

DiSIT, Computer Science Institute, University of Piemonte Orientale, Alessandria, Italy

UNIVERSITÀ DEL PIEMONTE ORIENTALE

Semantic trace comparison at multiple levels of abstraction

Stefania Montani^a, Manuel Striani^b, Silvana Quaglini^c, Anna Cavallini^d, Giorgio Leonardi^a

^a DISIT, Computer Science Institute, University of Piemonte Orientale, Alessandria, Italy; ^b Department of Computer and Biomedical Engineering, University of Pavia, Italy; ^d Istituto di Ricovero e Cura a Carattere Scientico Fondazione C. Mondino, Pavia, Italy - on behalf of the Stroke Unit Network (SUN) collaborating centers

1. Process trace comparison

- Many organizations record information about the executed business process instances in the form of an event log

5. Trace comparison

- Sequence of macro-actions
 - Semantic edit distance
 - Optimal alignment
- Sequence of actions actually executed (*process traces*)
- Source of information for BPM tasks
 - Trace comparison and retrieval
 - **Operational Support** \bullet
 - Derive indications on running trace completion time/costs/resources \bullet
 - Suggest next actions or support routing decisions
 - Process mining
 - More readable process model if learned on homogeneous traces
- CB Retrieval step can be adopted in this context

2. Abstracted trace semantic comparison

- Current approaches adopt a purely syntactical analysis, and compare trace actions referring to their names
- A semantic approach con provide more reliable results, by taking into account conceptual relatedness
- We propose a framework for
 - Abstracting trace actions on the basis of their semantics
 - **Comparing** abstracted traces exploiting **domain knowledge**

CAT-MRI:
$$\frac{(1+1)}{(1+1+2*2)} = 0.3$$
 MRI-Antiaggregant_ther: $\frac{(3+3)}{(3+3+2*0)} = 1$

$$dt(\alpha,\beta) = \frac{N_1 + N_2}{N_1 + N_2 + 2*N_3}$$

- Temporal information
- Aligned macro-actions duration
- Temporal constraints between pairs of aligned macro-actions

$$interval_d(A, B) = \frac{|len_A - len_B|}{maxlen}$$

Abstraction penalty

3. Knowledge-based abstraction

- By mapping trace actions to leaves of a taxonomy, we can abstract them up to the desired level
- We can obtain an abstracted trace as a sequence of *macro*actions, merging subsequent actions that abstract as the same ancestor
 - Managing *delays*
 - Considering *interleaving actions*

🔵 Goa

- Administrative_Actions
- Brain_Damage_Reduction
 - In-Hospital_Disability_Reduction
 - NeuroProtection
 - Operation
 - Recanalization_therapies
- Causes_Identification
- Other
- Pathogenetic_Mechanism_Identification
 - CardioEmbolic_Mechanism
 - Coagulation_Screening
 - Extracranial_Vessel_Inspection
 - Intracranial_Vessel_Inspection

Parenchima_Examination 🛑 CAT 🛑 MRI MRI_with_CE

MRI_with_DWI

Recommendations from the

EUROPEAN

© European Stroke Organisation

sagepub.co.uk/journalsPermissions.n DOI: 10.1177/2396987317699144

GUIDELINES

American Heart Stroke Association

C GuidelineCentral.com

Acute Ischemic

Stroke

Early Management

journals.sagepub.com/home/eso

prints and permission

(\$SAGE

STRUKE JOURNAL

- Unweighted Pair Group Method with Arithmetic Mean
- Hypothesis
 - «closer» inter-cluster items (higher homogeneity): more robust clustering results
 - Preserved capability of isolating outliers

4. Abstraction mechanism

- User-selected abstraction level
- $(D_5+D_6) < Delay threshold$
- |Heparin| < Interleaving threshold

7. Future work

- Abstract trace comparison can be adopted to retrieve similar traces in operational support
- Abstract trace clustering can be exploited as a pre-processing step in process mining
 - Indeed, ground medical processes (learned on trace at the same level) of taxonomy leaves) are tipically «spaghetti-like»: they presents an extremely large number of nodes and edges which make it hard to analyse the model and identify details

Methodological work: \bullet

- Enrich knowledge representation: towards an ontology \bullet
 - Connected to SNOMED terms
 - Considering viewpoints other than goals
- Introduce additional penalty definitions
- Develop a rule-based approach to introduce «context» in the abstraction mechanism