
Experience reuse in a workflow-oriented cloud
management framework

Eric Kübler and Mirjam Minor

Goethe University, Business Information Systems, Robert-Mayer-Str. 10,
60629 Frankfurt, Germany

ekuebler@cs.uni-frankfurt.de,

minor@cs.uni-frankfurt.de

Abstract. Using cloud resources for the execution of workflows is a re-
cent approach. It provides new business concepts for selling the execution
of workflows in the cloud. However, there is a lack of concepts for flex-
ible integration of workflow management tools and clouds for resource
usage optimization. While traditional methods such as running a work-
flow management tool monolithically on cloud resources lead to over- and
under-provisioning problems, other concepts include a very deep integra-
tion, where the options for changing the involved workflow management
tools and clouds are very limited. In this work, we present the archi-
tecture of WFCF, a connector-based integration framework for work-
flow management tools and clouds to optimize the resource utilization of
cloud resources for workflow by Case-Based Reasoning. Experience reuse
contributes to an optimized resource provisioning based on solutions for
past resource provisioning problems. The approach is illustrated by a
real sample workflow from the music mastering domain.

1 INTRODUCTION

Today, cloud computing receives significant attention and the variance of offered
services is increasing. Novel business concepts emerge. One of these concepts is
workflow as a Service (WFaaS) as introduced by [20, 12]. The Workflow Manage-
ment Coalition [21] defines a workflow as “the automation of a business process,
in whole or part, during which documents, information or tasks are passed from
one participant to another for action, according to a set of procedural rules”. A
task, also called activity, is defined as “a description of a piece of work that forms
one logical step within a process. An activity may be a manual activity, which
does not support computer automation, or a workflow (automated) activity. A
workflow activity requires human and/or machine resources(s) to support pro-
cess execution” [21]. The idea of WFaaS is to execute activities within a cloud.
A cloud vendor [5] is a company that offers services in the cloud, for example
the execution of a workflow. However, the vendor is not always a cloud provider.
Even if renting the required cloud resources by a third party provider, the ven-
dor is responsible for maintaining the service level agreements (SLA) for the own
costumers. An SLA defines agreements between the provider and the customer



about different aspects of the quality of service. For example, an SLA can be
specified for the execution time of the workflow. To prevent an SLA violation,
the vendor may rent more resources than required (over-provisioning) but this
will reduce the profit. On the other hand, if the vendor rents less resources than
required (under-provisioning) this can lead to violations of the SLA. Violations
of an SLA create high costs and a loss of reputation [19]. Thus, the optimal man-
agement of resources is an important aspect for cloud computing [9] in general
and, particularly, for WFaaS vendors. It is challenging to find a good balance
between over- and under-provisioning of resources [6]. A straight-forward solu-
tion to provide resources is the static way. This means, the system does not
adjust itself to a changing situation. Obviously, this will lead to under- or over-
provisioning [19]. A more dynamic approach is preferable. Existing approaches
range from rather simple, rule-based solutions, such as observing the number of
open connections to a cloud resource [17] to sophisticated, algorithmic solutions
[18].
Knowledge and experience management methods [10] provide an alternative so-
lution approach focusing on the reuse of experience. In this paper, we investigate
Case-based reasoning (CBR) as a method for optimizing the provisioning of cloud
resources by experience reuse. The idea of CBR is that similar problems have
similar solutions [4]. To retrieve similar problems (cases), a similarity function
determines the similarity between two cases. CBR has two unique benefits. Due
to the fact that CBR only requires the similarity function to receive other, simi-
lar problems and their similar solution, the time and computational effort should
be relatively low. We will introduce the architecture of WFCF (Workflow Cloud
Framework) a connector-based integration framework for workflow management
tools and clouds that aims to optimize the resource utilization of cloud resources
for workflows by means of CBR. WFCF follows a shallow integration approach,
i.e. it is independent of the chosen workflow management tools and cloud sys-
tems. The idea is to have a set of WFCF components that are independent of the
workflow management tools and cloud systems. A tool-specific set of connectors
interacts with the actually used tools and system. The benefits of experience
reuse is twofold namely the reduction of costs for the vendor by reducing over-
provisioning and SLA violations and, second, a better cost estimation based on
experience.

The remainder of the paper is organized as follows: Related work is discussed
in Section 2. The WFCF architecture is presented in Section 3. A running sample
from the music mastering domain illustrates the plausibility of the approach in
Section 4. Finally, a conclusion is drawn in Section 5.

2 Related work

The idea of using CBR for cloud management is not new. The work of Maurer et
al. [16] applies CBR to implement automatic cloud management. A case in cloud
management records a cloud configuration, that means the set of started VM’s,



containers, and workflows, with current services and SLA’s to be processed as a
problem situation. A solution describes the optimal distribution of work on the
optimal number and configuration of cloud resources while maintaining SLA’s.
Maurer et al. use a bag of workloads to schedule the work, which makes it diffi-
cult to predict future workloads and system behavior.
Another aspect of WFaaS is the integration of workflow management tools with
clouds. In this case, integration means an exchange of information between the
workflow management tool and the cloud for an optimized resource usage. With-
out any integration, it is difficult for any management approach to determine
the required resources. This easily leads to over- or under-provisioning. In their
work, Bala and Chana [8] present a survey of workflow scheduling algorithms
for cloud computing. However, most of the approaches have not yet been imple-
mented, three notable exceptions are [20, 12, 15]. They deeply integrate workflow
and cloud technology, i.e., they strongly depend on the used cloud and workflow
managent tools. Therefore, they are very limited in their options to exchange
either the used cloud or workflow management tool or both. A solution for this
problem should be a shallow integration for flexible integration of different work-
flow management tools and clouds while not being restricted to them, because
of flexible connectors and an abstract representation of the used tools.

3 WFCF ARCHITECTURE

In this section, we will explain the architecture of WFCF and its components.
Starting with the overall architecture, we show the details of the monitoring and
management components and how they interact.

3.1 Overall architecture

Figure 1 shows the overall architecture of the WFCF, which we will explain
in the following. The architecture can be divided roughly in three parts: the
environment, the monitoring component and the management component. The
environment are the cloud and the workflow management tool that is used by
the customer. Ideally, WFCF will use the already offered information and man-
agement methods of the tools, so that additional changes are not necessary.
Therefore, WFCF will use offered log files, databases and API’s for monitoring
the environment and to configure the cloud. CWorkload is the monitoring com-
ponent. It collects information from the environment and combines data across
the different layers (the cloud layer and the workflow layer) to one status model
of the system. We had done initial tests for the cross layer monitoring aspect of
CWorkload in [13]. The management component recognizes current or upcoming
problems within the system. This could be for example violated SLA’s, violated
constraints or resource over-provisioning. If a problem occurs, the management
component searches for a solution and reconfigures the cloud. We will explain
this in more detail in section 3.3.



Fig. 1. Architecture of WFCF

3.2 Monitoring

The main components of WFCF work independent from the actually used envi-
ronment. To work properly, WFCF needs different information about the status
of the actually running workflow instances and the resource utilization of the
cloud. Figure 2 shows in more detail the monitoring of WFCF.

Fig. 2. Monitoring of WFCF

There are three connectors between the environment and WFCF. A workflow
definition is very similar to a class in programming as that a workflow definition
is the schema of a workflow where an workflow instance is an object of a workflow
definition. A workflow definition contains all information about the structure of
the workflow. For example, the name of the tasks and their order. There are sev-
eral formats to define a workflow definition. These could be, for example, BPMN
or acyclic directed graphs. The Definition Parser parses the workflow definition,
transforms it into a standardized format and stores it in the WFCF Workflow



Definition Archive. The archive will also contain the service characterizations
we introduced in [13]. In short, the service characterizations provide a hint as to
how a web service (or the tasks which call the web service) will utilize the cloud
resources. A characterization could be, for example, long running, which means
the service will be executed for more than 30 minutes. Another example could
be compute intensive, which means that the service has a high demand for CPU
cycles. In addition, the archive also contains information about local SLA and
other constraints, for example, which task requires which type of web service.
The WF Monitoring Connector gathers the information about the current work-
flow instances. This information could be from log files, databases or directly
from the workflow engine via API. The information contains the name and start-
time of the executed workflow and the start-, end-time and name of individual
tasks, as well as the URL or IP of the called web service. This information should
be offered in one form or another by all commercial workflow management tools
and most of the open source tools. Because of the great variety of workflow
management solutions, it is necessary to implement the WF Monitoring Con-
nector and the other two individually for the used management tool. However,
the workflow management tool itself has not to be changed when any kind of
logging is enabled. So even when the connector has to be reimplemented, the
company has not to change their already running systems.
The Cloud Monitoring Connector is the interface between WFCF and the used
cloud. This connector monitors the resource utilization. For example, the CPU
and memory usage. Similar to the WF Monitoring Connector, this connector
can use log files, API’s or databases for monitoring and has to be implemented
individually for each different cloud.
CWorkload is the core of the monitoring component. It has two tasks. First, it
builds the monitoring model. This model is the WFCF CloudWF Status and
combines all information about the status of the cloud, the currently running
workflow instances and the information about the workflow definitions of these
instances. It also contains all information about local SLA and constraints. The
management component of WFCF will use the WFCF CloudWF Status to iden-
tify current or upcoming problems. The second job of CWorkload is to main-
tain the Monitoring Information Archive. This archive stores information about
the duration, run time behavior and resource-usage of the executed tasks. The
WFCF Task Analyzer analyzes this information and updates the service charac-
terizations of tasks in the WFCF Workflow Definition Archive. For example, if a
task has been executed several times and each time its execution time was over
30 minutes, WFCF Task Analyzer will annotate this in the WFCF Workflow
Definition Archive as long running.

3.3 Management

Whereas the monitoring component observes the environment, the management
component configures it. This means, the management component starts and
stops virtual machines or PaaS container, scales resources and migrates content.
Figure 3shows the management component in more detail.



Fig. 3. Management of WFCF

After CWorkload has build the WFCF CloudWF Status, CProblem is the part
of WFCF which interprets the current status of the environment that is recorded
as the WFCF CloudWF Status. Besides the CloudWF status, there is another
archive, the Global SLA // Constraint Archive, where global constraints and
SLA’s are stored. Other than the WFCF Workflow Definition Archive that only
contains local constraints and SLA’s for individual workflows, the Global SLA //
Constraint Archive contains SLA’s and constraints that are valid for all work-
flows of a user. There are several different problems that can occur and which
CProblem will identify, e.g., violated SLA’s. We are planning that CProblem
does not only check the current situation, but also do a forecast to identify up-
coming problems and over-provisioning. Through the workflow definitions, for
example, CProblem can recognize if a certain web service is going to be used
in the future by a currently running workflow instance. If not, WFCF can shut
down the VM or container to save money. Another possible scenario could be
that currently, there is no violated SLA, but in the near future, several tasks
with high resource demand will be started, which can probably lead to a SLA
violation, so WFCF should scale up the resources to avoid this problem. Fore-
casting SLA violations, however, could be a difficult task. To decide if the start
of some resource intensive tasks lead to a SLA violation is not as easy as to rec-
ognize if a web service has not started yet. A simulations seems a proper way to
identify these kind of problems. Therefore, CProblem interacts with CSimu. We
are planning to use CloudSim [1] as the core of our simulation part. CSimu will
simulate the execution of the tasks with the current cloud status and will show
if this will lead to a SLA violation. If any problem is unidentified, CProblem
extends the CloudWF status with annotations about the problems. This new
annotated model is the WFCF CloudWF Problem. Such annotations could be,
for example, web service x is not longer needed or SLA y is currently violated.



Whereas CWorkload is the core of the monitoring component, the WFCF-
Solver is the core of the management. Similar to CWorkload, the solver has
two jobs. First, the solver searches for a new cloud configuration that solves the
current problems. Then it finds a reconfiguration path from the current cloud
configuration to the new solution. In the last step, the solver sends the reconfigu-
ration steps to the WFCF Configurator as shown in Figure 1. The reconfigurator
then will do the reconfiguration job. There are several possible approaches to find
a new cloud configuration. We will choose Case-Based Reasoning (CBR) as our
solving strategy.

3.4 CBR for problem solving

In this section we take a closer look how the WFCFSolver will solve the cloud
management problems with CBR methods. As mentioned in Section 1, the idea
of CBR is that similar problems have similar solutions. If a problem situation
occurs the system retrieves experience by searching a similar situation from the
past. In our case a problem situation is a cloud configuration with a problem,
such as violated SLA’s. This is the retrieval step. The key to experience retrieval
is a good notion when some kind of experience is relevant for a certain situation.
This knowledge is captured in the similarity measure [10]. The reuse step of CBR
is to use the solutions from the past for the current problem. In our case, the
solution contains re-configuration steps. This for example could be the to start
new VM’s or to migrate containers to another VM.
A problem situation is recorded as WFCF CloudWF Problem. Figure 4 shows
an example of a simple CloudWF Problem. This example contains one VM, two
containers for the required web services and a bunch of workflow instances cur-
rently being executed. The image depicts not the entire workflows but the tasks
that are currently active within the instances. Most of the workflow instances
are derived from the same workflow definition and are in the same state of exe-
cution. At this point, the task Task 1 uses the web service web service 1 while
Task 2 uses web service 2. In addition, there is another workflow instance (in
the bottom right corner). This instance is probably from a different workflow
definition, or the instance is in a different state of execution. The current task
of this instance is task 217 and for its proper execution, a web service that has
not yet started is required. This example also includes the constraint that the
average resource utilization must not extend 75% for reasons of performance.
The example CloudWF Problem includes also three problems. The resource uti-
lization of the CPU and memory of VM1 is too high and a new web service must
start for Task 217. More complex CloudWF Problems may involve several VM’s,
containers and workflow instances.

A case base is an archive of previous problems and their solutions. The case
base is not depicted in Figure 3, because it is part of the solving strategy and not
part of WFCF itself. The solver will search the case base for similar problems in
the past. In our previous work [14], we have introduced the idea of a similarity
function for cloud configurations. For the similarity of a cloud configuration, we
consider the following aspects as important.



Fig. 4. Example representation of a case

The provided resources. Two VM’s are similar, if they have a similar set of
resources available. For example, two VM’s with a quad core processor should
be more similar than a VM with a dual core processor and a VM with a quad
core. The idea is, that VM’s with a similar set of resources should handle gen-
eral workload similar, where VM’s with a different set of resources maybe lead
to other results, for example you can not migrate a container that requires a
quad core, if the VM only have a dual core. The same applies to containers.
The resource utilization. VM’s with a similar resource utilization, for exam-
ple average CPU usage, should be considered as similar. If the utilization differs
significantly, a solution that is valid for one case could be invalid for the recent
case. For example if the disk space utilization for a VM vm1is 20% and for an
another vm2 100%, the system can not migrate a container to vm2, because of
the lack of free disk space, while a migration to vm1 is feasible. The same applies
to containers.
The assigned SLA’s and whether they are violated or not. If two cloud
configurations have a similar set of SLA’s, the configurations should be consid-
ered as similar. Different SLA’s or the violation of different SLA’s can lead to a
situation, where a problem of the one case is not a problem in another case. For
example if a cloud configuration includes an SLA on availability and the other
doesn’t, the availability can be a problem in the first case while it is not in the
second. That leads to the situation, that a solution that mends the availability
problem for one case is not applicable for the other case.



The executed workflow instances and their workflow definitions. The
number of the started instances and the structure of the workflow definitions
can have a high impact on the requirements for resources and for started web
services. For example, if an instance of a workflow is started that requires a
certain web service, every solution that does not include this web service is not
valid. The structure of the workflow definitions also specifies which tasks will be
started next.

To determine the similarity of two cases, we use a composite, distance-based
similarity function based on the aspects introduced before. The similarity of
each aspect in two cases is computed by a particular local similarity function.
The local similarity values are aggregated by means of a sum of weighted as-
pects. For example, the similarity function of the resources provided for a VM
is based on a taxonomy, and analog for containers. For the size of the provided
resources, we have been inspired by Amazon EC2 instances [7] for nodes and
OpenShift [3] for containers. Figure 5 shows our taxonomy for Amazon EC2
VMs. For other aspects, we use mainly standard distance functions. For exam-
ple to determine the distance between the resource utilization for VMs vmuti,
we use the Euclidean distance for the resource vectors of CPU, memory, storage,
network traffic, and so on. The utilization values are provided in percentage.
The distance of the resource utilization vmutil is calculated by the Euclidean

distance vmutil(p, q) =

√
n∑

i=1

(qvmi − pvmi )2, where p is the vector of n utilization

values for the first case and q for the second case. For example, qvm1 = 50 is
the utilization of the CPU qvm1 with a value of 50%. p2 is the utilization of the
memory and so on.

Fig. 5. Snippet of the taxonomy of provided resources for nodes.



The similarity function for the workflow aspect of our approach is ongoing
work. We are planning to consider the currently active tasks as well as the
tasks that are to be started in the near future. The similarity of two individual
tasks is determined by its service characterization and the size of its input data.
Two tasks are similar if they have the same characterization (for example CPU
intensive) and if the size of the input data are similar. Each workflow instance
has 0 to n active tasks. These are the tasks that are currently executed. The
set of active tasks is the set of all active tasks from all workflow instances. To
determine the similarity of two sets of active tasks, we are planning to implement
one of the functions introduced in the literature [10].
In addition, the knowledge of the workflow definitions allows to build another
set of tasks that will be active in the near future. Figure 6 shows an example
workflow. If Task 1 is the currently active task, we can say for sure, that task 2
will be executed as soon as Task 1 is finished. In some cases, for example after a
conditional fork, the next task to executed can be unclear. However, in this case
we can make an assumption, based on the empirical knowledge of the workflow,
stored in the Monitoring Information Archive, we introduced earlier. This can
be done for every active workflow instance to estimate the tasks approaching
soon. The result is a set of possible future task. Due to the information stored
in the Monitoring Information Archive and the service characteristics, WFCF
should be able to identify near future problems and bottlenecks. Thus, we will
also consider the similarity of the future tasks in the problem part.

Fig. 6. Sample workflow with two tasks

For the reuse step, a solution is a cloud configuration without problems. The
solver will search for a similar problem and use the solution for this old problem
or the solution can serve as a starting point for a new solution. Anyways, the
solver will send the solution back to CProblem to check if the solution comes
up with new problems. CProblem will check and simulate the solution and give
feedback to the solver. This will be repeated until a solution is found or another
condition is fulfilled. This could be, for example, a time limit. In this case, the
solution with the least significant problem will be chosen. The usage of CBR
also opens the opportunity for post-mortem analysis and improvement of the
stored solution, while WFCF is otherwise idle. In addition to the case base,
there is the WFCF Cloud Resources and Service Archive. This archive contains
information about the available type of containers, VM’s, web services and so
on. This archive helps the solver to find valid solutions. Similar to the connectors
in the monitoring part, the Cloud Service Explorer is a connector to the cloud to



discover available sizes and services and store them in the Resources and Service
Archive.

4 EXAMPLE

To demonstrate the idea of WFCF, we will give a running example. As our ex-
ample domain, we chose music workflows to mastering music. The purpose of
such a workflow is to transform and process a music file. This includes to nor-
malize and limit the volume of the sound, increase or reduce the sample rate,
convert from mono to stereo or reverse and adding special effects like fading and
compressing the size of the music file. Figure 7 shows an example workflow. The
workflow is modelled in BPMN [11]. To simplify the image, figure 7 does not
show the input and output files of the web services. The workflow starts with
the Init Workflow Parameter tasks to initialize the workflow by a human. The
user chooses some parameter for the later mastering. The following two tasks
are also human tasks require along with the first one no cloud resources. The

Fig. 7. Sample workflow of mastering music

following tasks are all based on web services and alter the music file each time.
For example, the task normalize normalizes the volume of the music file, while
the task fading adds a fade-out effect to the end of the music. Let us assume we
are a user who runs jBPM [2] as a workflow management tool and OpenShift
[3] (PaaS) and recently created the introduced workflow. Before an instance of
this workflow is started, the Definition Parser detects a new workflow definition
and stores this new definition in the WFCF Workflow Definition Archive. The
Information will be stored as XML or JSON and will include, besides other in-
formation, the following: Workflow-Definition = ”master music”, task name =
normalize, requires = ”normalize web service”, service characterization = none.



This means that the name of the workflow definition is master music and it has
(among others) one task with the name normalize. This task requires a nor-
malize web service and has no service characterization. When the user starts
an instance of this workflow, the Workflow Monitoring connector registers the
start and sends a message along with pieces of information to CWorkload. The
information CWorkload receives is that an instance of the master music work-
flow is started along with the Init Workflow Parameter task. CWorkload will
store the start-time of the first task in the Monitoring Information Archive and
will prepare a WFCF CloudWF Status for CProblem. The WFCF Cloud Status
contains the information about the freshly started workflow and the information
about the current situation of the OpenShift. Because the user has not executed
any Workflow at the moment, no container was started and WFCF includes this
information. Because the first three tasks do not require any cloud resources,
there is currently no problem. However, CProblem realizes that in the near fu-
ture, the task normalize will start, due to the shape of the workflow. This task
requires the web service normalize web service that is not available at the mo-
ment and this is a problem. CProblem prepares the WFCF CloudWF Problem
and annotates that this web service is required. Because of the simple cloud
configuration and because no SLA’s are involved, no simulation from CSimu is
needed. The WFCFSolver searches its case base for a case where a web service
is required and no container is currently started. Let us assume that the WFCF-
Solver finds such a solution and this solution includes to start a container with
the needed web service. The solver will send this solution back to CProblem to
check if the solution includes new problems. This, however, is not the case. The
solver can now start to plan the reconfiguration. After the solver is done, the
WFCF Configurator starts a container with the web service.

5 CONCLUSION

In this paper, we introduced the architecture of WFCF, a connector-based in-
tegration framework for workflow management tools and clouds. The goal of
WFCF is to provide a way to integrate different workflow management tools and
clouds, while also optimizing the resource utilization of the used cloud resources.
To achieve this goal, WFCF uses multiple concepts. The connector’s concept al-
lows in a modular way to integrate workflow tools and clouds by using their
usual management and monitoring concepts and without the need for special
requirements to the used tools. The monitoring component of WFCF analyzes
the run time behavior and resource usage of tasks for a better understanding
of their needs and also combines information of the workflow management tool
and the cloud to a status model for future analysis and forecast of problems.
The management component analyzes this status model for problems by using a
combination of simulation and static methods. When a problem occurred or can
be forecasted, the management component uses CBR to find a similar problem
in the past and solve the problem based on the past solution. WFCF aims at a
shallow integration of cloud and workflow management tools for flexible combi-



nation of tools and the optimization of resource usage. We believe that the reuse
of experience will lead to the reduction of costs for the vendor by reducing over-
provisioning and SLA violations and, second, offer the opportunity for a better
cost estimation due to experience, while the approach should not so compute
intensive and therefore faster as other solutions. Currently, we are working on a
prototypical implementation of the of the architecture to evaluate the concept
in future. An open issue is to design the WFCF CloudWF Status model in a
universal way without dependencies of the actually used tools. Another future
task is the acquisition of a larger set of problems that should be recognized and
solved.

References

1. The CLOUDS lab: Flagship projects - gridbus and cloudbus (2016),
http://www.cloudbus.org, 2016-12-08

2. jBPM (2016), https://www.jbpm.org, 2016-12-08
3. OpenShift (2016), https://www.openshift.com/, 2016-12-08
4. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological

variations, and system approaches 7(1), 39–59 (1994)
5. Antonopoulos, N., Gillam, L.: Cloud computing. Springer (2010)
6. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,

G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing
53(4), 50–58 (2010)

7. AWS: Amazon web services (AWS) - cloud computing services (2016),
http://aws.amazon.com/, 2016-12-08

8. Bala, A., Chana, I.: A survey of various workflow scheduling algorithms in cloud
environment. In: 2nd National Conference on Information and Communication
Technology (NCICT). pp. 26–30. sn (2011)

9. Baun, C., Kunze, M., Nimis, J., Tai, S.: Cloud Computing - Web-Based Dynamic
IT Services. Springer (2011)

10. Bergmann, R.: Experience management: Foundations, development methodology,
and Internet-based applications. Springer Verlag (2002)

11. Chinosi, M., Trombetta, A.: BPMN: An introduction to the standard 34(1), 124–
134 (2012)

12. Korambath, P., Wang, J., Kumar, A., Hochstein, L., Schott, B., Graybill, R.,
Baldea, M., Davis, J.: Deploying kepler workflows as services on a cloud infras-
tructure for smart manufacturing 29, 2254–2259 (2014)

13. Kübler, E., Minor, M.: Towards cross-layer monitoring of cloud workflows. In:
Helfert, M., Ferguson, D., Muoz, V.M. (eds.) CLOSER 2015 - Proceedings of the
5th International Conference on Cloud Computing and Services Science, Lisbon,
Portugal, 20-22 May, 2015. pp. 389–396. SciTePress (2015)

14. Kübler, E., Minor, M.: Towards a case-based reasoning approach for cloud provi-
sioning. In: CLOSER 2016 - Proceedings of the 6th International Conference on
Cloud Computing and Services Science, Rome, Italy 23-25 April, 2016. vol. 2, pp.
290–295. SciTePress (2016)

15. Liu, X., Yuan, D., Zhang, G., Chen, J., Yang, Y.: SwinDeW-c: A peer-to-peer
based cloud workflow system. In: Furht, B., Escalante, A. (eds.) Handbook of
Cloud Computing, pp. 309–332. Springer US (2010)



16. Maurer, M., Brandic, I., Sakellariou, R.: Adaptive resource configuration for cloud
infrastructure management 29(2), 472–487 (2013)

17. Pousty, S., Miller, K.: Getting Started with OpenShift. ”O’Reilly Media, Inc.”
(2014)

18. Quiroz, A., Kim, H., Parashar, M., Gnanasambandam, N., Sharma, N.: Towards
autonomic workload provisioning for enterprise grids and clouds. In: Grid Comput-
ing, 2009 10th IEEE/ACM International Conference on. pp. 50–57. IEEE (2009)

19. Shoaib, Y., Das, O.: Performance-oriented cloud provisioning: Taxonomy and sur-
vey abs/1411.5077 (2014)

20. Wang, J., Korambath, P., Altintas, I., Davis, J., Crawl, D.: Workflow as a service
in the cloud: Architecture and scheduling algorithms 29, 546–556 (2014)

21. Workflow Management Coalition: Workflow management coalition glossary & ter-
minology (1999), http://www.wfmc.org/resources 2016-12-15


