
On the Generalization Capabilities of Sharp
Minima in Case-Based Reasoning

Thomas Gabel and Eicke Godehardt

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

60318 Frankfurt am Main, Germany
{tgabel|godehardt}@fb2.fra-uas.de

Abstract. In machine learning and numerical optimization, there has
been an ongoing debate about properties of local optima and the impact
of these properties on generalization. In this paper, we make a first at-
tempt to address this question for case-based reasoning systems, more
specifically for instance-based learning as it takes place in the retain
phase. In so doing, we cast case learning as an optimization problem,
develop a notion of local optima, propose a measure for the flatness or
sharpness of these optima and empirically evaluate the relation between
sharp minima and the generalization performance of the corresponding
learned case base.

1 Introduction

Powered by a number of recent empirical successes, the field of deep learning
has become one of the most noticed sub-fields of artificial intelligence during
the past few years. Training deep neural networks means solving a complex,
non-convex optimization problem. Interestingly, gradient-based optimization of
such networks takes place in an over-parameterized setting, where the target
function has, in general, a vast number of local and multiple global optima.
All of them minimize the train error, but typically many of them generalize
poorly. Consequently, just minimizing the train error is merely adequate, since
a poorly chosen minimum may bring about bad performance on independent
test data. It has been generally accepted that the generalization capabilities
do implicitly depend on the algorithm used for minimizing the train error –
since that algorithm determines which minimum it gets attracted by – and it is
an ongoing debate to which extent properties of the attained minimum can be
indicative for generalization.

In this paper, we transfer these thoughts to case-based reasoning. After pro-
viding some background and pointers to related work in Section 2, we start by
searching for a related (optimization) problem in CBR and find one in the re-
tain phase where case base editing and maintenance can naturally be cast as
a discrete NP-hard optimization problem. Put simply, the question addressed
here is which cases from a given set of train cases shall be retained in the case
base and which not, while optimizing some objective function. In Section 3, we

model this problem formally and, for measuring an edited case base’s compe-
tence, we derive an error function around which we center our further analyses
made in this paper. As a first contribution, we then develop four variants of two
hill-climbing case base editing algorithms (FHC and MHC) which, by design,
are attracted by a local optimum of the hitherto derived objective function. The
second main contribution of this paper follows in Section 4. There, we aim at
characterizing an edited case base configuration (and, hence, a possibly attained
minimum in the error landscape) as being “flat” or “sharp”. In so doing, we
derive an appropriate measure of sharpness which, informally speaking, approx-
imates gradient information in the near neighborhood of the edited case base to
the extent that this is feasible in the given non-continuous optimization task.
The last part of the paper (Section 5) is devoted to an empirical evaluation of
our approach using a large set of established classification problems. To this end,
our hypothesis is that there is some correlation between the sharpness of a case
base configuration as defined before and the generalization capabilities of the
resulting case-based classifier. A secondary objective also covered in our evalu-
ation concerns the actual empirical power of the hill-climbing case base editing
schemes that we proposed in Section 3.

2 Background and Related Work

We start by providing some general basics as well as a nearly chronological, brief
survey on related work on issues that relate to maintaining case bases. We then
adopt an optimization point of view and briefly introduce some foundations on
function minimization including the notion of sharp and flat minima.

2.1 Case Base Maintenance and Instance-Based Learning

Case base maintenance (CBM [10]) is known for addressing two goals in case-
based reasoning: (1) controlling the number of cases in the case base and, hence,
avoiding a performance degradation due to outrageous growth and (2) assuring
a high competence of the case base. As a matter of fact, CBM is probably that
component of the CBR realm that bears the strongest1 relation to learning in
the classical machine learning sense. Issues of case base maintenance arise early
in almost any CBR system which is why this sub-field of CBR has attracted
so much attention during the past decades. Starting with the initial proposal of
the nearest neighbor rule [3] several authors subsequently aimed at reducing the
size of the set of stored instances [6, 5, 18]. Later, Aha and varying co-authors
proposed the family of instance-based learning algorithms (IBL [1]) where new
instances are stored subject to different criteria, as well as subtractive counter-
parts (e.g. [9]). Other approaches more intensively focused on the location of
retained instances, such as preferably keeping those near the center of clusters

1 Though learning can take place also in one of the other knowledge containers of a
CBR system, e.g. when learning similarity measures or adaption knowledge.

rather than near to decision borders [20]. Another piece of work which – at least
from the algorithm’s name – suggests to be related to the algorithms we intro-
duce in Section 3.4 seems to be random mutation hill-climbing [15]. However, as
it turns out our algorithmic approach differs in various ways, most importantly
as we do not fix the case base size beforehand, such that the remaining com-
monality is the hill-climbing nature of the procedure. The family of decremental
reduction optimization procedures (DROP [19]) takes the opposite approach and
iteratively decides which cases to delete from a case base without deteriorating
competence (cf. Section 3.4.3 for more details on this). In another line of re-
search, Smyth and varying co-authors approached the problem of case base size
limitation using the notion of coverage and reachability of cases [16], concepts
that were later exploited by the COV-FP [17] and ICF [2] algorithms. Finally,
the idea that case base maintenance represents an optimization problem with
multiple goals to be pursued simultaneously appears most pronounced in [14].

2.2 Sharp and Flat Minima of an Error Function

Given some real-valued function f over some domain X, f is said to have a
minimum at m ∈ X, if there exists some ε > 0 such that f(m) ≤ f(x)∀x ∈
X with dX(x,m) < ε where dX measures the distance of x and m. The idea
of characterizing minima as sharp or flat has received much attention in the
literature especially in the context of the recent rise of deep learning systems
[8, 4, 12], but dating back at least to the seminal work of Schmidhuber [7]. A
flat minimum mf is said to be a point where the function f varies slowly in a
relatively large neighborhood of mf . By contrast, a sharp minimum ms is a point
where the function f increases rather strongly in the near vicinity of ms. While
exact numerical values for measuring the sharpness of a minimum would strongly
depend on the scaling of the function f and its inputs as well as on the definition
of what a large neighborhood or near vicinity means, it is intuitive that the large
sensitivity of a sharp minimum (little changes to ms yield strong changes to f)
may negatively impact the generalization capabilities of the system. Even if an
exact numerical score of the sharpness of a minimum may not be as informative
in itself, it still may be important when selecting between different minima,
e.g. two minima m1 and m2 with f(m1) = f(m2), but with strongly different
levels of sharpness. Figure 1 aims at visualizing this issue conceptually in a one-
dimensional space [8]: The function f to be minimized (as it may stem from a
set of given training samples) is shown with a solid line, whereas the ground
truth g, i.e. the true relation to be learned as it may be represented by a (large)
independent set of test data, is depicted with a dashed line. While both, the
flat and the sharp minimum have the same training performance, the testing
performance, i.e. the generalization capability, of ms is much worse.

3 Case Base Maintenance as Optimization Problem

In what follows, we aim at an in-depth analysis of what it means for a CBR
system to “learn cases” (or to delete some), bridging the gap to issues such as

mf msFlat Minimum Sharp Minimum

f(x) g(x)

Training Error Function f
Testing Error Function g
(Ground Truth)

x

Fig. 1. Visualization of Sharp vs. Flat Minima: The abscissa shows the domain of the
search space, the ordinate shows the value of the error function.

optimization, minima found during optimization, generalization, and analyzing
the implications for (more or less) established CBM strategies.

3.1 Case Base Editing Problem

Let us denote the set of all cases as M and, as usual, each case c = (p, s) ∈ M
be composed of a problem part p ∈ P and a solution part s ∈ S, i.e.M = P ×S.
Now assume, we are given a set T ⊂ M of training cases. Then, the case base
editing problem we are focusing on means finding a case base S as a subset of
T that features as much of the following properties as possible:

– S ⊂ T , i.e. S should be a (desirably small) subset of T for reasons of retrieval
efficiency

– S should be as competent as possible where competence is typically measured
as its problem-solving capability on a disjoint set U ⊂ M of test cases
(i.e. T ∩ U = ∅)

From a global point of view, this setting gives rise to 2|T | possible configurations
for the resulting case base S since each c ∈ T can be either contained or not
contained in S, yielding the power set P(T) of T as the search space. Needless
to say, that any CBM strategy described in the literature performs some kind of
search through that space P(T), being guided either heuristically or by certain
performance criteria.

Definition 1 (Case Base Configuration). Given training cases T any non-
empty subset S ⊂ T represents a valid case base configuration (CBC) in the
context of case base editing, i.e. S ∈ P(T).

Accordingly, searching the whole space of all case base configurations is in-
tractable in general, except for toy problems. However, this setting allows us to
develop an intuition for local versus non-local changes to a case base.

Definition 2 (Case Editing Operator). Given some case base configuration
S and a case c ∈ T , the case editing operator E : P(T)× T → P(T) returns a
new case base configuration S ′ such that

S ′ =

{
S \ {c} if c ∈ S
S ∪ {c} else

Clearly, the change that E introduces to S is the smallest one possible – we
could also say, it is a local change to S –, since only the membership of a single
case c is swapped. By contrast, any case base S1 can be changed to any S2 by
applying a sequence of such atomic operations where the length of that sequence
is, informally, given by the Hamming distance of S1 and S2. Note that Definition
2 is not tailored to data sets where a case is contained multiple times in S.

3.2 Introspective Problem-Solving Quality

Different authors have employed different measures for the problem-solving qual-
ity of an edited case base. For example, Lupiani et al. [14] define a multi-objective
error function combining error, noise, and redundancy which is to be minimized
by an evolutionary algorithm, while Smyth and McKenna [16] center compe-
tence around the notion of coverage and reachability. A widespread measure for
estimating the problem-solving capability of a case base S is the leave-one-out
error (or accuracy) where each case c is used as query once using S \{c} as leave-
one-out case base (LOO [19, 11]). Throughout the rest of this paper, we stick to
a slight modification of this established measure for case base competence due
to its simplicity and due to the fact that no further knowledge is needed (e.g. for
generating sample solutions) which eases the empirical evaluation.

Definition 3 (Leave-One-Out Train Error of a Case Base Configura-
tion). For a training set of cases T = {c1, . . . , c|T |} with each case ci = (pi, si)
consisting of a problem and solution part and for a given case base configuration
S, the leave-one-out train error is defined as

ElooT (S) =
1

|T |
·
|T |∑
i=1

1− Correct(Adapt(Retrieve(S \ {ci}, pi), pi), si) (1)

In that definition, the Retrieve function performs case-based retrieval over the
leave-one-out case base S \ {ci} using pi as query. To this end, no restrictions
on the retrieval algorithm or the used similarity measures or the value of k in
case of a k-nearest neighbor retrieval are made. The Adapt function takes the set
of nearest neighbors returned by the retrieval and performs adaptation to form
a single unique suggested solution or does nothing, if no adaption knowledge
is available or necessary. Finally, that returned solution is checked against the
solution si of case ci whose problem part pi was used as query in the first place. If
function Correct finds that both solutions are identical (or sufficiently identical),
it returns 1, otherwise 0. In fact, we will focus on classical classification domains
in the remainder of this paper such that indeed no adaptation will be performed
and the correctness check is simplified to the matching of class labels. Also note,
the small difference to the standard LOO definition for case base competence is
that our measure iterates not just over the case base itself, but over all cases in

the training set expecting to have a larger sample of the entire problem space
M. This is in compliance with the representative assumption for the competence
of case bases first proposed in [16].

3.3 Local Optima in Case Base Editing

The search space P(T) of case base configurations comprises |T | dimensions,
along each of which only two values are possible (case is “in” or “out”). As a
consequence, a case base configuration S is a local optimum (minimum) in the
error landscape of P(T), if

∀c ∈ T : ElooT (S) ≤ ElooT (E(S, c)) (2)

since E(S, c) on the right-hand side refers to a case base that represents a minimal
adaptation to S. Accordingly, a strict minimum is attained, if we replace the less-
equal sign by a strict less.

Certainly, P(T) is full of configurations S where switching on/off a single
case no further reduces the value of the error; in that case S is a local minimum.
Switching on/off a number of cases simultaneously might, however, still bring
about improvements. This is exactly what Lupiani et al. [14] are exploiting using
evolutionary algorithms where a “more global” search through P(T) can be
done using crossover. By contrast, the hunt for a global optimum (or a nearly
optimal local one) is not our primary concern in this paper. Instead, we are more
interested in characterizing the properties of different local minima. Therefore,
in the next section, we suggest a number of case base editing schemes, that are
based on ElooT and that will, by definition, find various local minima easily.

3.4 Hill-Climbing Case Base Editors

For analyzing the properties of local minima in case base editing more thor-
oughly, it is comfortable to have access to a way for generating such optima
easily. Thus, we suggest a set of greedy algorithms for case base editing, which
are – because they are hill-climbers – designed to converge to local optima in the
error landscape quickly. Besides, we also review a set of well-established case base
editing methods from the literature and discuss whether they yield local optima
of ElooT as well. We developed these algorithms mainly for reasons of analyzing
sharp/flat minima of the error function, being aware that they are unlikely to
yield a global optimum in the search landscape (unlike e.g. [14]). However, their
empirical performance matches up to the performance of a number of established
CBM methods that we implemented for the purpose of further analysis.

3.4.1 First Improvement Hill-Climber (FHC)

This algorithm is called FHC< and, similarly as IB2 or CNN (cf. Section 3.4.3),
starts out with an empty case base configuration S = ∅. It then iterates over all
cases c in T and checks for the first case to fulfill the following condition:

ElooT (E(S, c)) < ElooT (S), (3)

i.e. the first case whose addition to or removal from the current case base config-
uration S reduces the leave-one-out train error over T . If such a case c is found,
the case editing operator E either adds or removes c to/from S (depending on
whether it was already contained or not). This procedure is repeated until there
is no more case in T for which Equation 3 becomes true. Algorithm 1 shows
pseudo-code for an implementation of FHC<.

Input: training set T ⊂M, Output: case base configuration S (S ⊆ T)
Strict variant FHC< Modification for non-strict variant FHC≤
1: S ← ∅, stop← false
2: while stop = false do
3: stop← true
4: for c ∈ T do 4: ...
5: if Eloo

T (E(S, c)) < Eloo
T (S) 5: if Eloo

T (E(S, c)) < Eloo
T (S) or

6: then (Eloo
T (E(S, c)) = Eloo

T (S) and c /∈ S)
7: S ← E(S, c) 6: then ...
8: stop← false
9: quit for loop
10: return S

Algorithm 1: First Improvement Hill-Climber (variants FHC< and FHC≤)

A variation of FHC< is attained, if we replace the strict inequality in Equa-
tion 3 by a less-equal comparison; this variant is named FHC≤ accordingly.
Clearly, FHC≤ will in general add more cases to the case base than FHC<.
It is also obvious that both variants will, due to their hill-climbing nature, be
attracted by a local optimum in the error landscape according to Equation 3.
From an algorithmic point of view, one should take care that FHC≤ does not
get trapped in an endless loop due to the addition/removal of some “irrelevant”
case whose presence/absence does not alter ElooT . To this end, we decided to
allow for a non-strict comparison for the addition of a case and retain a strict
change of the error for removing a case (see right part of Algorithm 1).

3.4.2 Maximum Improvement Hill-Climber (MHC)

The main difference between FHC< and the maximum improvement hill-climber
MHC< introduced next lies in the selection of the next case that is added to
or removed from the current case base configuration S. While FHC< picks the
first case c ∈ T whose de/activation brings about an improvement of the train
error ElooT , MHC< performs an entire sweep over T and selects that c∗ that
yields the largest improvement.

So, while the pseudo-code in Algorithm 2 seems quite compact, it hides part
of its complexity in the arg min operator in line 4. Despite having a larger com-
plexity in its outer while loop, MHC< will on average terminate faster than
FHC< as it requires less iterations of that outer while loop because each one
yields the maximal possible reduction of the train error. Consequently, it tends

to create smaller case bases and terminate faster. Again, a less strict variant of
MHC< is realized, if the inequality is replaced by a less-equal in line 5 (called
MHC≤). Finally, it is trivial to see that both MHC variants do always end up
in a local minimum of the error landscape of ElooT . As a side note we remark
that MHC is nearly2 insensitive to the “presentation order” of cases which is a
criticism to most of the established case base maintenance algorithms [14].

Input: training set T ⊂M, Output: case base configuration S (S ⊆ T)
Strict variant MHC< Modification for non-strict variant MHC≤
1: S ← ∅, stop← false
2: while stop = false do
3: stop← true
4: c∗ ← arg minc∈T Eloo

T (E(S, c)) 4: ...
5: if Eloo

T (E(S, c∗)) < Eloo
T (S) 5: if Eloo

T (E(S, c∗)) < Eloo
T (S) or

6: then (Eloo
T (E(S, c∗)) = Eloo

T (S) and c /∈ S)
7: S ← E(S, c∗) 6: then ...
8: stop← false
9: return S

Algorithm 2: Maximum Improvement Hill-Climber (MHC< and MHC≤)

3.4.3 Related Case Base Editing Schemes

As mentioned, we incorporate a set of well-known case base editing methods into
our further analyses. We highlight each of them with some remarks, emphasizing
that this list is not complete and could easily be extended by many further
algorithms from the realm of case base maintenance.

CNN (condensed nearest neighbor [6]) might be called one of the forefathers of
CBM. It starts with an empty case base, makes multiple passes over T and
copies a case c from T to S, if it finds that c cannot be solved by S. CNN has
inspired various alternative and more sophisticated case base editing rules. In
its original form it aims at finding a subset S of T that is as consistent as T .
Formally, CNN minimizes, starting with an empty case base configuration,
an error function that is similar to ElooT , but not defined in a leave-one-out
manner. As a consequence and due to the fact that CNN can just add cases
to S and not remove them (like FHC or MHC), the output of CNN will in
general not correspond to a local minimum of ElooT as defined above.

RNN is an extension of the aforementioned CNN which adds a case removal
phase during which cases are deleted from S whose removal does not impair
the problem-solving competence of S on all cases from T [5]. The output of
RNN might in general be expected to be closer to an optimum of ElooT than

2 There remains some sensitivity to the presentation order since in line 4 multiple
cases c may reduce Eloo

T equally in which case one of those cases must be selected,
e.g. randomly or by some convention.

CNN’s output. However, RNN is not an optimizer of ElooT since case addition
and removal are strictly split into two separate phases and because the error
is not measured in a leave-one-out manner.

IBL Algorithms denote instance-based learning algorithms [1]. IB2, as one
instance of this family of algorithms, iterates over T and adds a case c to
S, if c’s problem part would not be solved correctly by the cases in S. As
a consequence, it is susceptible to noise, but it can also be termed a greedy
algorithm in the sense that it tries to add as little cases as possible.

DROP Algorithms denote decremental reduction optimization procedures [19].
Different variants exist; DROP1 starts out with a case base S that is set to
the full set of train cases, S = T . Then, it iteratively removes individual cases
from T whose deletion does not worsen the leave-one-out performance over
S (note, not over T). DROP2 is an extension of DROP1 whose leave-one-
out performance is measured over the whole set T . Insofar, DROP2 comes
close to our FHC and MHC algorithms, except for its inability to re-add
cases after having deleted them. Moreover, DROP2 employs also a special-
ized preference heuristic regarding which cases to remove first, namely those
which have the smallest similarity to their “nearest enemy” (which means
a case in T whose solution does not match or cannot be adapted). As a
consequence, DROP2 is more likely than all other algorithms listed here to
yield a local optimum in the sense that we defined in Section 3.3.

4 Sharpness of a Case Base Configuration

In the preceding section, we have formalized case base editing as an optimization
problem where we (a) defined an error measure E over the training set that
relates to the leave-one-out competence of the system over a training set T and
(b) proposed discrete editing operations (case editing operator E) for searching
for a minimum of ElooT . All these steps were necessary to path the way for a
further analysis of local optima in the error landscape that we are intending
to describe now. Additionally, for performing the actual search, we suggested
two hill-climbing algorithms (FHC and MHC, more specifically four variants
of them) which are, by definition, designed to find local optima for E.

4.1 Characterizing Flat and Sharp Case Base Editing Optima

As described in Section 2.2, a sharp minimum ms of some function f over domain
X is characterized by the observation that f changes rapidly in the near vicinity
o ms. We have also highlighted that in related research fields sharp minima are
known to correspond to models with poor generalization capabilities.

The case base editing problem, as defined in Section 3.1 is, however, of dis-
crete nature. Instead of the mentioned numeric domain X, for a given set of
training cases T , the search space contains the 2|T | elements of T ’s power set
P(T). One might say, the space to be searched is |T |-dimensional with two pos-
sible values in each dimension. Acknowledging this and aiming at establishing a
notion of the vicinity around some minimum, we thus define:

Definition 4 (Vicinity of a Case Base Configuration). Given a set of
training cases T and a case base configuration S with S ⊆ T , the vicinity of S
is defined as

VT (S) = {E(S, c)|c ∈ T }

Hence, the vicinity of a case base configuration contains all |T | case bases
that are formed, if we either leave out exactly one c ∈ S from S or if we add
exactly one case from T \S to S. If S is known to be a local optimum (e.g. as the
result of applying FHC or MHC, cf. Section 3.4), then by construction it holds
that the leave-one-out train error for S is smaller than or equal to the error for
any case base configuration within the vicinity set V(S).

The vicinity definition allows us to derive a numeric estimation of the sharp-
ness of some case base configuration – a notion that of course covers local optima
of case base editing as well.

Definition 5 (Sharpness of a Case Base Configuration). Given a set of
training cases T and a case base configuration S with S ⊂ T , the sharpness of
S is defined as

ST (S) =

√√√√ 1

|T |
∑

V ∈VT (S)

(
ElooT (V)− ElooT (S)

)2

So, essentially the sharpness of some case base configuration mirrors how
much isolated modifications to the case base (by including/removing a single
case) influence the leave-one-out problem solving capabilities of S.

4.2 Discussion of the Sharpness Measure

Using a root mean square definition instead of, for example, a sum over dif-
ferences in Definition 5 serves two purposes. On the one hand, it allows for
adequately assessing the level of sharpness of case base configurations S that are
not local minima, i.e. where the inner difference is not guaranteed to be posi-
tive. On the other hand, it puts an emphasis on those case base configurations
within the vicinity set VT (S) where the addition/removal of a single case has
an above-average impact on the change in the error. It is also worth mentioning
that calculating ST (S) is computationally costly with an effort of O(|T |3) given
that a simple linear retrieval is used in Equation 1.

While we have focused on a set of training cases T so far, we shall now put
our attention more to an independent, held-out set U of test cases, i.e. U (M
and T ∩U = ∅. Accordingly, our interest will be on the test error that some case
base configuration S yields when its problem-solving capabilities are tested on
U . Hence, in analogy to Definition 3 we define:

Definition 6 (Test Error of a Case Base Configuration). For a test set of
cases U = {c1, . . . , c|U|} with each case ci = (pi, si) consisting of a problem and

solution part and for a given case base configuration S, the test error is defined
as

EU (S) =
1

|U|
·
|U|∑
i=1

1− Correct(Adapt(Retrieve(S, pi), pi), si)

Our conjecture is that the sharpness of a case base configuration is related
to the testing performance of this case base. Thus, besides the actual value
of the train error, the sharpness might help us in assessing the generalization
capabilities of a case base configuration.

5 Empirical Evaluation

The first goal of our experimental evaluation is to empirically investigate the
correlation between sharpness and test error, i.e. answering the question to what
extent sharpness is suitable as a predictor of the generalization capability. In the
second part of the evaluation, we aim at an empirical analysis of the four hill-
climbing CBM variants proposed in Section 3.

We selected 21 classification domains from the UCI Machine Learning Repos-
itory [13] with varying amounts of case data, classes, and numbers and types of
features. In all experiments, we split the available data set into two disjoint sets
T and U where for the number of cases in the training set we focused on three
settings (|T | being 50, 75, and 100, respectively). For k, as the number of nearest
neighbors to be considered during retrieval we focused on k = 1 and k = 3.

5.1 Correlation Between Sharpness and Generalization

In machine learning, the training error is usually assumed to be strongly corre-
lated to the error on an independent test set, except if overfitting has occurred.
This general observation is also true for instance-based learning systems, ex-
pressing itself in a positive sample Pearson correlation coefficient rx,y, where
here x stands for the train error ElooT (S) of a specific case base configuration and
y for the test error EU (S) that S yields on an independent test set.

To this end, the interesting question is whether the sharpness ST (S) of a
case base configuration S (cf. Definition 5) is also correlated with EU (S). In
order to answer this question, we generated a large number of random case base
configurations with random sizes by randomly adding any c ∈ T to S or not.
For each domain, we processed 1000 such random case bases and determined
x = ElooT (S), y = EU (S), as well as sharpness values z = ST (S) (for brevity, we
use x, y, and z as shorthand notation, subsequently). In so doing, we found that
case base configurations with high sharpness tend to yield a higher test error,
and vice versa. More specifically, the Pearson correlation rz,y is nearly identical
to rx,y (see Table 1). In other words, the measure of sharpness introduced above
is approximately as meaningful in assessing the generalization capability of a
case base configuration as its leave-one-out train error.

|T | = 50 |T | = 75 |T | = 100
rx,y rz,y rx+z,y rx,y rz,y rx+z,y rx,y rz,y rx+z,y

k = 1 0.608 0.624 0.675 (+0.066) 0.628 0.644 0.701 (+0.073) 0.647 0.646 0.697 (+0.050)

k = 3 0.652 0.617 0.687 (+0.034) 0.688 0.646 0.697 (+0.009) 0.706 0.685 0.728 (+0.021)

Table 1. Average Pearson correlations over all classification domains. For all settings
examined, the correlation between train and test error can be improved (gain in brack-
ets), when adding sharpness information to the train error.

Most interestingly, if we additively combine the train error ElooT (S) and the
sharpness ST (S) and determine the correlation of ET + ST with EU , i.e. rx+z,y,
we find that this is even higher than the correlation of both components alone
(cf. Table 1). This is a strong indication that the sharpness can be helpful in
estimating the generalization capabilities of the system. Figure 2 visualizes the
gain in correlation for all the domains and all variations of k and |T | considered.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k=1, |T|=50

k=1, |T|=75

k=1, |T|=100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k=3, |T|=50

k=3, |T|=75

k=3, |T|=100

Fig. 2. Each data point represents the average over 1000 random case base config-
urations for one domain. The value on the abscissa refers to the average train-test
correlation rx,y, the value on the ordinate to the average sharpness-enhanced correla-
tion rx+z,y. Points above the identity function thus refer to runs where the incorpo-
ration of sharpness information brought about a better estimate of the generalization
capabilities.

5.2 Hill-Climber Variants and Their Optima

Different optimization algorithms yield different minima. Depending on their
nature they may tend to end up in rather flat or sharp local minimum of the
error landscape. Given our observations reported in the preceding section, we
conjecture that the sharpness of attained minima may help in evaluating the
generalization capabilities of different algorithms. Besides this, we also want to
empirically compare the performance of our proposed FHC and MHC variants
with established CBM algorithms.

For this series of experiments, we applied all of the algorithms outlined above
for each of the 21 classification domains, repeating this entire procedure 500 times
for randomly re-initialized sets T of training cases (for both, |T | = 50 as well as
|T | = 100, keeping k = 1 throughout).

First, we report the performance of the greedy case base editing schemes
FHC and MHC in order to convey a feeling of their performance. As can be
seen from Table 2, all four variants perform well, specifically MHC≤ features the
best average test error while at the same time utilizing only less than one third
of the cases given as input in T . Domain identifiers are specified in a footnote3.
We emphasize, however, that this comparison is of course not comprehensive;
implementing other powerful case base editing algorithms from the literature
(cf. Section 2) and matching our hill climbers’ performance with those is an open
topic for future work. Nevertheless, the numbers reported allow for concluding
that FHC and MHC might be qualified as usable algorithms for case base
maintenance.

Dom. CNN RNN IB2 DROP1 DROP2 FHC< FHC≤ MHC< MHC≤
A .415 53.1 .422 49.6 .420 47.1 .430 9.4 .376 17.3 .355 22.2 .350 54.8 .360 13.6 .340 32.9
B .067 22.0 .072 18.7 .090 19.4 .204 13.2 .078 21.5 .104 17.4 .063 55.0 .115 11.3 .085 26.1
C .354 49.4 .361 43.9 .381 40.9 .355 7.2 .312 14.5 .288 14.7 .294 53.8 .282 9.0 .289 32.0
D .344 47.6 .352 44.0 .356 43.3 .446 9.5 .346 18.2 .336 25.9 .308 67.0 .344 14.5 .322 42.7
E .604 70.6 .606 64.1 .608 62.2 .625 9.7 .600 18.5 .597 19.8 .592 50.4 .598 13.9 .592 31.9
F .258 41.5 .268 34.9 .278 36.1 .315 15.6 .238 17.6 .222 25.7 .211 68.1 .224 21.5 .215 37.9
G .209 38.1 .222 30.7 .236 32.7 .250 9.0 .168 12.4 .164 19.1 .159 62.4 .150 10.2 .156 27.5
H .380 53.3 .386 45.9 .398 41.1 .361 8.2 .323 13.7 .305 12.6 .328 53.5 .298 6.5 .319 28.3
I .365 55.3 .363 41.4 .368 49.8 .538 17.5 .434 39.1 .466 23.8 .420 54.4 .487 16.9 .447 36.6
J .278 43.6 .289 36.8 .305 33.2 .321 7.7 .229 13.4 .208 14.1 .209 46.2 .209 10.2 .204 23.4
K .090 17.9 .094 14.6 .101 15.1 .147 11.6 .073 12.7 .073 15.3 .067 46.6 .076 13.0 .068 23.4
L .298 41.3 .281 21.7 .359 36.8 .318 9.5 .294 33.1 .236 13.1 .243 50.4 .236 9.7 .240 27.4
M .321 46.7 .322 43.1 .331 39.7 .441 11.1 .370 21.6 .382 19.1 .351 51.4 .381 12.5 .355 33.1
N .356 51.6 .363 44.0 .373 39.3 .374 7.7 .333 14.3 .314 14.4 .317 50.5 .312 10.3 .311 26.8
O .035 11.7 .036 10.1 .040 10.7 .114 8.1 .035 12.9 .038 13.4 .026 35.4 .043 9.3 .039 12.2
P .543 73.2 .542 66.2 .563 62.9 .644 18.2 .606 27.4 .600 20.6 .583 56.4 .604 16.3 .589 36.9
Q .317 48.4 .323 44.9 .335 41.5 .441 12.0 .372 22.7 .366 18.0 .325 59.1 .366 9.5 .344 40.1
R .300 50.0 .306 43.0 .316 42.7 .465 15.8 .332 24.4 .351 27.3 .309 66.3 .355 20.3 .327 44.3
S .324 49.2 .332 41.6 .345 40.2 .429 11.2 .316 16.6 .308 19.2 .298 59.4 .311 14.0 .298 36.4
T .088 18.4 .094 14.9 .096 16.1 .137 11.8 .094 14.9 .074 16.6 .068 42.2 .078 13.4 .071 18.2
U .584 72.0 .590 65.2 .592 64.5 .658 12.2 .580 18.2 .560 30.4 .553 62.3 .566 25.6 .553 42.3
µ50 .311 45.5 .315 39.0 .328 38.8 .382 11.3 .310 19.3 .302 19.2 .289 54.5 .305 13.4 .294 31.5
µ100 .305 43.6 .309 36.1 .326 36.5 .380 7.9 .290 16.4 .275 14.5 .267 56.7 .276 8.5 .267 31.0

Table 2. For each of the case base editing algorithms and for each of the considered
domains two performance measures are given (averaged over 500 experiment repeti-
tions, i.e. as many random sets T of train cases): the test error EU (S) of the learned
case base configuration S as well as the achieved case base compactification in percent,
i.e. 100%· |S||T | . The table reports results for |T | = 50 and k = 1, plus an average µ50 over

all domains. Additionally, in the last line the average µ100 for |T | = 100 is reported.
For each domain, the two top-performing algorithms are highlighted. The first column
contains domain identifiers (see footnote for plain text names).

3 A-Balance, B-BanknoteAuth, C-Cancer, D-Car, E-Contraceptive, F-Ecoli, G-
Glass, H-Haberman, I-Hayes, J-Heart, K-Iris, L-MammogrMass, M-Monks, N-
Pima, O-QualBankruptcy, P-TeachAssistEval, Q-TicTacToe, R-UserKnowledge, S-
VertebralCol, T-Wine, U-Yeast

Second, the hill climbing case base optimizers are designed to attain a lo-
cal optimum of ElooT . Incidentally, some of our established case base editing al-
gorithms do so, too, at least in some cases. Specifically, IB2 and CNN never
converge to a local optimum of ElooT , but RNN (0.01%), DROP1 (4.3%), and
DROP2 (24.7%) do so occasionally. The numbers in brackets refer to the share
of the 21.000 experimental runs during which the respective algorithm attained
an optimum. To this end, Figure 3 indicates that algorithms with a small sum
of the train error and the sharpness (i.e. flat minima) correspond to smaller test
error and, hence, better generalization than those that yield sharper minima. In
particular, the train error alone is only of little use in predicting the test error
(gray data points).

FHC<=
MHC<=

FHC<
MHC<

DROP1

DROP2 FHC<=
MHC<=

FHC< MHC<

DROP1

DROP2

0.266

0.268

0.27

0.272

0.274

0.276

0.278

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Te
st

 E
rr

o
r

o
n

 U

LOO Train Error on T resp. Sharpness + TrainError

LOO Train Error on T

Sharpness plus Train Error

Fig. 3. Each data point stands for an average over the set of domains we considered
and visualizes the correlation between the leave-one-out train error and the sharpness-
enriched train error information with the generalization error measured on an inde-
pendent test set U . The plot refers to the setting of k = 1 with |T | = 100, where for
DROP1/2 only those runs were considered that yielded a case base configuration S
that is a local optimum of Eloo

T .

6 Conclusion

In this paper, we have made a first attempt to investigate the presence and
properties of sharp/flat minima in an error landscape of a case base mainte-
nance scenario. We observed that sharp case base configurations feature poorer
generalization properties than those that correspond to flat regions in the domain
of the error function. Our analyses came along with two new case base mainte-
nance procedures which, being hill-climbing optimizers, are by design attracted
by local optima of the error function. We empirically found that their general
performance is competitive in terms of case base competence and compactifica-
tion and that the sharpness of local minima can be used to better predict the
generalization error. An interesting avenue for future work is to design case base
editing methods that incorporate sharpness information instantaneously, when
adding or removing cases, and hence can be guided to attain flatter minima.

References

1. Aha, D., Kibler, D., Albert, M.: Instance-Based Learning Algorithms. Machine
Learning 6, 37–66 (1991)

2. Brighton, H., Mellish, C.: On the Consistency of Information Filters for Lazy Learn-
ing Algorithms. In: Proc. of the Third European Conference on Principles of Data
Mining and Knowledge Discovery. pp. 283–288. Prague, Czech Republic (1999)

3. Cover, T., Hart, P.: Nearest Neighbor Pattern Classification. IEEE Trans. Infor-
mation Theory 13, 21–27 (1967)

4. Dinh, L., Pascanu, R., Bengio, S., Bengio, Y.: Sharp Minima Can Generalize for
Deep Nets. In: Proceedings of the 34th International Conference on Machine Learn-
ing. pp. 1019–1028. JMLR.org, Sydney, Australia (2017)

5. Gates, G.: The Reduced Nearest Neighbor Rule. IEEE Trans. Information Theory
18(3), 431–433 (1972)

6. Hart, P.: The Condensed Nearest Neighbor Rule. IEEE Trans. Information Theory
14(3), 515–516 (1968)

7. Hochreiter, S., Schmidhuber, J.: Flat Minima. Neural Comp. 9(1), 1–42 (1997)
8. Keskar, N., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.: On Large-Batch

Training for Deep Learning: Generalization Gap and Sharp Minima. In: Proc of the
5th International Conference on Learning Representations. Toulon, France (2017)

9. Kibler, D., Aha, D.: Learning Representative Exemplars of Concepts: An Initial
Case Study. In: Proceedings of the Fourth International Workshop on Machine
Learning, pp. 24–30. Morgan Kaufmann (1987)

10. Leake, D., Wilson, D.: Categorizing Case-Base Maintenance: Dimensions and Di-
rections. In: Proceedings of the 4th European Workshop on Case-Based Reasoning
(EWCBR). pp. 196–207. Dublin, Ireland (1998)

11. Leake, D., Wilson, M.: How Many Cases Do You Need? Assessing and Predicting
Case-Base Coverage. In: Proceedings of the 19th International Conference on Case-
Based Reasoning (ICCBR 2011). pp. 92–106. Springer, London, UK (2011)

12. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the Loss Landscape
of Neural Nets. In: Annual Conference on Neural Information Processing Systems
2018 (NeurIPS 2018). pp. 6391–6401. Montréal, Canada (2018)

13. Lichman, M.: UCI Machine Learning Repository (2013), archive.ics.uci.edu/ml
14. Lupiani, E., Craw, S., Massie, S., Juarez, J., Palma, J.: A Multi-Objective Evolu-

tionary Algorithm Fitness Function for Case-Base Maintenance. In: Proceedings
of the 21st International Conference on CBR. pp. 218–232. Springer, USA (2013)

15. Skalak, D.: Prototype and Feature Selection by Sampling and Random Mutation
Hill Climbing Algorithms. In: Proceedings of the 11th International Conference on
Machine Learning. pp. 293–301. New Brunswick, NJ, USA (1994)

16. Smyth, B., McKenna, E.: Building Compact Competent Case-Bases. In: Proceed-
ings of the Third International Conference on Case-Based Reasoning (ICCBR-99).
pp. 329–342. Springer, Seeon Monastery, Germany (1999)

17. Smyth, B., McKenna, E.: Competence Guided Incremental Footprint-Based Re-
trieval. Knowledge-Based Systems 14(3-4), 155–161 (2001)

18. Wilson, D.: Asymptotic Properties of Nearest Neighbor Rules Using Edited Data.
IEEE Trans. Systems, Man, and Cybernetics 2(3), 408–421 (1972)

19. Wilson, D., Martinez, T.: Reduction Techniques for Instance-Based Learning Al-
gorithms. Machine Learning 38(3), 257–286 (2000)

20. Zhang, J.: Selecting Typical Instances in Instance-Based Learning. In: Proceedings
of the 9th Intl. Workshop on Machine Learning. pp. 470–479. Aberdeen, UK (1992)

