eight hours before the patient was admitted to the
hospital. Had the system been running in real time, it might have been possible
to alert the patient to this problem in time for him to correct it.

5 Future Work

The immediate task at hand is to finish the analysis for the current evaluation.
Situation assessment data for the remaining ten patients still needs to be tab-
ulated and analyzed. The similarity and usefulness of the cases retrieved needs
to be evaluated by a panel of physicians.
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Another clinical study is planned to significantly grow the case base and to
address the other issues identified during the evaluation. Twenty-eight patients
with type 1 diabetes on insulin pump therapy will take part. These patients will
automatically upload data from their insulin pumps using Medtronic’s CareLink
software. However, they will supplement this data with life-event data not stored
in their pumps to provide a fuller context for problem solving. They will do this
using a shortened and simplified version of the Web browser based interface
used in the preliminary study. The longer range goal is for patients to use the
technology in their own medical devices and/or cell phones to facilitate data
entry.

Once the accuracy and usability of the system is further validated, the next
step will be to conduct a multi-site randomized clinical trial. Pre- and post-
values of HbA1c, a measure of long-term glucose control, will be used to gauge
the efficacy of system use. If measurable improvement in patient outcomes can be
demonstrated, the 4 Diabetes Support System may advance beyond the research
laboratory into clinical practice.

6 Related Research

This work is anchored within the framework of CBR in the Health Sciences,
which is in turn part of a long tradition of research in AI in Medicine [9]. As
noted in [1], such work is driven by both the desire to advance the scientific
knowledge of AI and CBR and by the real-world needs of patients and health
care professionals. For the past six years, workshops on CBR in the Health
Sciences have been held at every International and European Conference on
Case-Based Reasoning (ICCBR and ECCBR). Several good overview papers
have been written on work in the field, including [10–12].

Diabetes management was first identified as a fruitful domain for CBR re-
search by the Telematic Management of Insulin-Dependent Diabetes Mellitus
(T-IDDM) project [13–15]. This was a telemedicine project that aimed to re-
motely monitor and support patients in maintaining good glucose control. T-
IDDM was a hybrid system that relied primarily on rule-based reasoning and a
probabilistic model of the effects of insulin on blood glucose over time. CBR was
integrated to tune rule parameters to optimize advice for patients.

Diabetes shares much in common with other chronic diseases that can not be
cured but must be managed or treated over time. Chronic disease management
involves consideration of time-varying data, patient variability, and individual
patient preferences and needs. Related work has been conducted in the domains
of psychiatric eating disorders [16], stem cell transplantation follow-up care [17],
end-stage renal disease [18], and Alzheimer’s disease [19].

7 Summary and Conclusions

A clinical study of 30 patients with type 1 diabetes on insulin pump therapy
was designed to evaluate the 4 Diabetes Support System prototype. This is an
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intermediate step between the preliminary evaluation conducted when the pro-
totype was originally built and the randomized clinical trial needed to measure
its impact on patient outcomes. Test data was collected from patients who were
not involved in the original study in which the case base was built. This helped
to ensure that the system was not overfit to the individual test cases, a potential
criticism of leave one out testing. User interface issues identified during the orig-
inal study were addressed. While results are still being tabulated and analyzed,
preliminary results have already identified system strengths, weaknesses, and
development needs. Evaluation studies are especially crucial for systems devel-
oped in medical domains, because positive impact must be demonstrated before
systems can move beyond the research laboratory into clinical use. Conducting
evaluations that demonstrate impact is difficult for many reasons, including fi-
nancial constraints, time constraints, and the rapidly evolving nature of software
systems [20]. Additional work is needed to define and document practical system
evaluation methodologies suitable for CBR in the Health Sciences.
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Abstract. A difficult issue in stress management is to use biomedical sensor signal in 
the diagnosis and treatment of stress. Clinicians often base their diagnosis and decision 
on manual inspection of signals such as, ECG, heart rate, finger temperature etc. 
However, the complexity associated with the manual analysis and interpretation of the 
signals makes it difficult even for experienced clinicians. A computer system, 
classifying the sensor signals is one valuable property assisting a clinician. This paper 
presents a case-based system that assist a clinician in diagnosis and treatment of stress. 
The system uses a finger temperature sensor and the variation in the finger temperature 
is one of the key features in the system. Several artificial intelligence techniques such as 
textual information retrieval, rule-based reasoning, and fuzzy logic have been combined 
together with case-based reasoning to enable more reliable and efficient diagnosis and 
treatment of stress. The performance has been validated implementing a research 
prototype and close collaboration with the experts. The experimental results suggest 
that such a system is valuable both for the less experienced clinicians and for experts 
where the system may be seen as a second option. 

1   Introduction 

Medical knowledge is today expanding rapidly to the extent that even experts have 
difficulties to follow all new results, changes and new treatments. Computers surpass humans 
in the ability to remember. This property is very valuable for clinician work and computer-
aided system enable improvements in both diagnosis and treatment. Different methods have 
proven to be valuable in different diagnosis and treatment situation. Especially methods and 
techniques from Artificial Intelligence (AI) such as case-based reasoning, textual case based 
reasoning and fuzzy logic have drawn much attention and proven to be useful in solving 
tasks previously difficult to solve with traditional computer-based methods. Recent advances 
show that by combining more than one AI methods and techniques increase the potential for 
clinical decision support systems. The multi-faceted and complex nature of the medical 
domain often leads to designing of multi-modal systems [11] [13].  

Diagnosis and treatment of stress is such an example of a complex application domain. It 
is well known that increased stress level can lead to serious health problems. During stress 
the sympathetic nervous system of our body activates causing a decrease in peripheral 
circulation which in turn decreases the skin temperature and reverse effect (i.e. 
parasympathetic nervous systems activates) occurs during the relaxation. Thus the finger skin 
temperature responds to stress [17]. Since there are large individual variations when looking 
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at the FT, this is a worthy challenge to find a computational solution to apply it in a 
computer-based system. Case-based reasoning (CBR) is especially suitable for domains with 
a weak domain theory, i.e. when the domain is difficult to formalize and is empirical. The 
advantages of CBR in medical domain have been identified in several research works i.e. in 
[1, 8, 4, 12, 20]. For some applications the integration of CBR and rule-based reasoning have 
been explored, e.g. in systems like [6, 21]. Cases comprised textual features or textual cases 
and introducing ontology into the CBR system, to get the advantages, are also implemented 
in systems such as, in [14, 19]. The use of fuzzy logic in medical informatics has begun in 
the early 1970s. In fuzzy CBR, fuzzy sets can be used in similarity measure e.g. [5, 7, and 
18].  

This paper presents a multi-modal and multipurpose-oriented clinical decision support 
system for stress management. Our previous work in [10] provides a solution for the 
diagnosis of stress based only on the finger temperature using CBR and fuzzy similarity 
matching. The system presented in this paper, for stress management, is not only based on 
the FT sensor data but also considers contextual information i.e. human perception and 
feelings in textual format. The system applies CBR as a core technique to facilitate 
experience reuse. Moreover, an effort has been made in this research work to improve the 
performance of the stress diagnosis task when there are limited numbers of initial cases 
introducing a fuzzy rule-based classification scheme. Reliability of the performance for 
diagnosis and decision making is further enhanced using textual information retrieval with 
ontology.  Finally, a three phase CBR framework is also included into the system to assist in 
treatment i.e. biofeedback training. 

2   CBR system for stress management 

The construction of multi-purposed and multi-modal medical systems is also becoming a hot 
topic in the current applied CBR research. Fig. 1 presents the steps to develop a hybrid multi-
purpose CBR system to support in diagnosis and treatment of stress-related disorder.  

 Step 1: Clinical studies show that FT in general decreases with stress and helps to 
determine stress-related disorders [17]. Analyzing/interpreting finger temperature and 
understanding large variations of measurements from diverse patients requires knowledge 
and experience and, without adequate support, erroneous judgment could be made by a less 
experienced staff.  

Step 2 and 3: The measurement is taken from 31 subjects using a temperature sensor in six 
steps (i.e. Baseline, Deep-breath, Verbal-stress, Relax with positive thinking, Math-stress and 
Relax) in the calibration phase [10]. Eight woman and twenty three men within the age range 
of 24 to 51 are participated in this study. The numbers of individual parameters identified and 
features extracted from the complex data format are briefly presented in section 2.1.    
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Fig. 1. Schematic diagram of the stress management system in the IPOS  

Step 4 and 5: A new problem case is formulated with 19 features in total. The problem 
description part of a case contains a vector of the features extracted from the FT 
measurements and the solution part provides a level of stress. The levels of stress are denoted 
as Very Relaxed, Relaxed, Normal/Stable, Stressed and Very Stressed and the initial case 
base, with 53 reference cases from 31 subjects, is classified by the domain expert.  

Step 6: To diagnose individual stress level, a new FT measurement (formulated as a 
problem case) is inputted into the CBR cycle. The new problem case is then matched using 
different matching algorithms including modified distance function; similarity matrix and 
fuzzy similarity matching. A modified distance function uses Euclidean distance to calculate 
distance between the features of two cases. Hence, all the symbolic features are converted 
into numeric values before calculating the distance for example, for a feature ‘gender’ male 
is converted to one (1) and female is two (2). The function similarity matrix is represented as 
a table where the similarity value between two features is determined by the domain expert. 
For example, the similarity between same genders is defined as 1 otherwise 0.5. In fuzzy 

similarity, a triangular membership function (mf) replaces a crisp value of the features for 
new and old cases with a membership grade of 1. In both the cases, the width of the 
membership function is fuzzified by 50% in each side. Fuzzy intersection is employed 
between the two fuzzy sets to get a new fuzzy set which represents the overlapping area 
between them. 

 (1) 

 Similarity between the old case (Sf) and the new case (Cf) is now calculated using 
equation 1 where m1, m2 and om is the area of each fuzzy set. The system can provide 
matching outcome in a sorted list of best matching cases according to their similarity values 
in three circumstances: when a new problem case is matched with all the solved cases in a 
case base (between subject and class), within a class where the class information is provided 
by the user and also within a subject. 

Step 7: A fuzzy rule-based classification scheme [2] and textual features [4] are introduced 
to provide improved performance in the stress diagnosis task. Detailed information of the 
system improvement is presented in section 2.2 and 2.3 

Step 8: The last step in fig 1 focuses on the CBR system in biofeedback treatment. A three 
phase CBR framework [3] is deployed to classify a patient, estimate initial parameters and to 
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make recommendations for biofeedback training. A detailed description on the three phases 
is given in section 2.4. 

2.1 Feature mining from the biomedical sensor signal  

An experienced clinician often classify FT signal manually without being pointed out 
intentionally all the features he/she uses in the classification. However, identifying 
appropriate features is of great importance in developing a computer-based system. To 
determine important features the system uses 15 minutes measurements (time, temperature) 
in 1800 samples, together with other numeric (age, room-temperature, hours since meal, etc) 
and symbolic (gender, food and drink taken, sleep at night, etc) parameters. After analyzing a 
number of sample measurements it was found that the FT decreases during the verbal stress 

condition and increases in relax condition. In our opinion, either mean value or standard 
deviation of the FT measurement might not be an indicative for stress. For instance, consider 
two signals one is increasing from 20 to 30, the other decreasing from 30 to 20, and then both 
have same mean/standard deviation value in the duration, but indicate opposite for stress 
levels. As an alternative way, we guess that the mean of the slope value might be a feasible 
feature to convey relation with stress. If the mean slope is sufficiently positive, it will be an 
indication of relax, otherwise an indication for stress. But if the mean slope is around zero, it 
shows a situation with high uncertainty for decision or weak decision. According to closer 
discussion with clinicians, the derivative of each step of FT measurement (from calibration 
phase) is used to introduce “degree of changes” as an indication of the FT changes. A low 
angle value, e.g. zero or close to zero indicates no change or stable in finger temperature. A 
high positive angle value indicates rising FT, while a negative angle, e.g. -20° indicates 
falling FT.  

Total signal, except the baseline, is divided into 12 parts with one minute time interval and 
12 features (i.e. Step2_Part1, Step2_Part2, Step3_Part1, …, Step6_Part1, Step6_Part2) are 
extracted. The system thereafter formulates a new problem case combining these generated 
features and other features namely start temperature, end temperature, minimum 

temperature, maximum temperature and difference between ceiling and floor. Also we 
consider human defined features such as, sex, hours since last meal etc. This new formulated 
case is then applied in diagnosing and treatment plan of stress by using the CBR cycle. 

2.2 Fuzzy rule-base reasoning for creating artificial cases 

The cases stored in the case library should be both representative and comprehensive to 
cover a wide spectrum of possible situations. The composition of the case library is one of 
the key factors that decide the ultimate performance of a CBR system.  Initially, this CBR 
system has a limited number of available cases which reduces the performance of the system. 
Therefore, a fuzzy rule-based classification scheme is introduced into the CBR system to 
initiate the case library, providing improved performance in the stress diagnosis task. 

In fuzzy logic, exact reasoning is treated as a special case of approximate reasoning. 
Everything in fuzzy logic appears as a matter of some degree i.e. degrees of membership 
function or degrees of truth.  
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Table 1. Rules for the fuzzy inference system 

Fuzzy rules for classification 
Rule no.   Antecedent                                Consequent  

           ==============                                                                  =============== 
           Percentage_Negative_Slope          Stress_Class 

1.          VeryHigh                                         VeryStress 
2.          High                                                  Stress 
3.          Medium                                             Normal/Stable 
4.          Low                                                   Relax 
5.          VeryLow                                          VeryRelax 

 
A single-input single-output Mamdani fuzzy model is implemented in which the 

percentage of negative slope features is taken as the input variable and the corresponding 
stress class as the output. The parameters of the IF–THEN rules (known as antecedents or 
premise in fuzzy modeling) define a fuzzy region of the input space, and the output 
parameters (known as consequent in fuzzy modeling) specify a corresponding output as 
shown in table 1.  

 

Fig. 2. Block diagram of a fuzzy inference system [9] 

The basic structure of fuzzy logic expert systems, commonly known as fuzzy inference 
system (FIS) shown in Fig. 2, is a rule-based system consisting of three conceptual 
components: a rule base that consists of a collection of fuzzy IF–THEN rules; a database that 
defines the membership functions (mf) used in the fuzzy rules; and a reasoning mechanism 
that combines these rules into a mapping routine from the inputs to the outputs of the system, 
to derive a reasonable conclusion as output. Percentage_Negative_Slope and Stress_Class 
are the linguistic variables with the universe of discourse {0, 100} and {1, 5} respectively. 
VeryHigh, High, Medium, Low and VeryLow are the linguistic values determined by the 
fuzzy sets “TriangleFuzzySet” on the universe of discourse of Percentage_Negative_slope; 
VeryStress, Stress, Normal/Stable, Relax and VeryRelax are the linguistic values determined 
by the fuzzy sets “SingletonFuzzySet” on the universe of discourse of Stress_Class.  

2.3 Textual information retrieval    

Clinicians are also considering other factors such as patients feelings, behaviours, social 
facts, working environments, lifestyle and so on in diagnosing individual stress levels. Such 
information can be presented by a patient using natural text format and visual analogue scale. 
Textual data of patients capture important indication not contained in measurements and also 
provide useful supplementary information. Therefore the system added textual features in the 
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case vector which helps to better interpret and understand the sensor readings and 
transferring valuable experience between clinicians [3]. For the textual cases, the tf-idf (term 
frequency–inverse document frequency) [15] weighting scheme is used in the vector space 
model [16] together with cosine similarity to determine the similarity between two cases. 
Additional domain information often improves results, i.e., a list of words and their 
synonyms or a dictionary provides comparable words and relationships within the words 
using class and subclass.   It uses domain specific ontology that represents specific 
knowledge, i.e., relation between words. The different steps in retrieval of similar case(s) in 
the system are described in Fig. 3.  

 

 

Fig. 3. Different steps for the case retrieval 

The text tokenizer algorithm decomposes the whole textual information into sentences, 
and then into individual words. A filtering step is required to improve retrieval effectiveness 
due to the huge amount of words. The following three steps are applied to extract the 
important textual features: 

1. Remove the stop-words and special characters blacklist both from the users’ query 
and patients’ record. 

2. A list of synonyms of the words is used to reduce the number of terms and Porter 
stemming algorithm helps stemming the words that provide the ways of finding 
morphological variants of search term. After calculating the weight for each word, 
these words are represented as terms in a vector space. 

3. Improve the importance assessments for candidate terms before measuring the 
cosine similarity value for the textual information between the stored case and user’s 
query case by using domain specific ontology. 

2.4 Biofeedback treatment 

The basics of biofeedback is that a patient gets feedback in a clear way (patient observes the 
graph and knows from preceding education how it should change) and with this feedback can 
behaviourally train the body and/or mind to biologically respond in a different better way. 
Biofeedback often focused on relaxation and how the patient can practice relaxation while 
observing, e.g. the changes in skin temperature. The intention of the system is to enable a 
patient to train himself/herself without particular supervision. After discussion with clinicians 
it has been figured out that most of the sensor based biofeedback applications comprised of 
three phases, 1) analyze and classify patient and make a risk assessment, 2) determine 

User query 
posted in natural 

language  

Removed stop 
words & used 
synonyms of 

words 

Calculated the weight for every 
word both from the users query  

& stored cases to generate 
weighted term vector 

Rank the result  Calculated Cosine-Angle 
for textual data  

Tokenized 
textual data 

Stemmed 
word 

Add more importance to the terms 
using ontology 

Domain 
specific 
ontology 

220



individual levels and parameters, and finally 3) adapt and start the biofeedback training. If 
the clinician only uses sensor readings shown on a screen then the classification is highly 
experience based. 

 

 

Fig. 4. General architecture of a three-phase biofeedback system  

In the first phase as shown in fig 4, a clinician normally asks a number of questions and 
makes a number of more or less systematic measurements/calculations and then classify a 
patient depends on the risk and risk-reduction (e.g. stress reactivity and recovery/capacity) of 
stress. In the second phase, a number of measurements have been done to find out parameters 
such as, baseline, ceiling, floor temperature etc. needed to tailor the biofeedback session to a 
patient in order to achieve as good results as possible. Finally, the third phase generates 
recommendations for a biofeedback training session.  

3   Experimental results 

The performance of the system has been validated in a prototypical system and close 
collaboration with experts. Note that, in our previous study, the experiment has been 
conducted considering 39 cases within the 24 subjects but this paper presents experimental 
work considering 53 cases from 31 subjects. Moreover, more than one test data sets i.e. for 
the similarity matching evaluation 7 test sets and for the rest of the evaluation 2 test sets have 
been considered.       

Similarity matching in CBR: Seven subsets of cases and seven query cases, for example: 
Set A: {7 cases} with query case id 4, Set B: {11 cases} with query case id 16, Set C: {10 
cases} with query case id 28, and so on are chosen randomly. All the test sets have been 
sorted according to the similarity with a query case decided by a domain expert (human 
reasoning). The sorted cases are then converted to the rank numbers, i.e., the position of a 
case in the ranking. The top six cases from each set according to the expert’s ranking use as 
standard for the evaluation process where both the similarity values and the ranking numbers 
are considered. Main goal of this experiment is to investigate the best similarity algorithm for 
the CBR system compare to the expert’s opinion.  
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Fig. 5. Goodness-of-fit both in ranking and similarity to compare three algorithms 

Figure 5 illustrates the comparison between the three algorithms (i.e. modified distance, 
similarity matrix and fuzzy similarity) for the seven test subsets. The goodness-of-fit (R2), to 
evaluate both the ranking numbers and the similarity values compare to an expert, is 
calculated for all the subsets. The value of R2 lies between the 0 and 1. A value close to 1 
indicates that both the algorithm’s and expert’s propose a similar decision value. As can be 
seen from figure 5, both in “ranking number” and “similarity value” criteria, fuzzy similarity 
algorithm is more reliable than the other algorithms. Fuzzy similarity algorithm performs 
better in all the seven test subsets.  

Fuzzy rule-based classification to CBR: the performance of the CBR system depends on 
the number of available cases in a case library. So, the goal of this evaluation is to see the 
improvement of the CBR system adding these artificial cases into the CBR library. 
Experiment has been done by defining two different case libraries as: LibraryA, with real 
cases only, classified by the expert and LibraryB being twice as big as LibraryA with hybrid 
cases, classified by the expert and the fuzzy rule-based classification.  As shown in table 2, 
for the two tests (test1 and test2) on an average the LibraryB indicates the classification 
accuracy 87% while the LibraryA reaches 74% of fitness compared to expert classification. 
So, there is 13% increase in the R2 value and 22% (Mean absolute difference) decrease in the 
error rate when the system uses the LibraryB (hybrid cases) i.e. case library containing 
enough cases. For the two tests (using two case libraries) the number of correctly classified 
cases on average is presented in percentage (see 4th column) in table 2. Here, the CBR system 
can correctly classify 83% using LibraryB whereas using LibaryA the system can only 
correctly classify 61% of the cases.  

Table 2. Comparison results among the case libraries 

Average result for 
test1 and test2 

Goodness-of-fit 

(R2) 

Mean Absolute 

Difference 

Correctly 

classified cases 

LibraryA 0.74 0.38 61% 

LibraryB 0.87 0.16 83% 
 

a) R2 value in ranking b) R2 value in similarity  
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System performance vs. junior clinicians: for the testing purpose an experienced clinician 
and two junior clinicians (JC1 and JC2) are involved, 2 subsets of cases (setA and setB) are 
created randomly with the 11 and 14 expert approved cases. The cases of both subsets are 
classified by the two junior clinicians who have less experience in this domain. The main 
goal is to see how good the system can classify compare to the junior clinicians i.e. whether 
the system can be useful to assist the junior clinician in the classification task.  

Table 3. Comparison results between the system and junior clinicians for the two test data sets.  

Test setA Test setB Evaluation Method 

JC1 JC2 The System JC1 JC2 The System 

Correctly Classified Cases 64% 55% 81% 57% 57% 79% 

Goodness-of-fit (R2) 0.86 0.88 0.92 0.80 0.81 0.83 

Absolute Mean Difference 0.36 0.45 0.18 0.43 0.43 0.28 
 

From the table 3 it can be seen that the system using fuzzy similarity matching algorithm 
can classify correctly better than all the junior clinicians.  The test group SetA with 11 cases, 
the system classifies correctly 81% and the junior clinicians classify correctly 64% and 55% 
respectively. The number of the correctly classified cases for setB with 14 cases in 
percentage is 79 by the system whereas the junior clinicians have succeeded to classify 
correctly as 57 in percentage. The Goodness-of-fit (R2) value for both the test groups (setA 
and setB) are 92% and 83% by the system against the senior clinician, the R2 values are 
almost the same or little better than the junior clinicians as 86% and 88% for setA, 80% and 
81% respectively for setB. The absolute mean difference or error rates in classification for 
both the test groups are comparatively lower (0.18 and 0.28) than the junior clinicians. 

4   Conclusions  

Clinical systems have proven to be able to extend the capability of clinicians in their decision 
making task. But reliability is often a concern in clinical applications. The system presented 
in this paper supports a clinician in a number of complex tasks in stress management by 
combining more than one artificial intelligence techniques where CBR is applied as the core 
technique. Reliability of clinical systems based on sensor readings could certainly be 
increased by providing contextual information supporting the reasoning tasks. Therefore, the 
system considers additional information in textual format applying textual information 
retrieval with ontology. Here, it is also illustrated that it is possible to increased accuracy in 
the classification task, by extending the case library with artificial cases. A case study also 
shows that the system provides results close to a human expert. Today the system is based on 
one physiological parameter i.e. finger temperature sensor signal, in future several other 
parameters such as heart rate variability, breathing rate etc. could be investigated as a 
reference of the work for more reliable and efficient decision support in stress management.  
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Abstract. Nowadays solar exposure habits have caused an important
increase of melanoma cancer in the last few years. Mortality rates caused
by this illness are the most important ones in dermatological cancers. De-
spite of it, recent studies demonstrate that early diagnosis improves dras-
tically life expectancy. This work introduces a way to combine different
kinds of diagnostic techniques to help experts in early detection. The ap-
proach is an improvement of a previous work that combines information
of two of the most important non-invasive image techniques: Reflectance
Confocal Microscopy and Dermatoscopy. Current work beats the results
of the previous system by the support of a set of rules obtained from data
preprocessing. This improvement increases the reliability of diagnosis.

1 Introduction

Sun rays and its artificial substitutes are exceedingly appreciated in our society.
Actually, they could be healthy with an appropriate protection against excessive
tanning. In spite of it, new social habits in solar exposure have increased the
appearance of melanoma and other skin cancers (according to the American
Cancer Society data). This information and the fact that melanoma holds the
highest percentage of death faced with more common dermatological cancers,
approximately twenty percent of non early prognosticated cases, makes even
more important the early diagnosis. In order to deal with this problem, the most
important way is to use non-invasive techniques based on images. In this field
stands out two kinds of image analysis: Dermatoscopy and Reflectance Confocal
Microscopy [12]. The former is based on the microscopical image created with
epiluminiscence and the latter makes the image with the reflectance of a coherent
laser with a cell resolution.

This work presents a computer aided system for medical experts in melanoma
diagnosis. To catch this aim up we based our effort on solving the problems ob-
served in our previous implemented solution [11]. Our prior approach for this
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Fig. 1. Protocol followed by medical experts for melanoma diagnosis.

problem focused on the importance of the work in combination of different di-
agnostic criteria to ascertain the stand out of confocal in the medical protocol.
We propose the use of Case-Based Reasoning (CBR) [1] techniques in order to
assist the diagnosis. The CBR is a suitable approach because it uses past ex-
periences to solve new cases. It is exactly the same procedure used by experts.
Then, we use two independent CBR systems with different types of informa-
tion in each one in order to obtain a shared prognostic. Moreover, we follow
the medical protocol in this kind of decisions which is: to analyze whether the
new case is melanocytic and, afterwards, to assess about its malignancy. Thus,
the combination of both diagnosis allows experts to determine if the new case is
Melanoma, Basal Cell Carcinoma (BCC) or a non-malignant tumor as figure 1
shows. With this first solution we denote that due to its high precision, Confocal
microscope allows medical experts to improve its prognostic capacity making up
its high economical and temporal cost and the combination of this technique
with dermatoscopy allows even a better diagnostic. But this work stresses one
difficulty which is that the available attributes are discrete. Considering this
characteristic of the data, in our current proposal we try to tackle this property
using a preprocessing technique of the data domain that is independent from the
medical experts. Eventually, both techniques are combined to create a computer
aided system that uses the two CBR modules to classify new cases and fetching
obtained rules to combine the classification results. The whole process follows
the medical protocol in this kind of decisions and the introduction of the rules
guarantees more reliability in the integrated system because all rarities of the
data are detected, as we will explain in following sections.

The paper is organized as follows. Section 2 describes some related work.
Section 3 describes the new tool obtained by the combination of the different
modules. In section 4, experimentation is presented and the performance is an-
alyzed. Finally, section 5 summarizes the conclusions and further work.

2 Related Work

In this work, we would like to use the combination of different decisions in order
to classify new melanoma cases. Although there are works focused on studying
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the melanoma domain from individual approaches such as in [5], the application
of ensemble methods and combination systems has increased in the last years. A
line is to improve clustering using ensembles [3]. There are also works to allow
the classification using data of different complexity [2] and with different types
of medical information [6]. In contrast to these approaches we would like to
classify melanoma following the medical diagnosis protocol using different CBR
independent classifiers.

In our framework we have two available different points of view (confocal
and dermatoscopic) and we select the best classification (the one prognosticated
for one of the systems) depending on different criteria. These characteristics do
not allow to talk about an Ensemble Learning system but the combination idea
is pretty similar to the one used in this kind of methods. Ensemble methods
combine the decisions from different systems to build a more reliable solution
using the individual ones [9].The combination of approaches can be summarized
[4] in: 1) Bagging, 2) Boosting, and 3) Stacking. Bagging and Boosting are based
on the combination of the outputs using votes. Particularly, Bagging replicates N
systems of the same approach with different data sources. In opposition Boosting
defines complementary models. On the other hand Stacking is based on heuristics
that combine the outputs of several approaches. As voting methods the most
common ones [8] are: 1) Plurality, 2) Contra-Plurality, 3) Borda-Count, and 4)
Plurality with Delete. All these methods are based on the number of votes of
a class (plurality) but with multiple types of plurality addition and decision of
better class.

Attending to the medical necessities and the existing data, it would be in-
teresting to create a combination model with an expert for each kind of data
and a final diagnosis opinion. Note that we are not using any of the classical
systems of ensemble learning. As we have said, we are not formally using that
technique but we are doing an adaptation of different ideas from these models.
We modify the use of the data because we are using different attributes of the
same data in each system, then the independence of the data is guaranteed, in
contrast to the standard Bagging. Analyzing that the classification attributes
are boolean, the vote method should be based on plurality but with some ar-
ranges requested by medical researchers, who weight more the information from
Confocal Microscopy. Once we have experimented the protocol used by experts,
we would like to improve it by using rules to do a better system combination.

In previous works in which clustering was used in order to discover new
patterns on the medical domain [13] we detected a particular behavior on the
data. This characteristic guarantees a correct classification of the new patients
when certain conditions in the attributes of the case were detected. Thus, bearing
in mind that the main goals are the improvement of the classification and to
minimize the false negatives situations, we created the D-Rule module. This
module preprocesses the input data and creates a set of rules to help the whole
classifier. The module details are explained later on.

A similar idea is shown in [7]. In that work, the attributes of a domain are
studied using overlapped intervals and computing the distance between these
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intervals. In this way, a technique called overlapping of binding box is presented
and it is based on the creation of delimited intervals to define the attributes do-
main. However, in this paper the preprocessing module is not based on intervals.
Concrete values (with useful classification) are detected and encapsulated in a
rule. Moreover, our rules do not depend ones on each other, and each attribute
is analyzed independently.

3 Improving a Combination of CBR Systems

In this section, we want to describe how a basic system evolves to a reliable tool
for medical experts in an action framework in melanoma diagnosis. First of all,
the simple combination of CBR systems is presented. Then, we introduce the
D-Rule module which is capable to extract a set of characteristics of training
data set using a preprocessing algorithm. Finally, we show the result of the
combination of both parts.

3.1 Using the Combination of Case-Based Reasoning Systems in
Dermatological Cancer

We have developed a computer aided system for melanoma diagnosis based on
the medical protocol described in the first section. For each one of the deci-
sion points, a CBR system is used to answer the medical question using the
knowledge extracted from the Dermatoscopy and the Reflectance Confocal Mi-
croscopy image data as Fig. 2 shows. In this first approach [11], we implement
as combination module the same protocol used by medical experts.

As we can observe, the global system combines the output of two Case-Based
Reasoning (CBR) systems [1]. This is because CBR performs the same resolution
procedure that experts: solving new cases through the comparison of previously
solved ones. In a general way, the CBR life cycle can be summarized in the
next four steps: 1) Retrieving the most similar cases from the case memory with
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the assistance of a similarity function; 2) Adapting the retrieved solutions to
build a new solution for the new case; 3) Revising the proposed solution and 4)
Retaining the useful knowledge generated in the solving process if it is necessary.
Thus, the explanation capability is highly appreciated by experts because they
are able to understand how decisions are made. Each one of the CBR systems
feed from two different case memories which store all the previously diagnosed
injuries through the confocal and the dermatoscopy studies respectively. These
two parts are completely independent and at the end of its work they put on its
vote for the best classification according to their specific data. With this separate
ballots, the system creates the final diagnosis (Solution) and, if proceeds, saves
the new case in one of the case memories or in both.

The first option tested, as a decision process to perform a diagnosis, is de-
scribed in figure 3. This approach represents exactly the logical scheme used by
the experts. In spite of using a collaborative scheme, where both diagnosis are
combined, experts mainly focus on confocal diagnosis and, only if the diagnosis
is non conclusive they use the dermatological one. Therefore, the selection of
the threshold values used to perform this decision are crucial to achieve a good
performance. Both values need to be defined by experts.

3.2 The D-Rule Module

One of the most important problems detected in medical environments is that the
majority of attributes are discrete. This characterization of the domain produces
a complicated situation when a CBR system is used in these cases. From this
idea, we decide to improve our combination of classifiers with an additional tool
which allows to evaluate the solution proposed in a reliable way using a set of
specialized rules in the discrete attributes. So, in order to achieve this goal, the
D-Rule module was designed. Analyzing the training data, a set of several rules
are generated by this module. These rules summarize the data complexity in the
case memory. The main goal is to represent the existing gaps in the data space
with no information associated, in order to advise the classifier in this sense. On
the same way, when the correct classification is guaranteed with a high reliability,

Let cnew be the new input case
Let bestconfocal be the most similar case using the confocal CBR
Let bestdermatoscopical be the most similar case using the dermatoscopical CBR
Let distance(ci, cj) be the distance between two cases ci and cj performed by the
normalized Euclidean distance
Let thresholdconfocal be the minimal value to accept two cases as similar from the confocal
point of view
Let thresholddermatoscopical be the minimal value to accept two cases as similar from the
dermatoscopical point of view
Let class(c) be the class of the case c
if distance(cnew,bestconfocal)< thresholdconfocal then

return class(bestconfocal)

else
if distance(cnew,bestdermatoscopical) < thresholddermatoscopical then

return class(bestdermatoscopical)

return class(bestconfocal)

Fig. 3. Algorithm to diagnose a new case using the confocal and dermatoscopical
criteria with plain combination.
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Fig. 4. Example of an attribute considered by the D-Rule module.

an alert to the following classifiers is sent, if a set of characteristics in the input
data is detected.

In the example of Fig.4, we can observe a situation where a new rule is
generated by the system. Looking at the clubbing of the rete ridges attribute,
we notice that a discrete value is defined with all the cases belonging always to
the same class. In this case, a new rule could be generated in order to help the
CBR systems.

In our domain, it is quite usual that from a certain discrete value of an
attribute, the variation of the final decision on the classification does not change.
So, the intervals proposed in [7] have been eliminated and clear-cut zones affected
always in the same way have been created. These zones are summarized in one
or more rules.

The pseudocode used to generate the rules is described in Fig. 5. As we can
observe, in the algorithm we use all possible values of an attribute to analyze
the input data. One of the advantages found in the medical domain is that the
attributes are well delimited, so it is not possible to find a new case with a
different value of the predefined ones in the domain.

On the D-Rule module output, a set of if − then − else rules are created
to improve the CBR classifiers (see fig 6). The number of defined rules depends
on the data complexity and it varies with the different types of classification
(Melanoma, Melanocytic or BCC).

3.3 Using Rules in the Combination of CBR Systems

The final approach used in this paper is to implement the combination mod-
ule based on preprocessing generated rules. Mainly, we follow the same scheme
as in the first approach using the best retrieved cases but adding information

Let A be the set of all attributes of the medical domain
forall attributes in A do

Let Ai be the attribute i of the set A
Let V be the all possible values of attribute Ai

forall values in V do
if ∃Vj || class is unique for all cases in training set then

CreateRule (A,i,V,j,class)

Fig. 5. Algorithm to generate rules in the D-Rule system.
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provided by rules. The module works with independent rules obtained from a
processing technique applied to training cases. It allows the possibility of auto-
matic and better selection of the best diagnosis. The logic process followed, as
a combination, is the one described in Fig.7.

4 Experimentation

This section describes the data extracted from images and analyzes the results
of the experiments performed through sensitivity and specificity rates.

4.1 Testbed

The classification of injuries in melanoma domain is not trivial. One of the main
difficulties is the huge amount of information that new technologies are able
to collect and the ignorance about how they are interrelated [10]. The most
used techniques to gather information from tissue are the dermoscopic and the
confocal analysis. Experts want to evaluate if confocal analysis detects cases
impossible to assess with dermatoscope and if the usage of both techniques can
improve the individual analysis.

Nevertheless, a negative point is that the confocal analysis is a long and ex-
pensive test, so the number of available cases is limited. Due to this situation,

Let cnew be the new input case
Let bestconfocal be the most similar case using the confocal CBR
Let bestdermatoscopical be the most similar case using the dermatoscopical CBR
Let distance(ci, cj) be the distance between two cases ci and cj performed by the
normalized Euclidean distance
Let numRulesconfocal be the number of rules carried out by bestconfocal

Let numRulesdermatoscopical be the number of rules carried out by bestdermatoscopical

Let class(c) be the class of the case c
if numRulesconfocal > numRulesdermatoscopical then

return class(bestconfocal)

else
if numRulesconfocal < numRulesdermatoscopical then

return class(bestdermatoscopical)

else
if distance(cnew,bestdermatoscopical) < distance(cnew,bestconfocal) then

return class(bestdermatoscopical)

else
return class(bestconfocal)

Fig. 7. Algorithm to diagnose a new case using the confocal and dermatoscopical
criteria and combining the results by rules.
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Table 1. Classification accuracy using only confocal images, only dermoscopic images,
both images with plain combination, and both images with rules combination.

Melanoma Melanocytic BCC

Only Confocal Images 87% 90% 96%
Only Dermatoscopy Images 90% 98% 95%
Confocal and Dermoscopic Images
with Plain Combination 89% 96% 95%
Confocal and Dermoscopic Images
with Rules Combination 94% 99% 99%

the data set used in this work is composed only by 150 instances of suspicious
lesions. All instances contain information related to confocal and dermatoscopic
images and the histology corroborated diagnosis. Attending to the considerations
of the medical experts that have created this set, it includes enough cases from
each kind of illness to be representative of the domain. Then, in medical terms
it is an appropriated case memory for this study. Detailing the instances, der-
matological information has forty-one fields and confocal microscopy, due to its
higher resolution, contributes with data from eighty-three different attributes.

4.2 Experimentation Framework

We have tested the classification accuracy of the platform proposed with a ba-
sic decision combination and with the use of rules obtained through the use of
preprocessing algorithms (as has been explained). In addition, we tested the ac-
curacy of the two independent CBR systems (one for confocal data and another
for dermatoscopy). This information is complemented with the analysis of the
sensitivity and the specificity for the different cases. In the case of the plain
combination platform, we have tested different decision thresholds according to
medical experts criteria. The final consensus is to use 0.5 as confocal threshold
and double of the distance between new case and best confocal case as derma-
tological one. All the CBR systems used in experimentation are configured with
one-nearest neighbor algorithm with normalized Euclidean distance as retrieve
function. This experiment framework has been tested applying a leave-one-out
to the original data to obtain the average accuracy of those systems.

4.3 Results and Discussion

Analyzing these results, table 1 shows the accuracy rate to classify new injuries.
This analysis is done in the three possible classes (Melanoma, Melanocytic and
BCC) and using only confocal image, only dermoscopic image and both ima-
ges with and without rules. The results obtained highlight two points: firstly,
the combination of systems (even without rules) obtain a significatively better
classification results, or at least an equivalent one (tested with t-test at 95% con-
fidence level) than the use of only one kind of data. Secondly, the results are even
better if we apply the preprocessing obtained rules to the combination module.
In this way, we could see that the use of rules improve a minimum of 3% the
accuracy in comparison with the plain combination. In all kind of classifications
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Table 2. Sensitivity results using only confocal images, only dermoscopic images, both
images with plain combination, and both images with rules combination.

Melanoma Melanocytic BCC

Only Confocal Images 73% 94% 81%
Only Dermatoscopy Images 73% 99% 92%
Confocal and Dermoscopic Images
with Plain Combination 70% 96% 92%
Confocal and Dermoscopic Images
with Rules Combination 81% 100% 92%

Table 3. Specificity results using only confocal images, only dermoscopic images, both
images with plain combination, and both images with rules combination.

Melanoma Melanocytic BCC

Only Confocal Images 92% 81% 99%
Only Dermatoscopy Images 96% 98% 95%
Confocal and Dermoscopic Images
with Plain Combination 95% 96% 96%
Confocal and Dermoscopic Images
with Rules Combination 98% 98% 100%

analyzed, the increase of accuracy using rules is significant.On the other hand,
tables 2 and 3 summarize the results of analyzing the statistics from the point
of view of specificity and sensitivity. They show that is more reliable to do a
prognostic of real negative cases than the positive ones. This happens because
data sets are unbalanced, what means that, they have different number of cases
of each type because data sets represent a real situation: there are more healthy
people than sick people. Despite of it, the use of the combination of both types
of images with the help of preprocessing obtained rules allows an important in-
crease of sensitivity and specificity rates (in addition to improve the accuracy).
It is important to highlight that, in melanoma classification, we reduce from 10
to 2 the false negatives cases and from 10 to 7 in the case of false positives. It is
the most important result that medical experts would like to obtain in this kind
of classification. In addition, in Basal Cell Carcinoma classification we reduce a
60% the rate of false negatives and a 100% in the case of melanocytic class. This
decrease of the false negative cases (even the decrease of false positives produced
too in all cases) using the combination with rules is extremely interesting and
valued by medical experts.

5 Conclusions and Further Work

Melanoma early diagnosis is one of the main goals in dermatology. The diagnosis
process with non-invasive techniques is complex because of the data typology.
We propose a platform for automatizing the medical protocol followed in order
to diagnose dermatological cancer. The proposal combines information from two
promising techniques based on images through a combination algorithm based on
experts’ experiences. In addition, we use preprocessed rules in order to improve
this combination. After the results analysis of testing melanoma data set, we can
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conclude that the combination of both images improves the individual results
and that by using rules we obtain even better accuracy.

The further work is focused on two lines. The first one is the improvement
of the systems combination with new types of rules or other combination tech-
niques. Secondly, the use of preprocessed rules to extract useful diagnostic pat-
terns for medical experts.
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Abstract. The paper presents core elements of a meta-level architecture
for clinical decision support, in the domain of palliative care. The goal of
the reported research is to develop an architecture and an integrated set
of methods for an introspective meta-level reasoner. Within the archi-
tecture a system is under development that addresses the identification
and utilization of clinical guidelines for the assessment and treatment of
cancer pain. Case-based reasoning is a core component of the architec-
ture, which also incorporates rule-based and probabilistic model-based
methods. The paper presents the overall architectural constraints and
exemplifies parts of it through structured component descriptions.

1 Introduction

A clinical decision support system that covers several clinical tasks, such as
patient examination, disease hypotetization, diagnosis determination, treatment
planning, and drug administration, would typically need to combine several types
of knowledge and several reasoning methods to provide good advisory support.
There has recently been a renewed interest in meta-level reasoning as a means
for a system to effectively combine several reasoning methods [1].

The focus of the research presented here is on meta-level reasoning for clin-
ical decision support. A component-based architecture and an integrated set of
methods for a meta-level reasoner to improve its reasoning and learning abilities
are currently being developed. The architecture allows for the integration of all
three major reasoning paradigms in symbolic AI, i.e. rule-based, case-based, and
(deeper) model-based reasoning.

We are addressing this problem in the domain of clinical decision support
for palliative care. In a cooperation with the Palliative Medicine Unit, Cancer
Department, St. Olavs University Hospital in Trondheim, we are studying the
potential for proactive, advice-giving systems to improve treatment of pain in
cancer patients. In our current project, short-named TLCPC, the focus is on
lung cancer. This research is tightly linked to a larger EU project called EPCRC
[2], which covers all forms of cancer pain as well as other problems related to
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palliative care for long-term cancer patients. A motivation for that project is also
to standardize procedures and to unify clinical practice in palliative care [3], a
goal for which computerized decision support systems have a strong potential.
The system under development will in particular address the identification and
utilization of clinical guidelines.

In the next section we review some of the related research in metareason-
ing with case-based components, and CBR used for guideline supported clinical
decision-making. In section 3 our metareasoning approach is introduced. Essen-
tial components of the architecture are discussed in section 4. The status of the
clinical guideline application is presented in section 5. Concluding remarks end
the paper.

2 Related Research

There is a significant amount of research that has addressed metareasoning in
relation to CBR systems. In Meta-AQUA [4, 5] introspection is used in the retain
phase to learn from mistakes. What is referred to as introspective meta-XPs are
used to represent failures encountered while the system operates. The system
constructs learning plans that consist of calling various learning algorithms.

Early accounts of meta-level architectures involving CBR also include BOLERO
[6] and ANALOG [7]. In BOLERO, a case-based meta-level planner controls the
execution of a rule-based reasoner designed to accomplish different medical diag-
nosis tasks. New plans are constructed during the problem solving process when
needed, and captured as new cases by the meta-level learner. In ANALOG a
selected method runs until an impasse situation is encountered, at which time
a new method selection process is run. The meta-level learner remembers failed
and successful instantiations of methods.

Christodoulou and Keravnou describe a meta-level architecture [8] in the
domain of breast cancer histopathology. Each problem solver is associated with a
task, an inference mechanism, and domain knowledge constraints. A set of meta-
parameters is used by the metareasoner to characterize knowledge types (e.g.
experience-based, causal), and desired solution properties (e.g. level of detail,
accuracy, efficiency). The metareasoner is a case-based reasoner that captures
and stores problem-solving paths as strategy cases incrementally.

In the ADAPtER system [9], an architecture that combines model-based and
case-based reasoning for medical diagnosis, the CBR component is the primary
object level reasoner. The model-based method is triggered either when the
retrieval method fails to find a matching case, or the case adaptation module
fails. Cases are captured as a compilation of the model-based process.

The principles of evidence-based medicine, in which systematic research eval-
uation regimes are used to assess and justify results from medical research, form
a well-established basis for medical practice [10]. One manifestation of this is the
specification of clinical guidelines, i.e. operational procedures for how to conduct
a particular type of patient examination, make a diagnosis, administer a type of
drug, or perform other types of treatment. Another source of information used
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Fig. 1. A CBR system based on the introspective architecture

by clinicians in their daily practice is, of course, the set of experiences a clinician
has from earlier patients. Hence, a combination of general guidelines with past
experience cases is potentially a strong combination. Identifying the strengths
and weaknesses of a case-based method vs. a generalization-based one can be
done analytically or experimentally. Marling et. al. [11] reports on an experiment
in the domain of nutritional menu planning, in which a hybrid system was devel-
oped by combing the strengths of separate rule-based and case-based reasoners.
The hybrid system outperformed both separate systems.

In the CARE-PARTNER system [12] medical guidelines are realized in the
form of problem solving pathways, implemented as a rule-based system com-
bined with information retrieval, and with CBR as the main problem solving
method. GLARE [13] is a general decision-support system for managing and
utilizing clinical guidelines, in which guidelines are represented as a hierarchi-
cal structure of decision paths. A CBR system was incorporated as additional
knowledge to handle situations that are not covered by the guidelines, so-called
non-compliances [14]. Even if several medical guideline systems combine different
reasoning paradigms, there has been very little work on moving the combined
reasoning up to the metareasoning level.

3 Metareasoning Approach

Recently, Cox and Raja [1] presented a general high-level framework of metarea-
soning. It relates three different levels, the ground level (physical perception and
action), the object level (reasoning about action), and the meta-level (reasoning
about reasoning). Leake and Wilson [15] address the learning part of metarea-
soning within this framework, and present a set of challenging issues, such as
learning for self-understanding and self-explanation.

A system using our introspective architecture with CBR reasoning methods
which follows this general framework is shown in figure 1. The ground level is
represented as I/O for the system, which is not covered in our architecture but
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must necessarily exist in some form for a complete CBR system. In the shown
system reasoning tasks are explicitly represented, with a “CBR-based problem
solving task” at the object level and several metareasoning tasks.

In our architecture there is no fundamental difference in how reasoning tasks
for the two levels must be represented, but they are shown as seperate boxes in
the figure to ease understanding and fit the metareasoning framework of Cox and
Raja. The importance of our introspective architecture lies in the components,
each of which implements a specific functionality, and is modified and assigned
to a particular reasoning task by meta-level reasoning components.

Many meta-level reasoning systems start by building a partial solution and
then invoking meta-level reasoning functionality to determine whether the object-
level reasoning processes are working satisfactorily or not. Such systems then ei-
ther proceed as normal, or classify the reasoning process as a failure and create
a new metareasoning goal to learn from this failure.

This is in contrast to the meta-level control agent in our approach, which
operates on the object-level reasoning components directly without a specific
reasoning failure to address. This allows the system to have a clearer broad
focus on performing changes that affect the entire reasoning system instead of
correcting single failures, and this broadening is also identified by Leake and
Wilson [15] as an important opportunity for a more flexible learning focus. Future
planned meta-level components in our approach such as a competence-evaluator
for problem-solving methods can also assist in providing the system with a level
of self-understanding, which is another identified opportunity for introspective
learning systems.

However, this illustrates an interesting trade-off compared to other approaches.
In our approach the meta-level components are explicitly meant to affect the sys-
tem’s reasoning processes, and the architectural design has been created to make
this feasible and as easy as possible. But we do not have a so-called narrow focus
on repairing specific portions of the system [15], and in practice this means that
our approach is not currently as well developed for making these repairs as some
other systems. Due to our focus we do not yet have a meta-level component
dedicated to detecting and repairing failures during object-level reasoning, and
as such the individual problem solving processes are only improved indirectly
by selecting the best available components. Unlike several other systems, if this
competence evaluation is incorrect it will not be detected by our current set of
meta-level components during the problem solving process itself, and the lessons
learned from this failure will only be available for subsequent problem solving
instances.

Richter [16] introduced the knowledge container model, where pieces of knowl-
edge can be categorized into four categories: case vocabulary, cases, similarity
assessment and adaptation knowledge. Given that a set of precise and consistent
terms is important for reasoning at the meta-level, we explicitly include the CBR
system vocabulary as part of the case vocabulary category.

To make sure that the vocabulary contains semantics that are useful for hu-
man designers, we suggest that the vocabulary should be created and updated
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manually, unlike the other knowledge sources which will be changed and in-
fluenced by the meta-level reasoner. In our architecture the case knowledge is
stored in cases, similarity assessment as part of the components providing meth-
ods for object-level retrieval and the adaptation knowledge is shared between
object level reuse components and a more profound system-level adaptation in
meta-level components.

For the meta-level control agent to be able to examine and calibrate the sys-
tem’s components, it’s important that the settings available can be interpreted
by the control program, and that the components expose interfaces at an appro-
priate level of abstraction. To facilitate this, we are developing a vocabulary of
CBR-related terms and the intended semantics as part of our approach.

An important aspect of the vocabulary is that it describes what the terms
mean at a semantic level without relying on the specific realizations in any
particular CBR system implementation. An example of this is a case base, which
is simply defined as a set of cases. While in practice many CBR systems store the
cases as a form of ordered lists, their reasoning processes typically do not rely on
the particular order the cases are listed in within computer memory or on disk.
The purpose of the vocabulary is to abstract away the particular specifics in
implementations and generalize the terms to a semantic level where it describes
the actual requirements for a term without imposing a needlessly specific design.

Our vocabulary is being developed to be conceptually compatible with the
terms used in CBROnto [17], a modeling framework that has already examined
the meanings and relations between terms from an ontological perspective. As
an added benefit the CBROnto ontology is compatible with the “4 REs” CBR
process cycle [18] which is widely quoted and referred to in the CBR literature.

4 Introspective Architecture

A particularly important part of our semantic task description is the type system
for component inputs and outputs. These types represent at the knowledge level
the essential meaningful content that is to be processed by each component.

In our conceptual framework we consider the traditional core case-based rea-
soning process as one possible problem solving method at the object level. We
consider this to be one part of the combined reasoning system, with specific re-
sponsibilities, and there can be potentially many other problem solving methods
implemented in the same architecture.

A high-level task decomposition of the CBR process for our architecture
is shown in figure 2, where the task “Case-based reasoning” is split into the
4 RE subtasks, and each of these are further split into smaller subtasks. Any
components that are assigned to parts of this process must match the semantic
input and output types for the corresponding tasks, which are also included in
the figure.

To elaborate on the case-based retrieval task, it starts from a Problem-
Input and retrieves a set of cases Set<CB> where CB is a type adhering to
the Case semantics, and is further subdivided into subtasks that further specify
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Task Input Output

Case-based reasoning ProblemInput ProblemSolution

- Retrieve ProblemInput Set<CB>
– Problem characterization ProblemInput PC
– Case retrieval PC Set<CB>
– Focus Set<CB> Set<CB>

- Reuse (PC, Set<CB>) ProblemSolution
– Adapt solution method (PC, Set<CB>) SolutionMethod
– Adapt solution (PC, SolutionMethod, ProblemSolution

Set<CB>)

- Revise ProblemSolution (PS, SE)
– Evaluate solution ProblemSolution SolutionEvaluation
– Repair solution (PS, SE) ProblemSolution

- Retain (PS, SE)
– Update general knowledge (PS, SE)
– Add to case base (PS, SE)

(PS, SE) is an abbreviation for (ProblemSolution, SolutionEvaluation)
due to space concerns.

Fig. 2. Inputs and output for the CBR tasks

how this is performed. It starts with a subtask identifying the important aspects
of the problem and characterizing it as a query, transforming the Problem-
Input into an intermediate form PC. This intermediate form is not restricted
by the architecture, and the only requirement is that the methods performing
the subsequent CBR subtasks can accept the characterization form PC as input.

This characterization is used to retrieve a number of previous cases from the
case base, and then this is further narrowed to just focus on the most relevant
information by e.g. filtering out a subset of cases or generalizing cases. The other
subtasks are formalized in a similar way.

In our approach, the metareasoning components exist separately from the
object-level CBR reasoning components, and in fact influence and controls how
the CBR problem solving method is performed, which corresponds to the afore-
mentioned metareasoning cycle [1].

By evaluating how the CBR method performs while solving actual new prob-
lem instances, the meta-level control agent can identify the strengths and weak-
nesses of the current system and attempt to use this to improve the system’s
competence or use alternative reasoning methods. For our meta-level component-
combiner this is achieved by attempting to re-solve problems using different
assignments of methods for each of the tasks and subtasks in the architec-
ture. Whether the the newly combined reasoning process is an improvement is
then evaluated based on whether the solutions produced for individual problem
queries are correct for more problem instances than before.
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4.1 Architectural components

One of the most important features of this architecture is that each component
contains extra structures that semantically describe the component semantically
using our CBR vocabulary. It is on the basis of this added information that the
meta-level control component can automatically assign components to perform
the system’s reasoning tasks. Figure 3 shows such a self-describing semantic
structure for an example object-level retrieval component.

Each component contains a list of types that apply for the component, which
is listed first in the figures. This can either just be a single name to indicate that
any type is supported, or a statement of the form “name isa supertype”, which
indicates that the name type must support the same operations as supertype.
This is useful when a component performs a generic operation that can apply to
many different types of input, and e.g. only requires that the input and output
types are the same or that two inputs are comparable. This section is empty for
simpler components that only refer directly to specific types in the vocabulary,
such as the illustrated example retrieval component.

After that the input and output variables are listed. Each variable consists
of a line of the format “name: type”, where name is an identifier that is used to
refer to the input or output throughout the component specification and type is
the semantic type, which can either be a specific from the vocabulary or one of
the types specified in the component’s Types section. An example of this is the
line “query: AttributeCase” from the example component, which means that
the component receives an input of type AttributeCase which is referred to as
query in the component description.

The following section lists Conditions that have to be fulfilled for the com-
ponent to produce the expected results. As long as the input variables conform
to the specified conditions, the output variables are guaranteed to follow the
specifications in the Guarantees section. While the type specifications are se-
mantic restrictions on what kind of operation the component can perform, the
conditions specify for which values of inputs the component will actually behave
as intended, and these conditions are not necessarily checked by the component.

Because of this the component’s operation can usually be performed for non-
conforming inputs, but this can produce undefined results and should be avoided.
By listing the conditions in the self-describing structure, the metareasoning com-
ponent can make sure that only compatible components are combined, or that
the conditions are checked on-demand before the operation is performed where
this cannot be guaranteed.

The final section is a short semantic description of the core functionality
performed by the component. This has the format “x based on y”, where x and
y are statements composed using the input and output variables as well as a set
of pre-specified terms representing important concepts related to the reasoning
system and the application domain.

By combining the example component in figure 3 with a component providing
similarity assessments, the meta-level control agent can create a new component
that accepts a query and casebase of type AttributeCase and returns a ranked
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Types:

Input: query: AttributeCase
casebase: Set<AttributeCase>
similarityfunction:

(AttributeCase source, AttributeCase target) → Similarity

Output: ordered: List<AttributeCase>

Conditions: 5 ≤ sizeof(casebase) < 100000
0 ≤ similarityfunction(x, y) ≤ 1

Guarantees: sizeof(ordered) = 5

Approach: order(casebase) based on query

Fig. 3. An example component that orders a case base based on similarity to a query
using a specified similarity function.

list of matching cases. This is done by verifying that it fulfills the semantic type
requirements, and any conditions that cannot be guaranteed to be always be
fulfilled can be verified at run-time in an implemented system.

If the similarity measure is based on e.g. feature weights, the meta-level
learning component can also further refine this into a component that learns
the feature weights automatically while it is being used. This can be done
by matching it with an appropriate learning method that takes a case base
(Set<AttributeCase>) as input and produces a similarity importance value
for each feature among cases in the casebase.

5 Palliative Care Application

Although there has been a lot of focus on developing clinical guidelines within
the medical community, and several guideline systems have been developed by
medical professional organizations, there is not a consensus as to what is a good
guideline system. Further, the active use of guidelines in a clinical setting is far
from the level desired, both from the perspective of quality of treatment and the
perspective of unified treatment across hospitals and countries.

In our partner project EPCRC, being a collaboration involving many highly
influential medical groups in across Europe, the aim is to reach a consensus on
a set of high-quality and operational guidelines that will be used in practice.
While awaiting the results from EPCRC, we currently work with an existing set
of guidelines defined by NCCN (National Comprehensive Cancer Network) in
the US. An ontology is currently being built based on a combination of generic
UMLS terms combined with terms from the SNOMED and NCI (National Can-
cer Institute in the US) ontologies.

The top-down design process is combined with bottom-up experimental sys-
tem building, starting from simple system components that will be combined.
Currently a simple a rule-based reasoner is being implemented at the object
level. Example guidelines link patient data related to pain level, pain history,
and history of treatment, to the next treatment. Type of treatment considered
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is the administration of different types of analgesics, with opioids as the largest
subclass. Based on the results from the initial model, the system will be extended
with case-based and model-based components. The model-based component will
a be Bayesian network for reasoning about causality under uncertainty.

Acquiring the necessary medical knowledge needed for our experiments is a
continuing process. To advance the method development we are developing a
toy example system in the domain of advice-giving for film selection, in parallel
to the more complex clinical guidelines system. In that system CBR methods
are currently focused on both the meta and object levels. Cases, problems and
solutions are currently represented as feature vectors, and there are no explicitly
represented general knowledge structures outside of the CBR reasoning com-
ponents. To predict a movie rating for a user, a retrieval component retrieves
a number of similar other users that have seen the movie, where similarity is
determined as the average difference in ratings for movies both users have rated.
A simple reuse component then copies the majority rating among the retrieved
cases. The system has a meta-level control agent that adheres to the princi-
ples of the metareasoning approach described earlier. Component combinations
are tried out based on matching the input and output type descriptions. Al-
though simple and different from the clinical application, the system assists in
the bottom-up specification of the introspective architecture by providing a test-
bed for experiments.

In a clinical guideline support system past cases may be utilized in several
ways. The role we have intended for the cases in our guideline system is two-
fold. Having arrived at a leaf node in the guideline structure, CBR will be used
to continue from there by providing a more specific and detailed advice, based
on adapting a past result. On the other hand, if the guideline system cannot
provide reasonable advice, CBR is triggered as a complementary method. The
latter approach is similar to the non-compliance method [14] referred to earlier.

6 Conclusions

In this paper we have presented an introspective approach to meta-level learning
and outlined a component-based architecture for designing reasoning systems
which supports our introspective methods. The main contribution of our ap-
proach is the way our architecture allows for gradual additions of metareasoning
methods that focus on broad, system-wide improvements.

We are working on further developing this architecture, and adding new com-
ponents directed towards both object-level and meta-level reasoning methods for
a clinical decision support system based on medical treatment guidelines.
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Preface

Computers provide us with assistance in our everyday tasks. Why should
they not be able to help us cook healthy and tasty meals? The 2nd International
Computer Cooking Contest (CCC) that will take place in conjunction with the
ICCBR09 at the University of Washington at Tacoma on July 21, 2009 will
hopefully give us a positive, case-based answer.

Are you planning to cook an Asian soup with leek? The CCC software pro-
grams are able to suggest a recipe. Do you have to follow a gout or a high
cholesterol diet? The software will adapt the recipes to your requirements. Case-
based software programs will compete in choosing and adapting recipes for a
(yet) human cook. The input is a given database of basic recipes from which ap-
propriate recipes must be selected, modified, or even combined. The queries to
the system consist of a number of wanted ingredients and other requirements for
the dish or menu. The overall competition is structured into a main compulsory
task and two additional challenge tasks.

The Compulsory Task involves answering queries that require the selection
and modification of a recipe for a single dish. A sample query could be to “cook
a main dish with turkey, pistachio, and pasta”. An appropriate answer would be
to select a recipe for pistachio chicken and to replace chicken by turkey.

The Adaptation Challenge is to answer queries that require an adaptation
of both the list of ingredients and instructions for preparation of the dish. This
challenge will operate on a restricted recipe base.

The Menu Challenge requires the composition of a three-course menu
based on the available recipes. For example we might ask: “I do have a filet
of beef, carrots, celery, field garlic and cucumber. Potatoes are available, too.
For the dessert, we have oranges and mint. A soup would be preferable for the
starter.” In this case, a Caldo Verde as a starter, filet steak with baked potatoes
and an orange ice cream with mint flavour would be a good solution.

Exercise queries have been defined for the qualifying examination. They de-
scribe in an example-based manner the area of competence the developed soft-
ware is supposed to cover. Hence there is not specified a formal query language,
the items that will occur in the queries are restricted to the following:

– ingredients to be included or avoided, restricted to those occurring in the
recipes in the database,

– type of ingredients, such as meat, fish, fowl, vegetables, fruits, nuts, alcohol,
– dietary practices, restricted to the following (a seasonal food calendar and

the diet recommendations are given): Cholesterol diet, Gout diet, Seasonal
food,

– type of meal (for the compulsory task and the menu challenge only), such
as starter, salad, soup, ice-cream, cake, sauce, main course, pizza, casserole,
risotto, dessert, pancake, three-course menu,

– type of cuisine (for the compulsory task and the menu challenge only), such
as Italian, Asian, Mediterranean, ...
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Queries will be described in free text but can be transformed manually to
an arbitrary input format (structural/formula-based, conversational, text-based)
to be processed by the software. The results produced by the software while
answering the queries can be either a single or up to five recipes including a
note which original recipes from the recipe base have been used for the creation
of the result. The software will be evaluated against the competition queries,
which are similar to the exercise queries and of the same focus. The competition
queries will be kept confidential until the contest while the recipe base is publicly
available. Evaluation criteria are scientific quality, technical quality, and culinary
quality.

We are happy to present in the following the technical descriptions of the
five finalist teams. We would like to thank the jury and the program commit-
tee members for their diligent reviews. We are looking forward to having an
intriguing and inspiring live competition and hope you will enjoy reading!

Mirjam Minor July 2009
Armin Stahl
David Leake
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Abstract. The textual case-based cooking system WIKITAAABLE participates in
the second Computer cooking contest (CCC). It is an extension of the TAAABLE

system that has participated in the first CCC. WIKITAAABLE’s architecture is
composed of a semantic wiki used for the collaborative acquisition of knowledge
(recipe, ontology, adaptation knowledge) and of a case-based inference engine us-
ing this knowledge for retrieving and adapting recipes. This architecture allows
various modes of knowledge acquisition for case-based reasoning that are studied
within the TAAABLE project. In particular, opportunistic adaptation knowledge
discovery is an approach for interactive and semi-automatic learning of adapta-
tion knowledge triggered by a feedback from the user.

Keywords: textual case-based reasoning, case-based cooking, semantic wiki, oppor-
tunistic knowledge acquisition

URL of the system: At http://taaable.fr, the reader can find a link to the home-
page of the WIKITAAABLE system as well as a report on the results given by the
system on the set of training queries.

1 Introduction

As final result from last year did not make us good cooks, we decided to keep on do-
ing research. Hence, for the second edition of the Computer Cooking Contest (CCC),
the TAAABLE system has evolved towards a new architecture called WIKITAAABLE.
This year, we focused our efforts on two intertwined aspects: knowledge and reasoning.
Concerning reasoning, we worked on the inference engine improvement to enhance the
adaptation ability of the system. Concerning knowledge we set up advanced knowledge
acquisition facilities to support the evolution of the system during its life-cycle.

This paper describes the innovations developed in WIKITAAABLE, whose architec-
ture is described in section 2 and discusses current research issues. One innovation this
year is that the system is embedded within a semantic wiki and that the collaborative as-
pects are also of main concern mainly for document and knowledge edition and update.
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The remainder of the paper shows how knowledge is manipulated within the system.
Section 3 presents knowledge acquisition and representation within the semantic wiki.
Section 4 illustrates how knowledge is used by the inference engine. Section 5 describes
an opportunistic acquisition strategy guiding the evolution of the system knowledge. Fi-
nally, section 6 draws some conclusions and points out ongoing and future work. For
qualification purpose, a restricted interface of the system is available online. This inter-
face only allows users to ask queries to the system. The full application with embedded
knowledge acquisition features will be available for the contest.

2 Architecture of WIKITAAABLE

Fig. 1. Overview of the WIKITAAABLE architecture.

In a CBR system, results strongly depend on the quality of available knowledge.
As a consequence, continuous improvement of knowledge is required to progressively
enhance the obtained results.

The previous version of TAAABLE [1] suffered from different problems making
maintenance and evolution of the system knowledge difficult. For example, there was
no way to capture user feedback and to reuse it for maintenance. Besides, knowledge
was organized in several files of heterogeneous formats that were difficult to update. As
a consequence, the evolutions of the system knowledge were tedious tasks, even for the
designers of TAAABLE.

In WIKITAAABLE [3] we decided to use a semantic wiki (Semantic Media Wiki [5])
as a central module to manage all data and knowledge used in the system. Making use
of a semantic wiki has two major advantages: it enables humans and machines to rely
on the same tool for representing and reasoning on shared knowledge and it provides
users with user-friendly interfaces for browsing and editing knowledge.
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Figure 1 gives an overview of the WIKITAAABLE architecture. Each component
has been designed to work with the others and the components are strongly intertwined.
For example, knowledge has not been represented at a general level but for reasoning
purpose. The semantic wiki module manages knowledge of the system. The wiki is ac-
cessible for the users through a graphical interface and for the system through bots1

that automates several tasks. Section 3 details this module. The inference engine in-
cludes the CBR core and is able to reason on the knowledge available in the wiki. It
is described in section 4. In order to facilitate knowledge acquisition, the architecture
of WIKITAAABLE is designed in such a way that it enables as much interactions as
possible. Opportunistic knowledge acquisition process developed in WIKITAAABLE is
discussed in section 5.

3 A Semantic Wiki for Collaborative Acquisition of Cooking
Knowledge

In [3], Semantic Media Wiki (SMW [5]) is used as a blackboard for WIKITAAABLE
knowledge management. WIKITAAABLE gathers the whole knowledge body required
by the application.

To import knowledge of the first version of the TAAABLE system [1] into WIKI-
TAAABLE, we wrote several bots that use MediaWiki API. Recipes, ontologies, and
specific adaptation knowledge are now represented as a graph of semantic wiki pages.
Each page can be freely read and updated by humans and by bots. Hence, TAAABLE is
now maintained and improved by a collaboration between users and machines.

3.1 Domain Ontology

The domain ontology contains four hierarchies: ingredients, dish moments, dish types,
and dish origins. For adapting a recipe by substituting some ingredients by other in-
gredients, the CBR engine requires knowledge stating similarity between ingredients.
Therefore, ingredients are organized in the ingredient hierarchy. This hierarchy is used
by the CBR engine to compute the cost of a substitution: the closer the ingredients,
the lower the cost; e.g., orange is closer to lemon than apple.2 In order to characterize
recipes, three other hierarchies define and organize dish moments (appetizer, dessert),
dish types (cake, pizza), and dish origins (Mediterranean, Chinese). The original acqui-
sition of the hierarchies is described in [1].

The four hierarchies are imported into WIKITAAABLE by using the Category/Sub-
Category relation of Semantic MediaWiki [5]. For example, there is a page for orange
and another page for citrus and the two pages are linked by this relation. For instance,
the figure 2 shows the imported ingredient hierarchy.

1 A bot is a piece of software for doing automated repetitive tasks.
2 This closeness can be measured by a weighted length of the shortest path between ingredients

in the hierarchy.
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Fig. 2. WIKITAAABLE ingredient ontology.

3.2 Adaptation knowledge

To adapt a recipe, the CBR engine uses the ontology and a set AK of substitutions. A
substitution σ ∈ AK states that, in a given context, some ingredients may be substituted
by other ones. For instance, the following substitution states that, for the context of a
salad without potato, vinegar may be substituted by lemon juice and salt.

σ =
context salad

no potato
from vinegar by lemon juice

salt (1)

Each substitution is represented in a semantic wiki page. For instance, figure 3
shows the wiki page of the above substitution. The acquisition of substitutions is de-
tailed in section 5.

3.3 Recipes

The recipes are also imported into WIKITAAABLE, where a wiki page is created for
each recipe. Then, a bot crawls all the recipe pages, parses ingredient information, sets
dish types, moments, and origins. It updates recipe pages with this information encoded
as semantic annotations. Figure 4 shows a recipe page in WIKITAAABLE. We used the
n-ary relationship of Semantic Media Wiki to represent an ingredient line, for example,
(1, c, Category:rice) represents 1 c rice, the first ingredient line in figure 4. The
parsing of ingredient information and setting types is described in [1].
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Fig. 3. A substitution semantic wiki page.

4 Principles of the CBR Inference

4.1 Knowledge containers

Knowledge in WIKITAAABLE is mainly expressed in a polynomial fragment of propo-
sitional logic. The TAAABLE knowledge base is a set of containers

KB = {O, Recipes,Hidx, AK, cost}

KB is encoded in wiki pages and the CBR engine has access to these pages through
SPARQL queries.
O is the domain ontology represented by a set of axioms of the form a⇒ b where a

and b are two variables representing recipe classes. For example, lemon (resp., citrus)
represents the class of recipes with lemon (resp., with citrus) and the axiom
lemon⇒ citrus states that any recipe with lemon is a recipe with citrus. In fact, ev-
ery ingredient name X such as lemon is interpreted here as “class of the recipes with
ingredient X”.

Recipes is the set of recipes given by the CCC organizers, and consequently the
case base of the CBR system TAAABLE. A recipe R ∈ Recipes cannot be directly han-
dled by the CBR inference engine: the engine requires a formal representation whereas
R is for the largest part written in natural language. Therefore, only the formalized part
of the recipe R is used: its index idx(R), which is expressed by a conjunction of literals
(the indexing process of the recipes coincides with the annotation process mentioned in
section 3.3). For example

idx(R) = lettuce ∧ vinegar ∧ olive_oil ∧ tomato ∧ Nothing else (2)

is a formal representation of a recipe R having ingredients lettuce, vinegar, olive oil,
and tomato. A closed world assumption is associated to idx(R) stating that if a prop-
erty cannot be deduced from the recipe description and from the ontology then it is
considered as false. Formally, if idx(R) 6�O a then “Nothing else” contains the
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Fig. 4. Indexed recipe of “Arroz dulce”.

conjunct ¬a.3 For example, this closed world assumption enables to deduce that
idx(R) �O ¬meat ∧ ¬fish, i.e., that R is a vegetarian recipe.

The indexes idx(R) are used to access recipes through a hierarchy Hidx, according
to the partial ordering �O: for C,D ∈ Hidx, C �O D iff there is a directed path inHidx

from C to D. The indexes idx(R) are leaves of theHidx.
Adaptation knowledge has two parts. The first part is included in ontology O. The

second part is the set AK of substitutions (cf. section 3.2). Any σ ∈ AK may be con-

sidered as a domain specific inference rule
R is a good recipe

σ(R) is a good recipe
. The substitutions

have the form C  D where C and D are conjunctions of literals. Applying C  D
to a conjunction of literals (such as an index or a query) consists in replacing the literals
of C by literals of D. For example, the substitution σ described in figure 3 is written as
follows

σ = salad∧¬potato∧vinegar salad∧¬potato∧lemon_juice∧salt (3)

3 If f and g are two propositional formulas, f �O g means that f implies g, given the ontology
O. More precisely: if the interpretation I satisfies both O and f then I satisfies g.
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It can be noticed that the substitution given by a triple (context, from, by) in the wiki
pages (cf. equation (1)) are rewritten context ∧ from  context ∧ by to suit the
CBR engine formalism.

The CBR inference is based on substitutions, either taken from AK or built with
the help of ontology O (see below for details). The choice of substitutions is made
according to the problem-solving context and to a cost function cost : σ 7→ cost(σ) >
0; substitution σ is preferred to substitution τ when cost(σ) < cost(τ). Therefore,
the cost function (and its parameters) constitutes an additional knowledge container.

4.2 CBR Inference

Let Q be a query. For example

Q = endive ∧ lemon_juice ∧ ¬onion (4)

is a query for a recipe with endive and lemon juice and without onion. The CBR
inference consists in (1) retrieving recipes matching exactly or approximately Q and
(2) adapting the retrieved recipes.

Retrieval aims at choosing indexes idx(R) matching the query Q. An exact match
corresponds to idx(R) �O Q. If no index exactly matches Q, the query Q is progres-
sively relaxed into Γ (Q) such that idx(R) �O Γ (Q), for some idx(R). The relaxation
of Q is obtained by applying generalizations gk according to O: gk = ak  bk is a
substitution such that (ak⇒ bk) ∈ O. Thus Γ (Q) = gn(. . . (g1(Q)) . . .). Therefore,
retrieval provides a similarity path

idx(R) �O Γ (Q)
gn←−7 . . . g1←−7 Q (5)

This similarity path is built according to a best-first search minimizing
∑

k cost(gk).
For example, retrieval may give the following result

Q = endive ∧ lemon_juice ∧ ¬onion
Γ (Q) = green_salad ∧ > ∧ ¬onion ≡ green_salad ∧ ¬onion

idx(R) = lettuce ∧ vinegar ∧ olive_oil ∧ tomato ∧ Nothing else

(Γ consists in generalizing endive into green_salad and in removing lemon_juice
from the query by generalizing it in several steps to >, the hierarchy top).

Adaptation is composed of two sub-steps. Let R be a retrieved recipe, with index
idx(R). The first subset of adaptation is matching, that aims at building an adaptation
path from idx(R) to Q of the form

idx(R) σ17−→ . . .
σp7−→ Σ(idx(R)) �O Γ (Q)

γq←−7 . . . γ1←−7 Q (6)

where σi ∈ AK (i = 1 . . . p) and substitutions γj (j = 1 . . . q) correspond to axioms of
the ontology: γj = aj  bj with (aj⇒ bj) ∈ O. Such an adaptation path is built ac-
cording to a best-first search in a state space minimizing

∑
i cost(σi)+

∑
j cost(γj).

The second sub-step of adaptation consists in “following” the adaptation path: first
R is adapted successively in σ1(R), σ2(σ1(R)), . . . σp(. . . (σ2(σ1(R))) . . .) = Σ(R).
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Then, ingredients of Σ(R) are substituted by other ingredients according to a generali-
zation-specialization process (generalization corresponds to the relation �O and spe-
cialization to the substitutions γ−1

q , . . . , γ−1
1 ).

For example, let idx(R) and Q be the example presented above. Matching may
provide the following adaptation path:

idx(R) σ7−→ Σ(idx(R)) �O Γ (Q)
γ←−7 Q

where σ is defined by (3) and γ = endive  green_salad. Thus, the adaptation
of R consists in replacing vinegar by lemon juice and salt (cf. σ) and by substituting
lettuce by endive (cf. �O and γ−1).

It can be noticed that retrieval provides a first matching: a similarity path is a kind
of adaptation path involving no σ ∈ AK. Thus, the retrieved recipe R can be adapted fol-
lowing this similarity/adaptation path. However, during adaptation, some substitutions
σ ∈ AK may be used and, if they do, the resulting adaptation requires less effort.4

5 Opportunistic Knowledge Acquisition and Discovery

WIKITAAABLE has been designed to facilitate continuous knowledge acquisition
through interactions with its users: it is a reflexive and perpetually evolving system.
However, due to the heterogeneity of knowledge acquisition situations that can be en-
visioned, setting up such a process is a complex task. This diversity of situations is
explained by several factors:

– The various types of knowledge (ontology, adaptation knowledge, substitutions
costs, recipes) that can be acquired.

– The different interaction modalities such as simple user feedback, direct modifica-
tion on wiki pages, interaction through dedicated interfaces, use of external knowl-
edge discovery methods, etc.

– The provenance of knowledge that is acquired: single users, community of users,
experts, other sources of data (web sites), or local knowledge from which new
knowledge in inferred.

In the following, a particular scenario of opportunistic knowledge discovery is de-
tailed. In WIKITAAABLE, substitutions σ ∈ AK are acquired at problem-solving time
through interactions with the user: they are automatically generated online by the sys-
tem and are stored in the form of wiki pages. The knowledge discovery process
CABAMAKA [4] is used to assist the user in the formulation of new pieces of knowl-
edge. Its role is to generate a set of substitutions σ ∈ AK “on the fly” from the com-
parison of two sets of recipes of the case base. The generated substitutions can be used
by the system to repair a failed adaptation. Each time a substitution is validated by the
user, it is stored for future reuse. In the following, the main principles of the approach

4 If the cost function is an estimation of the adaptation effort, then the adapted recipe should
be better by following (6) then by following (5). Indeed, since adding new substitutions
(the ones of AK) only adds new ways to connect indexes to queries, it comes thatP

i cost(σi) +
P

j cost(γj) ≤P
k cost(gk).
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are illustrated with an example. More details on the proposed approach can be found
in [2].

In section 4, the user wanted a salad recipe with lemon juice but without onion,
which was modeled by the query Q defined by (4). The substitution σ ∈ AK defined
by (3) was used to adapt the retrieved recipe R by replacing vinegar by lemon juice and
salt. Such a substitution cannot be obtained from the ontologyO, so let us assume in this
scenario that σ is not available to the system. Thus, to perform adaptation, the system
relies solely on the ontology O from which it generates the substitution vinegar  
lemon_juice. Now, in our scenario, the user is not satisfied with the proposed solution
and gives this feedback to the system. Therefore, the knowledge discovery process is
triggered: a set of substitutions is learned from the case base by comparing salad recipes
with vinegar and salad recipes with lemon juice. Among the learned substitutions is the
substitution σlearned = vinegar lemon_juice ∧ salt, which suggests to replace
vinegar by lemon juice in the retrieved recipe R and to add salt. The user is satisfied
with the adaptation resulting from the application of this substitution, so the latter is
stored for future reuse. At this point, the user is encouraged to specify the condition of
application of the substitution σlearned. The user states that vinegar can be replaced by
lemon juice and salt in salad recipes that do not contain potato, which is modeled by
the substitution context salad∧¬potato. Combining the learned substitution σlearned

and its application context gives the substitution σ defined by (3).
In WIKITAAABLE, the wiki is used as a gateway enabling to centralize knowledge

used in the system. It provides functionalities to facilitate acquisition and maintenance
of knowledge and enables to progressively add new acquisition features, allowing the
evolution of the whole system. However, setting up a complex knowledge acquisition
process raises several issues. For example, tools for ensuring consistency of knowledge
used in the system must be developed. Another issue is to handle updates from multi-
ple users. What happens when one believes that an avocado is to be eaten as a starter
whereas someone else reckon that it has to be eaten as a dessert? Is the system sup-
posed to converge towards a “commonly accepted” knowledge base or should it be able
to deal with user’s preferences?

A strength of the architecture of WIKITAAABLE is that it will enable to progres-
sively address these issues. A future work is to allow users to add their own recipes to
the system. This functionality requires to be able to dynamically annotate new recipes
within WIKITAAABLE in order to make them usable by the CBR inference engine.
One of the advantages of such a functionality, combined with the benefits of a wiki,
is that communities of users will be able to share their recipes and to collaborate in
order to improve the global knowledge of the system. Next, we would like to tackle the
multi-user issue which is a prerequisite for envisioning a collaborative building of the
knowledge base of TAAABLE.

6 Conclusion

The textual case-based cooking system WIKITAAABLE participates to the second CCC.
It is an extension of the TAAABLE system that has participated to the first CCC. WI-
KITAAABLE’s architecture is composed of a semantic wiki used for the collaborative
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acquisition of knowledge (recipe, ontology, adaptation knowledge) and of a CBR infer-
ence engine using this knowledge for retrieving and adapting recipes. This architecture
allows various modes of knowledge acquisition for CBR that are studied within the
TAAABLE project. In particular, opportunistic adaptation knowledge discovery is an ap-
proach for interactive and semi-automatic learning of adaptation knowledge triggered
by a feedback from the users. The WIKITAAABLE system is generic in the sense that it
can be applied to another application domain, as soon as the knowledge representation
formalism is sufficient.

The first ongoing work is the improvement of the WIKITAAABLE system (user
interface, inference engine, knowledge base encoded in wiki pages, and links between
these components). Another work planned for the next weeks is the development of
tools within WIKITAAABLE for knowledge acquisition triggered by user feedbacks.
Such a knowledge acquisition leads to a continuous evolution of the knowledge base
and thus, of the behavior of the system. It is important to ensure that these evolutions
are improvements and that the integrity of the knowledge is preserved. We plan to use
non regression and consistency tests for this purpose.

Currently, wiki pages are accessed and maintained by a limited community: the
TAAABLE project members. These pages encode the knowledge that have been acquired
on the basis of a consensus. A long term objective is to have several open semantic
wikis with cooking knowledge, each of them corresponding to a user community, the
consensus being only realized at the level of a community.
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Abstract. In this paper we present “Cooking Cake“: a CBR system for 

ontology-based retrieval and adaptation of recipes. “Cooking Cake“ was 
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1  Introduction 

In this paper we present “Cooking Cake“, a CBR system based on CAKE 

(Collaborative Agent-based Knowledge Engine) [1,5,7]. The CAKE system combines 

workflow, agent and CBR technologies following an ontology approach. “Cooking 

Cake“ is mainly built on CAKE’s CBR technology which provides efficient retrieval 

facilities including sophisticated similarity calculations. CAKE itself was developed 

at the University of Trier, Germany. 

“Cooking Cake” was developed within a two-semester student project in order to 

participate in the 2nd Computer Cooking Contest at the International Conference on 

Case-Based Reasoning (ICCBR '09), held at the University at Washington, WA 

(USA). The Computer Cooking Contest is made up of three different challenges: 

- Compulsory Task, which involves answering queries that require the 

selection and, where appropriate, modification of recipe for a single dish. 

- Adaptation Challenge, which requires an adaptation of the list of 

ingredients and instructions for preparation of the dish. 

- Menu Challenge, which requires the composition of a three-course menu 

based on the recipes provided by the CCC-Jury. 

With “Cooking Cake“ we mainly want to compete in the Compulsory Task and the 

Menu Challenge, but all functions needed to take part in the Adaptation Challenge 

will be implemented as well.  

In this paper we want to give a quick overview of the important conceptual 

aspects of our software. First we will get into the design of our domain-ontology 

(Section 2). After this we will describe all steps needed to transform the recipe 

database - given by the Computer Cooking Contest-Jury - to our internal case base 

(Section 3). This will not only include the pre-processing methods used, but also we 

give insight on CAKE specific representation of data, the classification process 
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needed to evaluate a single recipe’s “Type of Meal” or “Type of Cuisine” and how the 

system deals with dietary-practices and explicit seasonal availability of certain 

ingredients. 

 In the last part of this paper, we want to give a more detailed view of the 

similarity and retrieval functions that are provided by CAKE (Section 4). Finally, we 

give a quick introduction to our interface (Section 5), evaluate the results of given 

exercise queries (Section 6), draw some conclusions and describe some lines of future 

work (Section 7). 

2 Ontology-Design 

An ontology is a hierarchically structured set of terms for describing a domain that 

can be used as a skeletal foundation for a knowledge base [2]. As the ontology 

provides nearly all knowledge needed to solve given problems, we put a lot emphasis 

on reviewing existing resources for gaining information about the domain “cooking”. 

Unfortunately, most available resources – like the available applications of the CCC 

’08 – were not appropriate for our needs as they followed a different structural 

approach in the design of the cooking ontology. Therefore we decided to construct a 

suitable ontology on our own [8] which is represented in a self developed XML-

Dialect. 

After analyzing the given recipe database we distinguished three different types of 

ontology-concepts: 

- Category-Nodes, groups of ingredients ( e.g. fish or pork ) 

- Ingredient-Nodes, ingredients ( e.g. squash or pumpkin ) 

- Synonym-Nodes, ingredients which are basically identical to another 

ingredient, but differ in their spelling ( American or British English, Typos ) 

With the support of a local head chef we built a basic ontology with main focus on a 

skeletal structure of category nodes (see Fig.1). This ontology was consistently 

expanded and ended up consisting around 140 different category-nodes. It has a 

hierarchical structure with “ingredient” as the root-node and five main ingredient-

origin classes as direct sub-nodes: 

- Animal, ingredients of animal-origin. Sub-nodes e.g. fish or cheese 

- Herbal, ingredients of herbal-origin. Sub-nodes e.g. vegetable or corn 

- Baking, baking related ingredients. Sub-nodes e.g. yeast or gelatin 

- Liquid, liquid ingredients. Sub-nodes e.g. alcoholic liquors or soft drinks 

- Spices 
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Fig.1. Part of the basic ontology and its representation in XML 

3 From Recipe Database To Case Base 

The given recipe database is a semi-structured XML document where each recipe 

consists of three parts (see Fig.2 as an example): 

- Title (TI) 

- Single/multiple ingredients (IN) 

- Preparation (PR) 

In order to develop a system which can address all tasks of the Computer Cooking 

Contest the given recipe database has to be transformed to a fully structured and 

formalized document.  

 
<RECIPE> 

<TI>"Lutheran" Hotdish</TI> 

[…] 

<IN>1/2 lb Mild or spicy sausage</IN> 

<IN>1 lg Onion (sliced and quartered) (up to) </IN> 

<IN>1 lb Uncooked pasta (i.e. elbow; twisted; wagon 

wheels, shells; etc) (up to)</IN> 

[…] 

<PR> […] Meanwhile, prepare the pasta per pkg 

instructions.  In a large pan, combine all 

ingredients.  Add enough tomato sause until mixture 

is well coated, […] </PR> 

</RECIPE> 

 
Fig 2. Example Recipe 

3.1 Pre-Processing and Ingredient Extraction 

In order to provide an accurate retrieval and similarity measurement every 

<IN>gredient tag needs to be reduced to a basic ingredient. This process was 

subdivided into four steps: 

 

<node value=“ingredient“> 

<node value=“animal“>…</node> 

<node value=“baking“>…</node> 

<node value=“herbal“> 

   <node value=“vegetable“>…</node> 

   <node value=“fruit“>…</node> 

   … 

   </node> 

<node value=”liquid”>…</node> 

<node value=”spice”>…</node> 

</node> 
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- Filter Stopwords  

Remove all words with no direct relation to an ingredient (e.g. “in”, “the”, 

“or”). 

- Filter Cooking Units  

Remove all cooking units (e.g. “1/2 lb”, “1 pkg”, “1 tablespoon”). 

- Filter state of ingredient 
Remove all ingredient states (e.g. “filtered”, “chopped”, “finely sliced”). 

- Simple Form Reduction 
Reduce words to their simple form by using the lexicographic rules of 

Kuhlen [3] (e.g. “Onions” to “Onion”). 

 

 “1 lg Onion (sliced and quartered) (up to)” (taken from Fig. 2) 

will be transformed to “Onion”.  

3.2 Ontology Refinement and Case Generation 

To perform an efficient search the constructed basic ontology (See Section 2) had to 

be extended and enhanced by inserting simple form ingredients which are extracted 

out of the recipe database. In addition, a link between the automatically extracted 

ingredient in the recipe and its place in our ontology had to be stored. For this reason 

we developed a java based application (See Fig. 3 and Fig. 4) which: 

1. Performs all the filter methods in Section 3.1. 

2. Reduces an ingredient to its simple form. 

3.   Automatically skips an ingredient which already has been inserted. 

4.  Creates a link between recipe-ingredient and ontology-ingredient.  

5.  Supports the manual insertion of a simplified ingredient via GUI into its 

place in our ontology. 

6. Applies “Seasonal Restrictions” and “Dietary Practices” (see Section 3.4). 

7.  Classifies recipes “Type of Meal” and “Type of Cuisine” (see Section 3.3). 

8.  Generates CAKE Files: CaseBase, Similarity DataBase and DataModel. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
Fig. 3. Process Visualization 

 

The CAKE DataModel consists of an enumeration of all category-nodes of the refined 

ontology, followed by a taxonomy order of these nodes. The CAKE CaseBase 

includes all recipes where the ingredients are represented by their simple form values 

stored in the ontology. This representation is extended by additional information, e.g. 
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information about “Seasonal Restrictions” and “Dietary Practices” as well as “Type of 

Meal” and “Type of Cuisine” classification. Finally, the CAKE Similarity DataBase is 

generated. In this DataBase the similarities between two different ingredients is stored 

(See Section 4).  
 

 

 
 
Fig. 4. Developed Application  

3.3 Type of Meal / Type of Cuisine 

As almost every exercise query includes information about “type of meal/type of 

cuisine” and “seasonal/dietary practices” the classification of those types of meals or 

ingredients is a main requirement for all challenges.    

 Our approach to classify a meal is based on RapidMiner 4.3 (community 

edition) and it`s implemented classifiers. RapidMiner is a java based open source data 

mining solution, which addresses a wide range of data mining tasks. It has 

implemented a bunch of learners, IO-methods and visualization functions [4].   

We tested several classifiers supported by RapidMiner and came to the 

conclusion that the Naive Bayes classification provides the best results for our task. 

The Naive Bayes algorithm makes the assumptions that all relevant attributes have the 

same significance and are fully independent of each other. Although these 

assumptions can’t be fulfilled in our case, it delivers suitable and efficient results for 

the “type of meal” and “type of cuisine”-classification. 

The selection of attributes and recipes is an important step to predict the 

confidence of the class. The Naive Bayes learner is based on previous calculation of 

probability values that reflect a link between attribute values and class membership. It 

determines a confidence for each class and returns the highest value as prediction for 

each recipe.  

First, we had to manually select attributes for the classification. Second, we 

had to manually pre-classify a set of recipes. We ended up selecting about 70 relevant 

ingredients for “type of meal” and 80 relevant ingredients for “type of cuisine” which 

then were the basis of our classification process. Also we had to pre-classify about 
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130 recipes for “type of meal” and about 90 for “type of cuisine”, e.g. the recipe 

“Char Siu Gin Doi” which has a typical combination of ingredients used in the asian 

cuisine like “Bamboo shoots”, “Soy sauce” and “Chinese noodles”. Based on these 

pre-classifications RapidMiner built a classification model which then could be used 

to classify all other recipes of our database.   

 For the purpose of estimating and improving the accuracy of our 

classification we decided to implement the m-fold cross validation method in 

RapidMiner. This validation determines the classification accuracy by dividing the 

pre-classified dataset into m disjunctive subsets, learning a classification concept with 

m-1 of these subsets and applying the learned concept to the skipped subset. By 

comparing the pre-classified class of a recipe with the predicted class, the 

classification error can easily be identified. In our case we used 10 randomized 

subsets of pre-classified recipes.             

 

Selected Ingredients Accuracy 

General Vegetable, Fruit and Meat Ingredients 51% 

Sophisticated Herbal and Animal Ingredients 59% 

Refined Selection of Herbal, Animal and 

Spice Ingredients 

66% 

 
Fig. 5. Process “Type of Meal”  

 

Although the accuracy percentages in Fig. 5 and Fig. 6 may seem low, most errors are 

false positives, which derive from intersections between different recipe classes as 

Naïve Bayes requires fully independent classes. An example for a false positive 

would be the classification of a pizza recipe as “main course”, which is not a fault at 

all, but the best classification would be “pizza”. Most errors we are facing are of this 

kind.         

 

Selected Ingredients Accuracy 

All Spice Ingredients 46% 

Spices and some Vegetables Ingredients 71% 

Spice, Vegetables and Meat Ingredients 91% 

 
Fig. 6. Process “Type of Cuisine” 

 

We were able to improve the accuracy and the selection of relevant attributes 

(ingredients) by evaluating and analyzing results we achieved with several ontology-

subsets. As seen is Fig. 5 and Fig. 6 we were able to increase the accuracy from 51% 

to 66% for “Type of Meal” and from 46% to 91% for “Type of Cuisine” by refining 

the ontology as well as the selection of relevant attributes for the classification.  

It was not possible to achieve a perfect classification of all recipes concerning “type 

of meal” or “type cuisine”. Finally we had to correct some fatal error classifications 

manually. 

3.4 Seasonal Restrictions / Dietary Practices 

Not only “Type of Meal” and “Type of Cuisine” are possible requirements in a query. 

“Seasonal Restrictions” and “Dietary Practices” can be desired by a user as well.    
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“Seasonal Restrictions” occur for 23 different ingredients and can range in their value 

for each month between “fresh/is in season” and “storable”. As an example, 

“Cabbage” can be stored from January to March, while it is “in season” from 

September to December.  

 “Dietary Practices” exist for “Gout Diet” and “Cholesterol Diet”. In both 

cases preferable and restricted ingredients can be found in a chart given by the CCC-

Jury. Following a “Cholesterol Diet” the guidelines – which are no medical 

information – recommend to prefer low-fat milk products and avoid butter, eggs, 

turkey, or pork.  

 In order to offer best possible retrieval results we decided to treat all seasonal 

information and dietary recommendations as extended ingredients. In the current 

version of “Cooking Cake” we are able to define similarities between each month and 

even closer between “storable”-months and “fresh”-months. Dietary information for a 

single recipe is right now only available as a Boolean expression, which means a 

recipe either is “Gout Diet” or “Cholesterol Diet”-valid or it is not. 

4 Retrieval & Similarity 

Considering the ontology as the main knowledge base of our software, the weight 

initialization of every node was a key process in the development of “Cooking Cake”. 

We finally decided to calculate the weight by the formula 

 

(1) 

where “maxlevel” stands for the depth of the path the node is on. In some evident 

cases manual enhancement of these weights were necessary. 

 Choosing CAKE as framework for developing “Cooking Cake“ allowed us 

to use the CAKE Data Model and the already implemented CBR technology. The 

CAKE Data Model describes all kinds of data that can occur in the system. It is an 

object-oriented model using specialization and aggregation to define the data classes. 

Available data classes are atomic classes like boolean, integer, double, date or time as 

well as compound data classes like aggregates, collections and intervals. These 

system classes are used to define a cooking specific data model. 

 Each data class of this data model can be instantiated as a CAKE data object. 

The main function of the CBR technology is the similarity based retrieval of above 

described data objects. For this purpose a similarity model is defined on the top of the 

data model combining and configuring similarity functions predefined in a similarity 

library [5].  

 The CAKE's library provides about 30 similarity measures. Similarities in 

the provided version of “Cooking Cake” are calculated by determining the first 

common father of query and case object. This solution is meant to be an initial 

solution as we are working on the development of an independent calculation method 

in order to get the best possible and differentiated results for the cooking-domain.  

Right now the retrieved similarity between a case object and a query object is 

calculated as  
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(2) 

where aggregate (Agg) contains for example the five main categories (see Section 2) 

like “animal” or “herbal”. For each of these aggregate-attributes a weight is defined 

which represents the importance of this attribute for the retrieval. This weight is 

multiplied by the weight of the common father-node of the query and the case object.  

The possibility to avoid ingredients is implemented as an initial solution as a filter on 

the retrieved cases, but will be reworked and re-implemented in the similarity 

measurement.  

5 “Cooking Cake” / Graphical User Interface 

 

Fig. 7. Interface 

 

The current version of “Cooking Cake“ comes as a MySQL and PHP-based interface. 

Hence, in order to work with “Cooking Cake” a webserver with PHP support is 

required as well as our expanded version of the CAKE Core.                 

Relating to Figure 7 the interface is divided into two parts. At the top the user can 
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specify ingredients which are desired (“Do”) or ingredients which should be excluded 

(“Don’t”). At the bottom of the interface “Dietary Practices”, “Type of Cuisine” or 

“Type of Meal” can be chosen. 

By clicking on the button “Menu Challenge” in the top left corner of the website the 

user is able to specify each of the described options for three courses which are 

Starter, Main Dish and Dessert.  

6. Exercise Queries 

In order to understand how “Cooking Cake“ works given Compulsory Task queries - 

taken from the Computer Cooking Contest website - and their results will be 

discussed in this section. 

 

 

Exercise Query #1: Cook an Asian soup with leek. 
(Main focus: type of meal, type of cuisine)  

 

As requested the retrieved recipe is an Asian soup with leek. No other restrictions 

applied. 

 

Exercise Query #2: I would like to have a salad with celery. Please consider that I 

follow a gout diet.  
(Main focus: dietary practice)  

 

Dietary restrictions applied in this query. Therefore only gout diet conform salads 

with celery were retrieved. No other restriction applied. 

 

Exercise Query #3: Prepare a low-cholesterol dessert with strawberries and avoid 

citrus fruits.  
(Main focus: dietary practice)  

 

The result of this query is a low-cholesterol dessert which includes strawberries and 

no citrus fruits. Low-Cholesterol and Citrus restrictions applied.  

 

Exercise Query #4: Cook a risotto with carrots. 
(Main focus: similarity / modification of recipes) 

 

The result of this query is a risotto with carrots. No other restrictions applied and no 

modification had to be made. 

 

Exercise Query #5: I would like to cook a pear pancake. 
(Main focus: similarity / modification of recipes) 

 

The result of this query is a apple pancake. This result derives from the close 

similarity between apple and pear. No other restrictions applied. 

 

Exercise Query #9: I do have a filet of beef, carrots, celery, field garlic and 

cucumber. Potatoes are available, too. For the dessert, we have oranges and mint. 
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 A soup would be preferable for the starter. 
(Menu Challenge) 

 

As the result of this query “Cooking Cake” recommends a soup as a starter, a main 

dish with most of the requested ingredients and a dessert with oranges. No restriction 

applied and no modification had to be made. 

7 Conclusion And Related Work 

The main difference towards the systems of the CCC’08 [9] is that “Cooking Cake” is 

based on the CAKE Framework. Also we want to point out, that the required 

integration of extended information, like “Type of Cuisine” and “Type of Meal”, was 

implemented by using a Naïve Bayes-Classificator. 

 On the other hand our system shows similarities in some parts to the 

COOKIIS’08 which was the only available resource from CCC’08, beside the 

technical papers provided in the ECCBR 2008 proceeding [10]. For example the ideas 

behind the existing ontology of this system were partly integrated into the design of 

our ontology and customized to the needs of our CBR-Software. Therefore our 

ontology and the COOKIIS’ ontology agree in several parts. 

 With “Cooking Cake” we developed a new CBR-Application for the generic 

“Collaborative Agent-based Knowledge Engine”-Framework. In this application we 

were able to implement a highly sophisticated preprocessing method which allows a 

user to semi-automatically build a large ontology where the manual effort decreases 

in relation to the increasing amount of ingredients in the ontology.  

 Currently the focus of our application is to provide a solution for the 

Competition requirements, but it can be easily extended to a bigger application. 
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Abstract. The aim of this paper is to present CookIIS1, a Case-Based
Reasoning (CBR) system that provides recipe suggestions. The sugges-
tions are created based on a given set of recipes that the system modifies
according to a user’s specification. For the adaptation of recipes CookIIS
relies on its knowledge model, a set of 342 rules as well as substitution
suggestions mined from cooking communities on the WWW. The paper
describes how CookIIS processes the competition queries and masters
the challenges of the Computer Cooking Contest 2009.

1 Introduction

Retrieving and reusing recipes that are correct and delicious is a difficult task
and the participation in last years Computer Cooking Contest (CCC) showed us
that the challenges we had to bear are interesting research topics. In this paper
we present insights how our system CookIIS is realized and which methodologies
and techniques we use to cover the expected areas of competences.

This year the CCC contains three main challenges that we all address with
CookIIS. The Compulsory Task focusses on the type of meal and type of cuisine
as well as extended dietary practises and the modification of recipes. There-
fore we extended and improved last years knowledge models, added new dietary
practices and we are now using additional knowledge that has been extracted
from cooking communities on the WWW. For participation in the new Adapta-
tion Challenge, CookIIS has an own adaptation component which only contains
pasta recipes with more detailed and structured information of the preparation
processes. The third task, the Menu Challenge, focusses, like last year, on the
composition of a three course menu and we use the findings and further develop-
ments made for the Compulsory Task and Adaptation Challenge to also improve
the retrieval and adaptation in the Menu Challenge.

Overall CookIIS is a Case-Based Reasoning (CBR), more precisely a struc-
tured CBR system that uses techniques like Text Mining and Information Ex-
traction to gather more knowledge and improve the results of our systems.
Moreover, we used the experiences we made with last years system to improve

1 http://cookiis2009.iis.uni-hildesheim.de:8080/ccc
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CookIIS, especially its underlying knowledge containers [1]. We realized CookIIS
using the industrial strength CBR based tool Information Access Suite (e:IAS)
from empolis[2], which employs Case Retrieval Nets [3]. The cases that we use
were given by the CCC organizers, so we concentrated on extracting knowledge
for recipe transformation, the coverage of our vocabulary and the computation
of the similarity measures. Based on last years systems we completely revised
the underlying knowledge model: we defined more precise ingredient taxonomies
and (semi-)automatically extended the vocabulary aiming that most of the in-
gredients can be recognized. The more detailed representation of ingredients also
results in a better similarity computation.

We decided to use very user-friendly text based graphical interface what
makes it easy to use CookIIS. According to the three challenges we have got
three components: The CookIIS Recipe Creator is developed to compete in the
Compulsory Task because its underlying case base contains the according recipes.
The CookIIS Pasta Adaptation only contains the pasta recipes and focusses in
the adaptation task. The CookIIS Menu Creator also contains compulsory case
base, but has text fields to specify and explicitly exclude ingredients for each of
the three courses. CookIIS can be queried in German and in English - however
the recipes and the preparation instructions will be in English.

Our paper is structured as follows: Section 2 presents the CookIIS knowledge
models and focuses on improvements compared to last year’s system. According
to the three tasks CookIIS has to perform, section 3 contains the Compulsory
Task queries and explains how we extract type of meal and type of cuisine, how
we retrieve recipes that fit dietary practises and how we compute the similarity
measures. Section 4 presents the adaptation process as well as the integration of
community knowledge to provide more reliable substitutions for ingredients. The
Menu Challenge queries as well as the creation process of a menu is described in
5. The last section gives a summary of the main features of CookIIS and provides
a short outlook on future work.

2 Knowledge Model

Since we use an approach that is based on structured CBR, we implemented a
very detailed knowledge model which describes the cooking domain. The model
is based on the one of the CCCIIS system that competed in last years Computer
Cooking Contest [4]. The main elements of our model are the ingredients that are
required to prepare a meal. They are organized in the following eleven classes:

Basic Ingredients Fish Meat Vegetable
Supplement Fruit Drinks Milk
Minor Ingredients Oil and Fat Spice and Herb

Within these classes we modelled about 1000 different ingredients represented
as concepts that can be used for describing a meal. The most concepts (177) are
contained in the Meat class. Each concept represents one single ingredient and
is modeled with synonyms in English and German language. In most cases the
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concepts are ordered in one or more taxonomies. These taxonomies are one
possibility for the calculation of the similarity between a query and a case as
explained in Section 3.4.

For this years contest we manually revised our existing model from last year,
cleaned a lot duplicates, added a lot of concepts and synonyms and reworked all
of our taxonomies. The remodeling and completion of classes is mainly based on
[5]. For example, we split the class ’liquids’, which contained drinks as well as
non-drinkable fluids into the classes ’Drinks’ and ’Oil and Fat’ since those two
classes have almost nothing in common. Any fluids not fitting in those classes
we added to other existing and fitting ones. For example water is now a basic
ingredient and only mineral water is a drink. Since there is a special focus on
pasta recipes for this years adaptation challenge we also modeled about 40 kinds
of different pasta in an additional class.

Besides the ingredients, preparation methods and tools required for the prepa-
ration are often mentioned in a recipe. We modeled each in an own class. The
preparation methods are not only used to compute the similarity between a
query and a case, but it is also used to determine the type of meal (e.g. dessert)
as described in the following section. For the Computer Cooking Contest it also
important to determine the origin of a recipe. We modeled 48 possible origins
and ordered them in a taxonomy to use them for similarity calculation too.

Overall we modelled about 2000 different concepts in 25 different classes.
We weighted each class in relation to the importance of the class for finding the
right recipe. We built two different case bases using two different aggregates, but
the same model: one with the compulsory task recipes and one with the pasta
recipes.

3 Compulsory Task

In the Compulsory Task, single recipes have to be retrieved according to auto-
matically computed meta information like the type of ingredients, the type of
meal, the type of cuisine while also considering some dietary practices.
The type of ingredients is automatically recognized based on the classes in our
knowledge model presented in the previous section. We will explain in the fol-
lowing two sections how we computed other meta information.

3.1 Type of Meal

One type of meta information needed for the recipes is the type of meal, which
describes whether a dish is for example a main course or a dessert. We defined
a class in which most concepts (i.e. types of meal) are ordered in a taxonomy.
We implemented some in order to assign the types of meals to the recipes. We
based the implementation on two main aspects:

– indicative keywords in the recipe title,
– indicative ingredients or combination of ingredients.
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In the first approach, we extract the type of meal from the title of a recipe. For
example, a recipe which contains the indicative word ”sherbet” in its title is, with
a high probably, a dessert. In the second approach, we analyze the ingredients
(and also their types) as well as the preparation methods contained in recipes.
The preparation methods are extracted from the given preparation instructions.
For example, a frozen meal with milk, fruits and sugar is probably an ice cream.
We do not use further information from the preparation instructions yet. We
have about 15 rules for the assignment of the type of meal with a precision of
about 90 percent.

3.2 Type of cuisine

Another requirement of the CCC is the identification of the type of cuisine (e.g.
Italian, Chinese, Mediterranean, etc.), which is not given in the recipe itself.
All possible origins are modeled in one class and organized in an taxonomy. For
example the concept ”Mediterranean” is the parent for ”Portuguese”, ”Spanish”
and ”Italian”, while ”Mediterranean” itself is a child node of ”Southern Euro-
pean”. In order to map the recipes to one of our concepts we implemented three
rule-based approaches using rules:

1. identification of the recipe’s origin in the recipe title
2. identification of characteristic strings or meals in the recipe title and map

them to an origin
3. using the occurrences of spices and herbs and other ingredients to find some

elements that are characteristic for a type of cuisine

The first method is based on the finding that many recipes display their
origin in their title (e.g. Chinese Chicken Salad). Here the origin is determined
right away. The second approach needs some background knowledge. It is based
on the fact that some foods or meals are characteristic for a specific type of
cuisine (e.g Sauerkraut is typical for the German kitchen). A set of rules maps
those occurrences to the according type of cuisine. For the third approach we use
ingredients, especially the spices and herbs used in the recipe. For example the
use of curry is a strong hint on the Indian cuisine. Overall CookIIS includes about
28 different rules, which are prioritized according to the different approaches and
map the recipes with a precision of 80 to 90 percent.

3.3 Dietary Practices

In the CCC tasks and challenges, the participating systems have to be able to
retrieve suggestions that are following at least the following two dietary practices
(i.e. gout diet and cholesterol diet) and a seasonal food calendar. We also include
other dietary practices (i.e. vegetarian, nut free and non alcoholic) which were
implemented for our CCCIIS [4] in last year’s contest.
To follow the specification of a gout and cholesterol diet, ingredients as well
as types of ingredients were given, which should or should not be contained in
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the retrieved recipes. For each forbidden ingredient, we set a filter so recipes
containing this ingredient are not considered during the retrieval process. We
do this by excluding either single ingredients or categories of ingredients (e.g.
exclude any kind of meat for a gout diet). We also set filters in order to consider
only the recipes that contain at least one of the recommended ingredients. These
two kinds of filter ensure that the retrieved recipes always contain some of the
recommended ingredients and none of the forbidden ones. We use filters instead
of adaptation, because the forbidden ingredients can not be adequately replaced
in a recipe while following a diet.
With the seasonal option, the user can specify a month of which the vegetables
that are included in the suggested recipe are available. If this option is chosen
and some vegetables in the best fitting recipe are not available in the selected
month, the system will give a hint. Further we propose, according to the provided
seasonal food calendar, adaptation candidates for some unavailable vegetables.
The system just proposes candidates that are available in the selected month.

3.4 Similarities (Taxonomies)

As stated before, each recipe is represented as one case consisting of attributes.
Each attribute’s class is defined by the concepts that we introduced in Section
2. The similarity between two cases is calculated as follows:

– local similarity for each attribute and
– a global similarity measure for recipes.

The taxonomies of our knowledge model are used as a first approach for the
computation of the local similarities. By assigning adequate values for the gen-
eralization and the specialization step in the taxonomy, similarities between con-
cepts of a class can be computed. In our taxonomies, those values were assigned
and adjusted manually. When needed, we defined several taxonomies for given
classes. For example, the class meat has two taxonomies. In the first taxonomy
the single meat ingredients are ordered according to their kind (e.g. beef, pork,
poultry) and in the second taxonomy the ingredients are ordered by the part of
the animal they origin from (e.g. fillet, haunch). Since both taxonomies are used
for similarity calculation, chicken breast is similar to turkey breast as well as to
chicken fillet.
The second approach for the computation of local similarities consists of manu-
ally assigning similarity values of some pairs of elements of the class in a similar-
ity matrix. This assignment is only done for pairs of ingredients for which either
they are pretty well known to be very similar or one of the ingredients could not
be ordered in a taxonomy. We use a combined similarity measure in which the
assigned similarity value is the maximal value obtained from both approaches.
The global similarity measure is a weighted sum of the local similarities of the
attributes in the case, following the local-global principle for similarity modeling
(see [6]). The weights assigned to the local similarities reflects the importance
of the corresponding attributes in the cases. The sort of meat used in a meal is,
for example, more important than the type of oil used.
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4 Adaptation Challenge

Due to the fact that the given recipe base is not large enough to provide recipes
for the whole variety of desired and favoured ingredients, an adaptation of the
existing recipes to the users needs is necessary. Thereby ingredients which are
excluded by a certain diet or explicitly by a user are considered as forbidden
ingredients. The intersection of forbidden ingredients and ingredients occurring
in a retrieved recipe we call critical and they have to be replaced. Our over-
all assumption is to replace forbidden ingredients with others from the same
ingredient class.

The adaptation of the recipes in CookIIS is mainly done via a set of rules
called after the retrieval of similar cases. According to shortcomings of our first
adaptation approach used at CCC 2008 we discovered in [7] we restructured
our adaptation as a sequence of distinguished steps to pursue different adap-
tation approaches. At the moment the implemented adaptation steps can be
subsumed under two approaches: community-based adaptation and model-based
adaptation. The first executed approach collects concrete pairs of ingredients as
adaptation advices from comments inside cooking communities on the WWW
and is described in section 4.2. For critical ingredients where no replacements
at the first step are found the subsequent adaptation steps are executed (be-
longing to model-based adaptation), which work more general on the designed
knowledge model and similarity measures. The reason for using this approach is
to avoid handcrafting a single adaptation rule for each ingredient with explicit
replacement candidates. It it explained in the next section 4.1. We combine both
adaptation approaches and save intermediate results in extra attributes of the
case. The main advantage of this sequential adaptation is that we can review
and adjust the results of adaptation steps performed before.

4.1 Model-based Adaptation

The adaptation schema bases on a relaxed intersection function from e:IAS [2]
Rule Engine which determines similar ingredients for the critical ingredients as
replacements. It is explained more in detail in [8].

The replacement of ingredient (concepts) through child concepts of this in-
gredients is not appropriate (e.g. replacing forbidden tomatoes with cherry toma-
toes). Therefore we have to remove the child concepts from the list of replace-
ment candidates. The relaxed intersection function only uses the default simi-
larity measure of a class which is, for CookIIS, the combined similarity measure
explained in Section 3.4. It is not possible to explicitly choose one the given
approaches used for the computation of similarity values. The relaxed intersec-
tion function therefore allows the replacement of forbidden ingredients through
parent concepts as well as child concepts, which is not appropriate under certain
circumstances. In order to eliminate the child concepts of the forbidden ingre-
dients from the list of replacement candidates, we adjusted some values in the
similarity matrices, such that other candidates are more similar than the child
concepts. We execute the intersection function twice, once with a threshold equal
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to similarity value resulting from a taxonomy and afterwards with a threshold
slightly above this first threshold and compare the results to separate and ex-
clude the child concepts.
For desired ingredients which do not appear in the recipe yet we execute an addi-
tional adaptation step to replace one of the similar ingredients of the recipe with
the desired ingredient. As a last step we count the amount of replacement candi-
dates. If no adequate ingredients remain, we recommend to omit this forbidden
ingredient.

4.2 Extraction of Adaptation Knowledge from Cooking
Communities

The Internet and the Web 2.0 with its user-generated content is a large source
of any kind of knowledge and experience. This includes knowledge and experi-
ence about cooking and about adapting recipes, which are discussed in cooking
communities. In these communities people upload their favourite recipes for ev-
erybody to use and express their opinion about other peoples recipes. Thereby
they do not only say what they like or what they do not like about the recipe,
they also express the way they adapt the recipe to their needs. This can be for
changing the taste, for following a certain diet or just because they did not have
an ingredient at hand and took a different one. For this years CCC we imple-
mented an approach that makes this knowledge available for our application.

We collected about 70’000 recipes with more than 280’000 comments from a
large German cooking community by crawling the website. This way we got one
HTML source-code page for each recipe with the corresponding comments. From
this source code we extracted the relevant information entities using filters based
on different HTML tags. For the recipe these entities were primarily the recipe
title, needed ingredients and the preparation instructions. If users commented
the recipe, we extracted the text of the comment, checked if the comment was an
answer to another comment and if the comment is marked as a helpful comment
or not. All these informations we stored in an database to have an efficient access
to the data.

In the next step we used the e:IAS and an extended CookIIS knowledge model
to generate two different case bases. One case-base consists of the recipes and
one of the comments. Using the e:IAS TextMiner we extracted the mentioned
ingredients and stored them as a case for each recipe and each comment. Since
our knowledge model is bilingual (English and German) we were able to translate
the originally German ingredient names into English terms during this process
and also took care of used synonyms. This way had the same terms in the case
bases that we use in our CookIIS application.

Having built up the two case bases we first retrieved a recipe, then all of the
comments belonging to the recipe, and finally compared the ingredients of the
recipe with the ingredients mentioned in the comment. This way we classified
the ingredients mentioned in the comments into the following three categories:

– New : ingredients that are mentioned in the comment, but not in the recipe
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– Old : ingredients that are mentioned in the comment as well as in the recipe
– OldAndNew : two or more ingredients of one class of our knowledge model,

of which at least one was mentioned in the recipe and in the comment and
at least one other one was only mentioned in the comment, but not in the
recipe

For the CookIIS application the last class is the most interesting. We inter-
preted ingredients with this classification as either an adaptation (e.g. instead of
milk I took cream) or an explanation/specialization (e.g. Gouda is a semi-firm
cheese). For each of these ingredients classified as OldAndNew we also stored
whether it is the new or the old one. We tried to distinguish between adaptation
and specialization by looking for hints in the original comment text and by using
the taxonomies of our knowledge model. Therefore we tried to find terms in the
comment that indicate that an adaptation was described in the comment during
the text-mining process (e.g. instead of, alternative, replaced with,...) and stored
those terms in the corresponding case. Additionally we looked in the taxonomy
of the ingredient class whether the one ingredient is a child of the other (or the
other way around). If an ingredient is a child of the other we interpreted this
as specialization or explanation, because one ingredient is a more general term
than the other. This way we omit to have adaptations like: instead of semi-firm
cheese take Gouda.

For each classified ingredient we assigned a specific score, which depends on
the following factors:

– the number of ingredients found in the comment text
– whether the comment was marked as helpful or not
– whether a term was found that specifies the classification further or not
– whether a term was found that indicates a different classification or not

After assigning the score we aggregated our classification results. For the
CookIIS application we did this in two steps: First we aggregated all classified
ingredients of all comments belonging to one recipe. Thereby we counted the
number of the same classifications in different comments and subsequently added
up the score of the same classifications. Then we aggregated all classifications
without regarding the recipe they belong to. This way we can select the most
common classifications out of all classifications.

For this years CookIIS application we use the overall aggregation of OldAnd-
New -classified ingredients to generate adaptation suggestions. We look up this
ingredient in our ”community knowledge DB”. If this ingredient is categorized
as ”old” we use the corresponding ”new” ingredient to serve as substitution. If
more than one substitution is found, we use the on with the highest score. We
usually try to retrieve two adaptation suggestions to be more manifold. Using
the approach we got more than 5’300 different adaptation suggestions for about
570 different ingredients of which we only use the most common (regarding the
number appearances in the comments and the score). For the future we plan to
use the adaptation suggestions with regard to the recipe they belong to. Our
idea is to find similar recipes to the recipe the adaptation is done at out of our
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pool of 70’000 recipes and find an adaptation suggestion from a similar recipe
following the principle that similar recipes need similar adaptations.

The approach described above has a lot of advantages. For finding ingre-
dients we can use our detailed CookIIS knowledge-model. This way we take
care of synonyms and have the same terms in the application as well as in the
adaptation-database. Since we are not looking for exact semantics but do our
own classification we are independent from slang or informal language as often
used in bulletin boards in the Internet. By using a large number of recipes and
comments we hope to balance wrong classifications out and avoid suggesting false
positives. Some more technical details and ideas for the evaluation are described
in [9].

5 Menu Challenge

In this challenge CookIIS designs a three-course menu according to given con-
straints. The user can specify which ingredients should be used, which should
be avoided and the CookIIS Menu Creator will compose a menu containing a
starter, a main dish, and a dessert that fit together. Our underlying assumption
is that each dish of a menu should have the same type of cuisine. The technical
idea behind the Menu Creator is a two step retrieval [10].

Fig. 1. Menu Design: two-query approach

Figure 1 illustrates our approach, in which a main dish is retrieved first to
set the type of cuisine for the whole menu. In the second retrieval step the given
ingredients and the type of cuisine are used to retrieve fitting recipes for starter,
main dish and dessert. Within the second step we also make sure that the types
of meal of the courses differ from each other.

6 Conclusion

In this paper, we presented CookIIS, a case-based system that provides recipe
suggestions. We first presented the underlying knowledge model, which contains
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25 classes with about 2000 concepts. We improved the knowledge model by
taking additional knowledge obtained from cooking literature into account as
well as the experience made with our system. In order to meet some of the
requirements of the Computer Cooking Contest, various meta information about
recipes can be automatically computed in CookIIS. We have a set of rules which
is used for the extraction of the needed meta information. We also use a rule
based approach to deal with dietary practices by only considering the recipes
that can be recommended for a given diet. CookIIS uses a sequential adaptation
based on a set of prioritized adaptation rules performing a sequence of steps to
pursue two different approaches: on the one hand the model-based adaptation
and on the other hand the community-based adaptation.
For the future we still have ideas to improve CookIIS. We are actually trying
to consider the amount (i.e. the weight) of ingredients for the retrieval and the
computation of meta information. Another improvement we are aspiring consists
of learning association rules from the recipes in order to refine the adaptation.
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Abstract. JaDaCook 2 has been developed to participate in the 2nd Computer 
Cooking Contest 2009 (CCC-09). The system is an improved version of 
JaDaCook 1.0 that participated in CCC-08. We have reengineered the source 
code making the code more reusable and extensible. JaDaCook  2 includes 
general improvements and new functionality. Namely, a new form based 
interface, a new version of the ontology including more type of ingredients, 
dietary practices, types of meal type of cuisine, data mining over the 
ingredients, textual and IE capabilities over the recipes. The system has been 
developed as the final evaluation assignment for a graduate course in Machine 
Learning at the Computer Science Faculty (Complutense University of Madrid). 
In this paper we present a brief review of the technical characteristics of the 
system, describing the knowledge acquisition and reasoning processes, the new 
functionality and some experimental results. 

Keywords: Knowledge Intensive CBR, Ontology, jCOLIBRI 2, Data Mining  

1 Introduction 

In this paper we describe JaDaCook1 version 2, a CBR system that solves the task of 
suggesting a recipe given a restricted set of ingredients as the query. This version of 
the system has been developed to participate in the Computer Cooking Contest 2009. 
It is an improved version of the JaDaCook 1 that participated in CCC-08.  

The system has been developed by students as the final evaluation assignment for a 
graduate course in Machine Learning at the Computer Science Faculty (Complutense 
University of Madrid) during the first semester of 2009. They have reengineering the 
source code of JaDaCook 1 making the code more reusable and extensible. JaDaCook 
2 includes general improvements and new functionality. Namely, a new form based 
interface, a new version of the ontology including more type of ingredients, dietary 
practices, types of meal, type of cuisine, data mining over the ingredients, textual and 
IE capabilities to process the text of the given recipes.  

JaDaCook 2 reasons using different knowledge sources: (1) a case base of recipes 
(provided by the CCC-09 organizers and available from textual sources), (2) a 
cooking ontology, (3) a set of association rules, obtained using data mining 
techniques, capturing co-occurrences of ingredients in the recipes. These rules are 

                                                           
1 http://gaia.fdi.ucm.es/grupo/projects/cookingContest/cookingContest.html#jadacook2 
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used to propose substitute ingredients, (4) a case base of menus built collaboratively 
using the personal opinion of non-expert users. This case base is used to build menus 
by the composition of single dishes.  

JaDaCook 2 solves the Compulsory Task of the CCC-09 that involves answering 
queries that require the selection and, where appropriate, modification of a recipe for 
a single dish; and the Menu Challenge  that requires the composition of a three-course 
menu based on the available recipes and on collaborative recommending techniques.  

JaDaCook 2 adapts the retrieved recipe by substituting ingredients; however it does 
not aim to solve the Adaptation Challenge in CCC-09 as it does not change the 
preparation directions in a recipe.  

JaDaCook 2 has been implemented using the jCOLIBRI [1] framework. jCOLIBRI 
helps the development as it supports, among other things, textual processing [2] and 
the use of ontologies to enrich reasoning processes in CBR systems [3].  

JaDaCook 2 includes a new form based interface based on the multiplatform 
framework QT [7]. The new interface replaces the previous natural language 
interface, simplifies the query formulation process, and minimizes errors in the 
communication process with the user. The new interface allows navigating the case 
base, querying it by selecting from the ontology specific ingredients or types to be 
included or avoided and dietary practices. It also allows querying the system using 
new ingredients, including new ingredients in the ontology, new menus in the 
collaborative case base and new recipes that are automatically processed from the 
given XML file.  

The Menu Challenge asks for the creation of a three course menu. JaDaCook 2  
offers a case based collaborative recommender system that bases the menu 
configuration on the opinion of previous users. When the user queries the menu 
system, (s)he is asked about her opinion on the result, and his/her answer is recorded 
and used for future recommendation.  

In this paper we present a brief overview of the technical characteristics of the 
system, describing the knowledge acquisition and reasoning processes, the new 
functionality and some experimental results with the queries provided in the CCC-09 
webpage. 

The paper is structured as follows. Section 2 details the main features of the 
graphical interface of the system. Section 3 describes the knowledge sources of the 
system and Section 4 briefly explains the CBR processes. Section 5 offers some 
examples and results and Section 6 concludes the paper.  

2 Graphical Interface 

The new interface of JaDaCook 2 integrates in the same GUI (see Fig. 1) three tabs 
(from left to right in Fig.1) that correspond to the following tasks: 

1) Single Dish Challenge. Given a query, the result will be the retrieval and 
adaptation of a recipe for a single dish.  

2) Menu Challenge. This function enables the creation of a three course menu. The 
collaborative part uses the opinions of previous users to guide future 
recommendations.  
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3) Recipes inspection where the user can consult the case base. 

 
Next subsections describe these three features of the system. 
 

 
Fig. 1. JaDaCook  Main Window: single dish tab 

2.1 Single Dish Tab 

In the single dish tab (Fig. 1) the user provides the query information. It is not 
mandatory to include every component:  
- List (WL) of Ingredients that the user would like to include. 
- List (WNL) of ingredients that the user would not like to include.  
- Dietary practices like Vegetarian, Nut-free or non-alcoholic, plus new dietary 

practices like gout diet or cholesterol diet. 
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- Type of cuisine. One of the following: Chinese, Mexican, Mediterranean or 
Italian. 
 

Selecting corresponding radio button on left and right sides of single dish tab (see 
Fig. 1) the user can introduce one by one the list of ingredients that the user “would 
like to” (WL) and “Wouldn’t like to” (WNL) include in the recipe, respectively.  

There are two ways to add an ingredient to the query lists WL and WNL of 
ingredients: 

1) Select an ingredient from the ontology. If this button is clicked then a new 
window shows the ontology tree where the user can select the ingredient, 
either specific, like orange or salmon, or generic, like Fruit or Fish.  

2) Write the name of the ingredient in the text box provided to it. If the word 
entered by the user is a new ingredient, then the user is given the option to 
add it to the ontology of ingredients for future reference or use instead an 
ingredient existing in the ontology. A new ingredient entered by the user is 
ignored in the current query.  
 

The Suggest ingredient button can be used to let the system complete the query 
WL list with other ingredients that are compatible with the ones previously included 
by the user. These suggested ingredients are obtained from the recipes case base, and 
are ingredients that typically appear together. This utility is one of the novel features 
of the new version of the system and it is described in Section 3.3. 

The user can remove an ingredient from the query “I would like” or “I wouldn’t 
like” lists with the Remove button after selecting the ingredient.  

Once the query data have been introduced the system computes similarity and 
filters the k more similar recipes for the given query. The k value is configurable 
through the file menu. The resulting recipes are shown and annotated with a label that 
explains why this recipe has been retrieved. (R) annotates an ingredient of the WL list 
that appears in the retrieved recipe. (A) annotates an ingredient that is in the WL list 
but not in the recipe, so it has been substituted by a similar ingredient. And (C) 
annotates a specific ingredient that appears the WL list. 

2.2. Menus Tab 

The menus tab allows the user to compose three courses menus. The user starts by 
using one of the buttons “Starter” “Main Course” or “Desert” to query the system for 
a single dish. The system uses the same interface described in the previous section.  
Once the user enters a query for a starter, main course or dessert then the 
recommender system makes a secondary search to complete the rest of the menu.  

The recommender subsystem has a case base of menus that is initialized with a file 
named “menus.xml”. The menu recommender system searches in the menu case base 
for menus that are similar, i.e., they have similar courses, to the query menu, that is 
partially described menu. High scored menus in the case base are selected. Menu case 
base has been built collaboratively using the personal scores of non-expert users. The 
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"punctuation" button let you associate good/bad score to the menu. This score will be 
used in future recommendation cycles. 

In Fig. 2 we see an example. The user queries for a starter with chicken and 
Chinese as the cuisine type. With the first choice "Asian Chicken Salad W/spicy 
Peanut Sauce", the system in the menus tab recommends a main course and a dessert. 

 
 

 
Fig. 2. JaDaCook  Main Window:menus tab 

2.3 Recipes Tab 

This tab offers a simple inspection utility of the 1484 recipes in the case base. The 
recipes are organized in 149 pages where the user can easily look for specific recipes. 
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3 Knowledge Acquisition 

In JaDaCook 2, the knowledge of the system has evolved. Apart from the case base, 
the main source of knowledge of JaDaCook 2 is the ontology where we have 
conceptualized and formalized cooking knowledge from different sources, including 
experts, dictionaries and cooking web pages and systems [4-5]. In addition, the CCC-
09 organizers provided a large case base of recipes for use by contest participants. 

The acquired knowledge has been incrementally structured, conceptualized and 
formalized in the Web Ontology Language OWL2 and the new version includes 
ingredients from the new recipes, new types of ingredients, new types of cuisine and 
dietary practices, and classification of recipes and ingredients according to these 
dietary practices, namely gout diet knowledge3, seasonal food knowledge4, and 
cholesterol diet knowledge 5.  

3.1 Ontology 

Like its predecessor JaDaCook 2 is based on an ontology that captures the 
terminological knowledge of the cooking domain, organizing objects (individuals) 
into categories (concepts) to enable inheritance of properties and to create 
taxonomies. There are animal origin ingredients, grouped as fish, meat, milk, cheese 
and eggs, each with other subclasess; plant origin ingredients, like cereals, nuts, fruits 
and vegetables; and other classes like sweeteners, drinks, and basic ingredients like 
salt and oil. In the new version of the ontology we have included additional 
knowledge. It has more than 300 ingredients, organized in types and classes that cover 
the 1484 recipes provided by the CCC-09 organizers. The OWL code of the ontology 
is available through the web page:  
http://gaia.fdi.ucm.es/grupo/projects/cookingContest2/jadacook2/OntologiaIngredientes.owl 

3.2 Cases 

In the new version of the system we use the case base provided by the CCC-09 
organizers. Cases are stored in an XML file, that is processed and the most relevant 
information is extracted and stored in case base memory structure in the precycle of 
the application. Processes of loading and storing cases have also been improved in 
this version using SAX and DOM [8]. Each case in the case base has mainly a text 
title, a list of ingredients and a textual description of the recipe development process. 
Each case is linked with the corresponding classes of ingredients in the ontology.  

                                                           
2 http://www.w3.org/2004/OWL/ 
3 Gout diet knowledge: http://www.everydiet.org/diet/gout-diet 
4 Seasonal food knowledge: 
http://www.comidacasera.com/especiales/dietas/alimentos_temporada.phtml 
5 Cholesterol Diet knowledge: http://gicare.com/Diets/low-cholesterol-diet.aspx 
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3.3 Dependency Rules between Ingredients 

We have applied the Apriori algorithm [9] to mine association rules using WEKA 
over the case base of recipes. The data set is a csv file obtained from the recipes case 
base, so it includes 1484 rows, and one Boolean attribute for each ingredient in the 
ontology. WEKA allows the resulting rules to be sorted according to different metrics 
such as confidence, leverage, and lift. We have performed different experiments with 
different values to extract a set of relevant rules. For example, the following rule 
indicates that if the recipe includes vanilla then it will include sugar with a confidence 
of 87% and support of 205 recipes. 
vanilla=yes 205 ==> sugar=yes 179    conf:(0.87) 

These rules allow capturing the degree of compatibility between ingredients. When 
the user asks for ingredients to include in the recipes, the system uses these rules to 
suggest ingredients that appear together with the previously selected ingredients in a 
large percentage of recipes. 

3.4 Menu Case Base  

The menu case base includes 133 menus acquired in a collaborative way by different 
users of the system. Each menu is composed of three courses taken from the recipe 
case base. If a user composes a menu using three single dish queries, then the menu is 
saved in an XML file to be reused in the future. Each menu has a numeric score that 
can be modified. This score represents the degree of satisfaction of the non-expert 
users that have tried this menu.  
 

<MENU> 
<PR>Fusilli Verde with Broccoli and Red Bell Pepper</PR> 
<SE>Fast with Five: Garlic Flank Steak With Onion</SE> 
<PO>Cocoa Espresso Cooler</PO> 
<NOTA>7</NOTA> </MENU> 

 
New menus and their scores will be included in the menu case base and will be 

taken into account for future menu recommendations. 

4 CBR Processes 

CBR processes in JaDaCook 2 take advantage of the ontology. The main usage of the 
cooking ontology has been centered on similarity assessment and ingredient 
substitution. The assumption here is that two ingredients are more similar if they are 
located closer in the ontology. And that one ingredient can be substituted for an 
ingredient that is classified in the same concept. For example, turkey and chicken are 
siblings and children of the concept “Fowl” (like hen, and duck). 

The single dish case retrieval process consists of obtaining recipes that are similar 
to the given query. That means that the retrieved recipe includes the ingredients in the 
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WL list and it does not include ingredients from the WNL, has the dietary restrictions 
and type of cuisine specified in the query through the graphical interface (Fig. 1). 

The retrieval method is k-nearest neighbor, which compares these characteristics 
and aggregates them obtaining a ranking similarity number to order the candidates. 
Then the k most similar are shown to the user. In JaDaCook 2 we have improved the 
similarity measure, and included more knowledge from the ontology. 

Similarity assessment is based on two local similarity functions to compare titles 
and ingredients of the query and the case. Once all the ingredients have been 
processed, the overall similarity score is [0,1] normalized. Then the k most similar 
recipes will be shown to the user. 

We use jCOLIBRI similarity functions, more specifically one of the concept based 
similarity functions that depends on the location of the cases in the ontology. Details 
about concept based similarity in jCOLIBRI can be found in [3]. If the ingredients in 
the WL list are concepts of the ontology that represent type of ingredients, then the 
children are obtained. To that end, we used the library OntoBridge [6] written in Java 
that provides management ontologies.  

The reuse process in JaDaCook 2 is a process based on the substitution of 
ingredients according to their position in the ontology. The reuse strategy is the same 
one that was employed in JaDaCook 1 and it is called reinstantiation. It is one of the 
reuse methods included in the library of jCOLIBRI 2 and it is based on substituting 
one ingredient by one of its siblings in the ontology structure. 

The stage of learning (retain) has as its primary function storing those cases which 
have been adapted into the knowledge base. Thus, these new cases may be used in 
future searches to improve retrieval performance. In this system, it is left to the user to 
decide which cases are retained, so in this way we store the cases that are most useful 
in problem solving. 

5 Results and Examples 

Next we provide the preliminary results for the queries in the single dish challenge 
provided by the CCC-09 organization through the web page. The rest of the queries, 
captures, the code of the system, and the documentation is available through the web 
page: http://gaia.fdi.ucm.es/projects/cookingContest2/cookingContest.html#JaDaCook  

Q3: Prepare a low-cholesterol dessert with strawberries and avoid citrus 
fruits. (Main focus: dietary practice) 
The WL list includes the 'strawberries' ingredient and we want to avoid 'citrus' so we 
include it in the WNL list. Dietary practices is set to 'Cholesterol diet'. 

Fig. 3 shows the 3rd recipe suggested by the system, 'Fruit Cup#1' with a similarity 
value of 0.67. It includes strawberries and none of the citrus fruits: orange, lemon, 
lime and tangerine. 

Q9: I do have a filet of beef, carrots, celery, field garlic and cucumber. 
Potatoes are available, too. For the dessert, we have oranges and mint. A soup 
would be preferable for the starter. 
Q9 belongs to the Menu challenge. The WL list of the main course includes: 'beef', 
'carrot', 'celery', 'garlic', 'cucumber' and 'potato'. The system answers with recipe 'Beef 
Stew with Zucchini' that includes 'beef', 'celery', and 'potato'. It also adapts the recipe 
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by replacing 'onion' by 'garlic', 'squash' by 'cucumber', and 'celery' by 'carrot'. For the 
dessert we choose 'orange' and 'mint' as required ingredients. The system answers 
with the recipe 'Indian Ice Tea'. As the starter the system does not allow looking for 
'soup' as it is not available as an ingredient, or a type of ingredient, or dietary practice. 

 

 
Fig. 3. Results for the query 3 of the single dish challenge provided by the CCC-09 

6 Conclusions  

In this paper we have described JaDaCook 2, a CBR recipe creation system submitted 
to the Computer Cooking Contest at ICCBR 2009. 

JaDaCook  2 is a new version of JaDaCook 1 that participated in the 1st CCC in 
2008. It addresses the main drawbacks of the first version, includes new functionality, 
improvements on the ontology, a new interface, and data mining capabilities to 
capture dependencies between ingredients. 

JaDaCook 2 reasoning is based on a case base of recipes and an ontology with 
reusable knowledge about ingredients, types of ingredients, types of cuisine and 
dietary practices. The ontology is used as background knowledge to measure 
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similarity between ingredients and single dishes, and to substitute ingredients during 
adaptation.  

The system is able to deal with the single dish and menu challenges, and it is able 
to learn new ingredients appearing in queries by including them into the hierarchical 
organization of ingredients. This is a kind of supervised learning. The system also 
learns new menus, as combinations of existing individual dishes.  

The results for the given queries,  the code of the system, and the documentation is 
available through the web page: 
http://gaia.fdi.ucm.es/projects/cookingContest2/cookingContest.html#JaDaCook  
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Abstr act. In this paper we describe BlueCook web based application developed 
to fulfill the requirements of the Computer Cooking contest organized by the 
International Conference on Case-based reasoning (ICCBR). Given a query of 
ingredients and other requirements, the task is to return the recipe that satisfies 
these constraints by reasoning from cases of previous cooking recipes. The data 
provided by the competition are the recipes in xml format. The approach chosen 
is to mine for cases from recipes, to mine for knowledge from food composition 
databases, and to facilitate reuse of cases through knowledge-based adaptation. 
An ontology of foods and cooking know-how, mostly mined from online 
resources, guides the adaptation tasks. 

Keywords: Case-based reasoning, adaptation, case mining 

1. Introduction 

In this paper we present the BlueCook system developed to fulfill the requirements of 
the Computer Cooking Contest organized by the International Conference on Case 
based Reasoning 2009 [1]. The goal of the competition is answering queries by 
selecting and possibly modifying the recipes given. Queries will be described in free 
text but can be transformed manually to an arbitrary input format to be processed by 
the system. The example of a query is, 'Give me an Asian soup with leek'. The results 
produced by the system while answering the queries can be either a single or up to 
five recipes including in a note which original recipes from the recipe base have been 
used for the creation of the result. The contest has three tasks: one compulsory and 
two additional ones. Compulsory task involves returning a recipe based on the 
ingredients provided by the user. The additional tasks include adaptation challenge, 
and menu challenge. The adaptation challenge is to answer queries on pasta recipes 
that require an adaptation of both the list of ingredients and the preparation directions. 
The menu challenge requires the composition of a three-course menu based on the 
available recipes and the user specified constraints. 

BlueCook system mines for cooking cases from the XML text-based recipes 
provided for the competition in order to structure the recipes along their ingredients / 
utensils / cooking directions. The given transformed recipes are saved in an MySql 
database. The XML of the recipes contains tags TI, IN, PR, and STEP. Tag <TI> is 
for title, <IN> for ingredients, <PR> for preparation, and <STEP> contains the 
preparation steps. A parser was developed to parse the given XML files of recipes 
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into the database. The parser separates the title, ingredients, ingredient’s units, and 
other characteristics. It then arranges these elements in the appropriate tables in the 
database. The files do not have any special information about the recipes for example, 
cuisine type or meal type. An ontology of the cooking domain provides BlueCook 
with the information about what makes a recipe of specific cuisine type or meal type. 
This ontology has been created using the Protégé knowledge acquisition system.  

The second section explains the BlueCook system architecture and 
components. In third section we explain the case representation principles and the 
case mining process is detailed in the fourth section. The fifth section focuses on the 
ontology built for the system. The sixth section contains the description of retrieval 
process and ranking mechanism used for the system. In the seventh section are 
presented some running examples of the system. Finally we provide a discussion, the 
conclusion and some future works. 

 

 
Figure 1. System architecture. 

2. Architecture 

BlueCook is a distributed Web application. It follows a classical three-tier model, web 
page-servlet-databases. The web page is developed using HTML and JavaScript. The 
servlet and the other programs are developed in Java. The architecture of the system is 
as follows. The user can enter the different parts of a query on the webpage in the 
form of cuisine type, meal type, ingredients, and dietary practice. These values 
entered on the web page will be posted on the servlet. Servlet calls the helping class 
CookBook Manager passing all these values. CookBook Manager calls the Search 
Manager to look for the recipe's exact match or the closest match that can be sent for 
adaptation. In the context of case-based reasoning [2], Adaptation Manager adapts the 
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recipes. CookBook Manager also performs Menu Planning. A more precise 
description of the main components as represented in Figure 1 is as follows:  
CookBook Manager: This module communicates with the Servlet and all other 
modules after a query has been given by the user. The input of the CookBook 
Manager is the simple text query sent by the Servlet. The CookBook Manager returns 
5 appropriate recipes to the Servlet to display on the webpage. This number was 
determined empirically by keeping the largest number of recipes required to answer 
all tested queries. CookBook manager also performs menu planning. 
Search Manager: Given the elements in a query, search manager’s job is to 
communicate with the database server to get and return 5 most related recipes i.e. the 
most similar recipes, represented by their identification (id). The database of the 
recipes is used by the Search Manager. 
Adaptation Manager: Adaptation manager takes recipes passed by Search Manager 
and important components of the query as an input. It then communicates with the 
ontology database to see how the recipes can be updated. It returns the updated 
recipes to the CookBook Manager. 
Case Miner: Case miner is used to extract the important parts of the XML recipes and 
structure recipes as cases, placed into the recipe database or case base. 

The components developed for this first entry in the competition are Case Miner, 
Webpage, Servlet, Cookbook Manager, Search Manager and Adaptation Manager. 
 

Recipe

Ingredient

Utensil

RDirectionRIngredient RUtensil

Direction

Figure 2. Case representation. 

3. Case Representation 

In this system we are supposed to use the given recipes to reuse them and adapt them. 
In the context of case-based reasoning, a case in BlueCook is a recipe. These recipes 
are provided in XML format. To make it easier for the retrieval and adaptation of the 
cases, BlueCook separates the parts of recipes using their tags: ingredients of the 
recipe, utensils, direction steps, in addition to recipe names. These are stored in 
separate tables in the case base. Each ingredient gets an ingredient-id which is then 
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connected to the ingredients in the recipes. Each recipe ingredient is stored separately 
along with the recipe-id. The cases are then retrieved from the case base for ranking 
and reuse steps. Further the directions and utensils of the recipe are identified by an id 
and linked with the recipes as well. The case base schema is represented in Figure 2. 

4. Case Mining 

In the case mining process, a parser extracts the information from the XML data and 
puts it into the structured relational database as one of the cases (see Figure 2). A case 
is composed of a list of ingredients, a list of utensils, and a list of directions. Isolating 
each of these compounds, in particular the ingredients and the directions, allows for 
the level of adaptation required for the Cooking Competition, since when substituting 
ingredients, some preparation steps for example need to be changed or removed. As 
each XML tag is parsed we run a set of rules on the text inside the tags. For example, 
for the ingredients line, the rule based processing currently provides information such 
as the amount and units of the ingredient, the cut type, and whether it is optional or 
not. It also uses a lexicon to identify abbreviations such as lg (for large), sm (for 
small), kg (for kilogram), etc. Another set of lexicon knowledge is also used for cut 
types (sliced, diced, peeled, etc). Each concept in the ontology database has a unique 
identifier. However a table of synonyms allows for mapping different terms to a 
unique concept identifier. Following are the key data members and methods. The 
natural language processing (NLP) parser used performs a syntactic analysis on the 
sentences in the recipe and separates them into sentences stored into the database 
textual fields. For example, a direction is parsed into the structure shown below: 
 
CREATE TABLE RDirection ( 
      Rid INT NOT NULL, 
 Did INT NOT NULL, 
      Dnum SMALLINT NOT NULL,  
      DConjunction VARCHAR (5), 
      DSubject VARCHAR (50), 
      DVerb VARCHAR(20), 
 DDirectComplement VARCHAR (50), 
      DAdverb VARCHAR (50), 
      DPreposition VARCHAR(10), 
      DIndirectComplement VARCHAR (50),   
      DrelPrecondition VARCHAR(10), 
      DnumPrecondition SMALLINT, 
      DrelPostcondition VARCHAR(10), 
      DnumPostcondition SMALLINT, 
 CONSTRAINT PKdirection PRIMARY KEY (Rid, Did, Dnum),  
      CONSTRAINT FKRDRecipe FOREIGN KEY (Rid) REFERENCES Recipe 
                (Rid) ON DELETE NO ACTION ON UPDATE NO ACTION, 
      CONSTRAINT FKRDirection FOREIGN KEY (Did) REFERENCES 
                 Direction (Did)   
                 ON DELETE NO ACTION ON UPDATE NO ACTION 
 ); 
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5. Ontology 

The ontology is composed of an ingredients ontology and additional components for 
the dietary practices and seasonal foods. 

5.1 Ingredient Ontology 

The ontology developed for the system contains classical information about foods. On 
the webpage users can specify the meal type and cuisine type along with the 
ingredients. The cuisine type can be anything like Asian, Italian, and Mediterranean 
etc. The meal types are soup, salad, main dish, desert etc. In this ontology the 
information about the cuisine type, meal type and the ingredient type is stored in 
hierarchical manner. The information about the cuisine type includes the keywords 
that represent the particular cuisine type and appear in the title of the recipes. For 
example if cuisine type in the query is Asian, the keywords that represent an Asian 
dish would be ‘Chinese, Thai, Korean, Asian …’. Similarly the information about the 
meal type includes the keywords that represent the meal type and can appear in the 
title of the recipes. For example, if the meal type is ‘soup’ then the keywords would 
look like ‘soup, chowder’.  

The ingredient type is a hierarchical path in the ontology from the root node 
‘Food’ to the leaf nodes of ingredients. The ontology hierarchy for the ingredient is 
shown in Figure 3.  

 
If the ingredient at hand is onion then the path returned by the ontology will 

be <Food, Vegetables, Bulbs>.  

 
 

Figure 3. Ontology for Ingredient Type. 
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This ontology is being incrementally refined to allow more sophisticated 
adaptation. For example right now the vegetables tomatoes and okra both fall in the 
same category i.e. fruits, but it is not a good idea to replace them with each other in a 
recipe. For this reason need a more detailed ontology. The ontology also contains the 
food composition information about the contents in the ingredients for example sugar 
level, water level etcetera.  

5.2 Dietary Practice 

The dietary practices are restricted to Gout diet, Cholesterol diet, and Seasonal food. 
BlueCook followed the idea of the table of ingredients for dos and don’ts given on the 
Computer Cooking Contest website. It was expanded using an Internet search for the 
two dietary restrictions. The list of good and bad ingredients for each diet is stored as 
well. These lists are then used for ranking the recipes in the ranking step. 

For the seasonal food the same data given by the competition is being stored, 
along with the list of ingredients that are in season and can be storable (kept for a long 
time) for each month of the year. Users can have a choice of changing the month 
when they are searching for the recipes with seasonal food. The system first searches 
for the recipes within season ingredients; if there is no recipe that is a match for in 
season ingredients then we search for the recipes with storable ingredients, which 
means ingredients that can be kept for a long time.  

6. Retrieval and Ranking of the Recipes 

The Search Manager is our retrieval component. The search of the recipes depending 
on the queries is guided using the ontology of the recipes. The query contains type of 
cuisine and type of meal. The information of the cuisine type is taken from the 
ontology database. This information includes the keywords that can be in the title of 
the recipe. For example if the cuisine type entered is Italian then the keywords include 
Italian, Pizza, Pasta, etc. The first step is to retrieve the recipes that contain these 
keywords in their title. Then the information about the meal type is retrieved from the 
ontology. This information is also a list of keywords that can appear in the title. The 
recipes that are retrieved from cuisine type are further sorted using this meal 
information to get the recipes that are of cuisine type and meal type. For example if 
the menu type is main dish then from all the Italian recipes we pick the recipes that 
are main dishes. These recipes are then checked for the exact match for query 
ingredients. If there is no exact match then recipes are checked for adaptation. 

Ranking process is twofold. In the first step we eliminate the recipes that 
have ingredients that user specifically told to avoid or the ingredients that are 
restricted by the dietary restrictions provided by the user. The remaining recipes are 
used for ranking. In the second step of ranking process we need to find one recipe that 
is close to the ingredients given by the user, this recipe is the most adaptable recipe. 
To find the most adaptable recipe we evaluate the ingredients similarity between the 
recipe ingredient and the query ingredient. First we take the information about the 
type of ingredients from the ontology for each recipe and query ingredient. This 
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information contains the hierarchical path of the ingredient from the root node Food. 
For example, if we have the ingredient ‘cabbage’ the ontology will return {Food, 
Vegetable, Green vegetable, Cabbage family}. We try to match these paths of the 
ingredients.  

If a query ingredient is ingredient1 and a recipe ingredient is ingredient2, then 
 

similarity(ingredient1, ingredient2) = similarity(ingredient_type1, ingredient_type2) 
 

For the similarity assessment, BlueCook uses the following rules.  
 

1. If the paths of the ingredient types completely match from root node to 
leaf then recipe ingredient can be replaced by query ingredient and the 
match value 2 is given to the recipe ingredient. 

2. If the two ingredients match only up to the food level, then the match 
value they get is 0.  

3. If the ingredient types match anywhere in between just being food and 
matching completely then it will get match value of 1. 

 
These 3 levels of match – namely 0, 1, and 2 – suffice in the current system 

since our hierarchy of ingredients has only two levels below the root. We will extend 
it to the number of levels matched when the ontology is expanded. 

Using this method we look for a replacement for each ingredient from the 
query with ingredients from a recipe. For example if there are three ingredients 
provided by the user as carrots, celery and cucumber, then the matching step will look 
for replacement of each of these ingredients in the list of recipe ingredients. 

Later in ranking the system also uses the list of dietary ingredients allowed 
for the given diet making it the fourth rule in ranking.  

 
4. If one of the ingredients in the recipe is good for the diet requested by the 

user then the recipe gets extra 2 points in the ranking.  
 

The recipe is ranked by taking the sum of all the match values of recipe 
ingredients and the extra points of diet ingredients.  

 

 

where n is the number of query ingredients provided, ingredient1 to ingredientn are 
the selected replacements for query ingredients, and count(diet ingredients) provides 
the number of diet favorable ingredients in the recipe.  

All ranked recipes will be stored along with the ranking and ingredient 
replacements. The top ranked recipe will be selected for the adaptation. In the 
adaptation the ingredients in the recipe will be replaced by the ingredients in the 
query and this adapted recipe will be returned to the user.  
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7. Adaptation 

The adaptation process is invoked when the recipe is not the exact match for the query 
ingredients. In the adaptation of a recipe for compulsory task, the recipe is updated by 
replacing the selected replacement ingredients in the recipe with the query 
ingredients. In the ranking process BlueCook keeps track of the replacement 
ingredient that was selected for the query ingredient. Using this information the 
adaptation manager changes the appropriate ingredients of the recipe with the query 
ingredients. The drawback of this is the measurements and the units of the ingredients 
may not match. However it will give the user an idea of which ingredients in the 
recipe are replaced by the query ingredients. Following, the system displays two 
recipes to the user – the original and the adapted. In the adapted recipe the replaced 
ingredients are highlighted in a different color so that the user will know about the 
changes. 

In the adaptation challenge of the pasta recipes, two main changes are 
required. First, the units of the ingredients need to be adapted appropriately. For 
example one cup of some ingredient is not equal to one cup of another ingredient. 
This requires keeping track of the measurements of ingredients that are of same 
ingredient type. For example, butter and clarified butter come in the same ingredient 
type but the quantities that can added up to a recipe are different. So far, the 
adaptation is performed using procedural knowledge however we plan on changing to 
a declarative representation in a future version.  

Secondly, the direction steps as well as the weights of the ingredients need to 
be changed. In the direction steps the ingredients are replaced according to the weight 
comparison of the recipe ingredient and some other factors related to food and 
culinary knowledge. For example, in some recipes if chicken can be replaced by beef, 
then BlueCook does not want to say beef wings. So the ontology needs to store this 
type of knowledge in order for the system to take care of such mistakes in the 
direction steps adaptation.  

8. Example 

In the compulsory task the user can provide different elements of the query. The 
query elements include cuisine type, meal type, ingredients to be in the recipe, 
ingredients to avoid from the recipe, dietary restrictions, and month for the seasonal 
food. If the query ‘Give me an Asian soup with leek, please consider that I follow 
gout diet’ is asked then the parts of the query that are entered are Cuisine type = 
Asian, Meal type = soup, ingredients to be in the recipe = leek. BlueCook will retrieve 
all the recipes that are Asian soups. These recipes are then sorted according to the 
dietary restrictions. If the recipe contains any restricted ingredient that is forbidden for 
the gout diet then that recipe will not be used. Although this could be an opportunity 
for using adaptation by substituting for an allowable ingredient, BlueCook in all tests 
so far could retrieve recipes that met all the requirements of the dietary restrictions. 
This would depend on the number and variety of recipes in the case base. The 
remaining recipes are ranked according to the exact match of ingredient ‘leek’ or 
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substitutability of ‘leek’ with some other ingredient in the recipe. The recipe gets 
extra points if ingredients good for gout diet are present. All the recipes are then 
placed in the priority queue according to their ranking. The top recipe is sent for the 
adaptation. In adaptation if the recipe is not an exact match for the query ingredient 
leek, BlueCook replaces an appropriate ingredient from the recipe with leek. This 
adapted recipe is sent to display on the webpage along with the original recipe. When 
an adapted recipe is displayed on the webpage, the replaced ingredient is highlighted. 

9. Discussion 

Several papers presented at the Computer Cooking Contest last year used the java 
based Case-Based Reasoning framework JCOLIBRI to develop their systems [3,4]. 
As opposed to them we developed our system without using any framework. There 
are major differences in the ontology of the participants from the last competition and 
the one we developed. In [3], the authors mentioned that they have various properties 
of the ingredients is-ingredient-type, is-made-of etc. Also in [5], the authors have 
developed food categories for the ingredients and engineered knowledge about 
ingredients. We have relied mostly on the reference food database from the US 
Department of Agriculture (USDA) [6] since a lot of the properties can be derived 
from the food composition, such as the texture of an ingredient, its taste, moisture, 
etc. Therefore our ontology has been mostly automatically learned from the 
knowledge encoded in this database, then we have refined it manually, which has 
been efficient in terms of knowledge acquisition. For the similarity previous authors 
rely on properties different from the ingredient type. Our similarity measure uses the 
ingredient type to determine how similar two ingredients are and if they can be 
replaced by each other. To assess the similarity between two ingredients, DeMiguel et 
al. use fuzzy relationship of two ingredients [3]. They have two different ways of 
searching for the recipe match ‘At least’ and ‘Just’. In ‘At least’ they look for a recipe 
with ingredients provided by the user and it does not matter if a few extra ingredients 
are also present. In ‘just’, they are looking for a recipe that has just the given 
ingredients [3]. Currently BlueCook has only one way of finding the recipe that is 
similar to this paper’s ‘at least’. Javier et al. have a different way of storing the 
ontology in which the recipe is stored as the root of the hierarchical structure and the 
ingredients are children [4]. In our ontology we stored the ingredient type in a 
hierarchical form, ‘Food’ being the root node and the ingredients being the leaf nodes. 
Recipes are stored in a relational database, which allows for fast search and retrieval, 
and can scale-up efficiently. Like Badra et al., this system uses text mining to mine 
for important elements in the recipes [7]. However we refer more precisely to case 
mining in our system since we deeply parse the recipes to transform them into well 
structured cases. This step allows for isolating for example preparation actions, which 
facilitates the adaptation for the adaptation challenge. Adeyanju et al. organize cases 
in feature vectors [8], our system follows a stricter case representation by using a 
relational database format. In comparison to Zhang et al. [9], our system adopts a 
knowledge rich approach, which is often followed in case-based reasoning since 
determining whether ingredients can be substituted requires this knowledge. However 
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a lot of this knowledge has been learned, or mined, from the USDA database, which 
has not implied an overload of work. 

10. Conclusion 

BlueCook’s performance is driven by the quality of the ontology. The system we 
developed works satisfactorily for the current ontology. We have tested the system by 
generating sample queries and assessing how many of these were satisfactorily 
answered, from the average opinion of several evaluators. We would like to improve 
the ontology so that BlueCook will perform even better. The retrieval method will be 
changed to take into consideration the ingredients of the recipes. The adaptation will 
be also modified so that it will change the preparation of the ingredients in addition to 
the directions and ingredients. The ingredients’ amount and measurement will be 
replaced according to their comparison with replacement ingredients. Currently just 
one adapted recipe is returned to the user. Later we are planning to give user a choice 
of five recipes. 
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