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|. FACE RECOGNITION TRENDS OVER TIME
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2. GOALS OF OUR WORK

Design an algorithm for effective face recognition under partial occlusion
with the following features:

= Efficiency and scalability
= Effective even when only a few training images are available

= Agnostic to the nature of occlusion



| ey _a.
. I | O
r
w T BT

TNEEENNY

‘EENERN’
UEFLAEE

Color-based segmentation [I] Explicit occlusion detection with
block-level classifiers [2]

[1] Rui Min, Abdenour Hadid, and Jean-Luc Dugelay. Improving the recognition of faces occluded
by facial accessories. In Automatic Face & Gesture Recognition and Workshops (FG 2011),201 |
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[2] Hongjun Jia and Aleix M Martinez. Face recognition with occlusions in the training and
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Conference on, pages |-6. |EEE, 2008.



4. PROPOSED APPROACH
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4. PROPOSED APPROACH

= Image Local Binary Patterns (LBP): = Local Binary Pattern Histogram (LBPH) descriptor
with a 4x4 grid size:
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Number of blocks

4. PROPOSED APPROACH
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Minimum local distance

We define the Mininum Local Distance for the
histogram of an LBP block as the minimum squared
Euclidean distance obtained when comparing this
histogram with the LBP histograms corresponding to the
same facial region in the descriptors stored in the Case-
Base

Our approach works under the assumption that
LBP histograms from occluded regions
exhibit a higher Minimum Local Distance



4. PROPOSED APPROACH

New case to solve:
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4. PROPOSED APPROACH

New case to solve:

Case-Base:
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4. PROPOSED APPROACH

" We apply a threshold over the Minimum
Local Distance to inhibit the use of
features from occluded regions

= The disimilarity function used in the
retrieval of cases inhibits/ignores the
occluded features




4. PROPOSED APPROACH

New case to solve:
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4. PROPOSED APPROACH

Initialize the Case-Base:

CB = {(y®,2¥),i=1,2,..,n}

Compute the local distances between the
histograms of the new case x and the cases x(®
stored in the CB:

(i) (4)
Li; = \|($p(j—1)+1= T aifpj) - (Ip(j_1)+p'“ =$pj)||2

for i=1,2,---,n and j=1,2,---,d/p

Compute a mask to inhibit the use of histograms
form occluded regions when retrieving cases:

M; = Ty, ( min( col;L ) )

Retrieve the k most similar cases from the CBR
according to the following similarity measure:

_ j=d/p
d(:c, LE(%)) == Z Mj . Li,j

Jj=1

Predict the most common identity among the
retrieved cases as the identity of x

Step |. Case-Base initialization O(1)

Step 2. Local distance calculation O(nd)

Step 3. Occlusion mask estimation O(d)

Step 4. Case Retrieval O(nd)

Step 5. Case Reuse for identity prediction O(k)
Total complexity: O(nd)



5. EXTENDING THE PROPOSED APPROACH

= The literature shows that extracting features at
various scales is necessary to achieve high accuracy

l rates [2]

= This is in principle compatible with our approach

!
= The problem of high dimensionality arises
Illlll Illlll‘llllll IIIllll
~ J

L (e.g. up to ~10.620 features for some grid sizes)

Oclusion unit € R” = The authors of [2] used an approximation of
PCA to reduce the dimension of samples

[2] Chen, D., Cao, X.,Wen, F, & Sun,]. (201 3). Blessing of dimensionality: High-dimensional feature and its
efficient compression for face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 3025-3032).



5. EXTENDING THE PROPOSED APPROACH

||||I||I el Wlinl,
L - J L - J = To solve the problem of high dimensionality of cases,

Oclusion unit x4 Oclusion unit X we used the Random Projection Algorithm in a local
manner (RP):

1
X1=RP(x1)  X2=RP(Xp) RP(x) = xR

Where R is a d X k matrix with its elements chosen at
random from a standard normal distribution

I I I I II = By so doing, we lower the number of features per
[ N ] . .
I LL oLiL occlusion unit from d to k

LY—J Oclusion unit X'

Oclusion unit x4



5. EXTENDING THE PROPOSED APPROACH

= Random Projection (RP) guarantees the

approximate preservation of pairwise
I| |I T NI ||| 1] PP P P

distances:

X 2 ~ X 1112
"yll'.ll! |I|I.|I| T 11 =yl = 1bea =5l

= Given that our retrieval stage is based on
Euclidean distances we can guarantee that,
for a sufficiently large k value, the

g | I I I | I | I e I izl system will provide the same results

when executed over the reduced
descriptors




6. EXPERIMENTAL RESULTS

= Experimental database: ARFace Database (126 subjects)
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6. EXPERIMENTAL RESULTS

Table 1. Experimental results with automatic face alignment.

Features Classifier Lighting Scarf Glasses
LBPY, wkNN [6] 81.4%  39.4%  30.0%
u proposed CBR
LBPg , p — 59: threshold — 27 96.2% 83.6%| [50.2%
LBPY , SVM (poly kernel) 78.1% 36.9% 25.1%
LBP§ 5 Logistic Regression 84.8% 45.0% 23.4%
LBP{ 5 Naive Bayes 82.5% 43.7% 20.1%
multi-scale LBPg , wkNN (6] 98.8% 73.3%  34.9%
. w proposed CBR
multi-scale LBPg 5 p = 295; threshold = 17 99.2% 89.2% |50.6%
multi-scale LBPg , SVM (poly kernel) 88.1% 59.6% 27.9%
multi-scale LBP , Logistic Regression 96.2% 75.1%  28.3%
multi-scale LBPY , Naive Bayes 86.29% 721% 37.03%
multi-scale LBPY, + RP  wkNN |[6] 98.5%  66.5% 31.2%
multi-scale LBPg , proposed CBR
+ local RP (see sect. 3.4) p = 150; threshold = 100 L Ry | [
multi-scale LBPg o + RP  SVM (poly kernel) 85.5% 55.3%  20.9%
multi-scale LBPg, + RP Logistic Regression 93.3% 69.0% 25.5%

multi-scale LBP§, + RP Naive Bayes 84.0% 54.5% 27.1%




6. EXPERIMENTAL RESULTS

Table 2. Experimental results with manual face alignment.

Features Classifier Lighting Scarf Glasses
LBPY, wkNN [6] 95.5%  76.5% 69.5%
w Proposed CBR
LBPY, b 50 threshold — 30 |999%|  [915%]| [83.5%
LBPg , SVM (poly kernel) 96.5% 75.0% 61.0%
LBP , Logistic Regression 98.5% 81.0% 68.0%
LBPY , Naive Bayes 94.0% 76.5%  69.0%
multi-scale LBPY,, wkNN [6] 100% 92.0%  86.0%
i w Proposed CBR
multi-scale LBPg , p — 995: threshold — 111 99.5% 97.0%| |92.0%
multi-scale LBP , SVM (poly kernel) 100.0% 92.0% 84.5%
multi-scale LBPg 5 Logistic Regression 100.0% 93.0% 89.5%
multi-scale LBP , Naive Bayes 95.5% 93.5% 89.0%
multi-scale LBPg , + RP wkNN [6] 100% 92.0% 86.0%
multi-scale LBPg o Proposed CBR
+ local RP (see sect. 3.4) p = 150; threshold — 111 99.5% 97.0%| |92.0%
multi-scale LBPg , + RP SVM (poly kernel) 100.0% 92.0% 84.5%
multi-scale LBPg , + RP  Logistic Regression 100.0% 93.0% 89.5%
multi-scale LBPg, + RP  Naive Bayes 95.5% 93.5%  89.0%




6. CONCLUSIONS AND FUTUREWORK

Conclusions:

The proposed CBR system outperforms classical method
in the context of face recognition under partial occlusion

Its computational complexity is equivalent to that of kNN

We have proposed, justified theoretically and evaluated a
local dimensionality reduction approach to lower the size
of cases in the proposed CBR

Future work:

Development of occlusion-robust face alignment
methods

Study the compatibility of the proposed CBR with
alternative local image descriptors (e.g. discrete cosine
transform)

Empirical comparison with Deep Learning methods for
face recognition
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THRESHOLD SETTING
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Figura 28: Resultados de validacion del método wkNN con inhibicion para diferentes va-
lores de threshold (azul) y resullado de validacion para wkNN cldsico (rojo).
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Figura 10: En el eje horizontal se muestra la distancia local minima de los bloques perte-
necientes a rostros sin oclusion parcial (arriba) y con oclusion parcial (abajo). Los bloques
ocluidos se muestran en rojo y los no ocluidos en azul. Se ha anadido ruido aleatorio al eje
vertical para evitar el solapamiento.



LEMA DE JOHNSON-LINDENSTRAUSS

Johnson-Lindenstrauss bounds:

107 n_components vs eps
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PARTIAL SQUARED EUCLIDEAN DISTANCES

dz,y)=|le—y|lP=|z|P =271+ + - +2 + 201+ + 23
=|(z1,,za)|[* + [|(zrg1, -, za) ||
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Initialize the Case-Base:

CB = {(y®,2¥),i=1,2,..,n}

Compute the local distances between the
histograms of the new case x and the cases x(®
stored in the CB:

Lij = [(@p-1y+1,** »Tpg) = (@ogs_1yqr "+ 1T |I2
for i=1,2,---,n and j=1,2,---,d/p

Compute a mask to inhibit the use of histograms
form occluded regions when retrieving cases:

M; = Ty, ( min( col;L ) )

Retrieve the k most similar cases from the CBR
according to the following similarity measure:

_ j=d/p
d(:c, LE(%)) == Z Mj . Li,j

Jj=1

Predict the most common identity among the
retrieved cases as the identity of x

= Step |.Training: O(1)

= Step 2. Local minimum distances calculation:

L O<n(%-p+§)>=0(nd+n-§)=0(nd)

= Step 3. Occlusion Mask generation: O(d)
= Step 4. kNN distances calculation:

= Depends on the implementation:

=  Naive search: O(n - g + kn)
- : 4 —om-¢
= Quick-select: O (n 5 + n) =0(n p)

= Steps 5. kNN voting: O(k)

Total: 0 (nd +d+ ng + k) = 0(nd)

Sincek<n, d=2p=>1
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