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Abstract. Smart agriculture has emerged as a rich application domain for AI-
driven decision support systems (DSS) that support sustainable and responsible 
agriculture, by improving resource-utilization through better on-farm, manage-
ment decisions. However, smart agriculture’s promise is often challenged by the 
high barriers to user adoption. This paper develops a case-based reasoning (CBR) 
system called PBI-CBR to predict grass growth for dairy farmers, that combines 
predictive accuracy and explanation capabilities designed to improve user adop-
tion. The system provides post-hoc, personalized explanation-by-example for its 
predictions, by using explanatory cases from the same farm or county. A key 
novelty of PBI-CBR is its use of Bayesian methods for case exclusion in this 
regression domain. Experiments report the tradeoff that occurs between predic-
tive accuracy and explanatory adequacy for different parametric variants of PBI-
CBR, and how updating Bayesian priors each year reduces error. 
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1 Introduction 

Although the promise of artificial intelligence (AI) in smart agriculture is usually ad-
vertised as increasing productivity, in the future it may become increasingly about im-
proving sustainability [1, 2]. As climate change accelerates, what AI may actually de-
liver is a precision agriculture that allows farmers to measure, balance, and predict the 
outcomes of farm management-decisions in ways that mitigate the environmental im-
pact of these activities. However, this future depends on the development of AI-enabled 
decision support systems (DSS) that are both predictively accurate (e.g., in predicting 
grass growth), and explainable to the end user (i.e., farmers) to encourage adoption and 
usage. In this paper, an existing DSS called PastureBase Ireland (PBI) is extended by 
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using case-based reasoning (CBR) techniques; the so-called PBI-CBR system. This 
new DSS predicts grass growth for dairy farmers and offers explanations designed to 
improve user adoption. As such, the system is an instance of eXplainable AI (XAI), 
providing post-hoc, personalized explanation-by-example for its predictions, based on 
location (using cases from the same or nearby farms). One key novelty of PBI-CBR is 
its use of what we refer to as Bayesian Case-Exclusion, which excludes outlier cases 
from the prediction process using prior beliefs about data distribution(s), reducing error 
and improving explanations. In the remainder of this introduction, the sustainability 
context for this work is briefly described, before outlining the structure of the paper. 

1.1 Context: Agriculture, Sustainability and AI 

Concerns about the impact of agriculture on climate change and the development of 
sustainable models are growing [2]. The agricultural sector and consumers are faced 
with varying views from climate change denial, to proposals that animal agriculture is 
responsible for 18-51% of greenhouse grass emissions [29, 30]. However, there is per-
haps a middle ground that is exemplified by the work here.  
    Recently, an argument has emerged arguing for a quick move to sustainable farming 
systems [5]; the so-called agroecology perspective. For example, in the dairy sector this 
agroecology view has proposed a move to pasture-based systems, where animals are 
predominantly fed on grass outdoors rather than on meal and supplements indoors. The 
pasture-based proposal has the potential to be sustainable, in part, by using grass as a 
carbon sink and extending the grazing season (reducing slurry emissions) [11]. Further-
more, humans have limited capacity to digest grass, as it is a non-edible protein, so it 
is not consuming a food people could eat [28]. However, these initiatives depend on 
precision technology, using AI, to monitor variables such as climate and grass growth.  
    This paper considers a CBR system1 that supplements an existing DSS used by sev-
eral thousand Irish dairy farmers (i.e., PBI), which predicts grass growth in the coming 
week for a specific farm and offers personalized explanations (see Sections 4 and 5). 
However, as we shall see, there are significant challenges in handling the data noise 
which arises in this domain, especially against the backdrop of increasing climate dis-
ruption. Finally, for the sake of brevity, note that we only consider the retrieval step of 
CBR for this current iteration of PBI-CBR. 

1.2 PastureBase Ireland for Dairy Farmers (PBI) 

Smart agriculture often depends upon providing new DSSs for farmers to aid them in 
making complex decisions about how to manage their farm for productivity and sus-
tainability [2]. These systems have three main challenges. First, they must be predic-
tively accurate. Second, they need to be easy to use and interpretable for end users, to 
encourage adoption and continued use. Third, they need to be able to support decision 
making in the context of increasing climatic disruption, where the climate in past years 
                                                        
1  Several other approaches such as linear regression, neural networks, SVMs and tree 

algorithms were also tested alongside this CBR system. The CBR system’s accuracy equalled 
or bettered these other systems.  
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may not be indicative of climate in future years. The present work extends an existing 
DSS called PBI used in the grass-fed, pasture-based dairy farming systems in Ireland. 

PastureBase Ireland. Since 2013, Ireland’s national agricultural research organization 
Teagasc, have provided PastureBase Ireland (PBI, https://pasturebase.teagasc.ie) as a 
grassland management system to provide information and advice for Irish dairy farm-
ers. PBI has 6,000+ users out of ~18,000 dairy farmers in Ireland. Among other fea-
tures, the PBI database has weekly records of grass covers for individual farms from 
2013 to present. A grass cover for a farm is principally, the amount of grass available 
on that farm for cows to eat; formally, it is a measure of biomass in grass on the farm 
above ground level or a height of 4cm. PBI allows farmers to enter this grass cover data 
for each field/paddock of their farm in a given week, using their own measurements/es-
timates, thus allowing them to budget grass-availability for their herd. Our system, PBI-
CBR, uses the grass growth rates calculated by PBI from this grass cover data to predict 
grass growth rates on a farm from one week to the next, a critical part of the grass 
budgeting process. Note, farmers vary in how regularly they use PBI; there are ~2,000 
active users defined as those entering > 20 grass covers a year.  

Feed Forecasting and Grass Wedges. Among other variables, the feed needs for a 
dairy herd depends on the size of one’s farm, the size of the herd, and the status of the 
herd (e.g., lactating animals). PBI takes these variables and forecasts the feed needs for 
a farm. PBI accounts for both rotational grazing and set stocking, in which the farmer 
grazes certain paddocks while resting others (which may be grazed later or cut for si-
lage). PBI allows farmers to modify variables such as rotation length and paddock status 
(e.g., is it currently being grazed), while producing a number of reports to show the 
effect of changing variables. Fig. 1 shows all paddocks on a farm and the grass available 
in each paddock, measured in kilograms of dry matter per hectare (kg DM/ha; grass 

 

Fig. 1. A grass wedge as seen by farmer-users of PBI: The green columns represent each 
field/paddock on a farm, and the red line the target pre-grazing yield each paddock should 
be at before beginning rotational grazing. The y-axis is kilograms of dry matter per hectare, 
and the x-axis shows the farm’s paddocks. The width of each paddock’s green bar represents 
its total area. The Days Last Event number refers to when the paddock was last grazed. 



4 

weight changes with moisture content, so dry weight is used). The red-line shows the 
target pre-grazing yield for each paddock, which can move up and down as the farmer 
changes variables (e.g., size of herd). If the red-line is below the top of a green-bar, 
then more grass is available than is currently needed (it could be cut for silage or meal 
supplementation reduced). However, if the red-line is above a green-bar then there is 
not enough grass to begin rotational grazing, and some meal supplementation may be 
required. These calculations are critical to the sustainability of the farming enterprise; 
stated simply, grass is inexpensive and meal supplements are the opposite. Also, meal 
requires transportation and possibly importation, so it entails increased carbon costs. 

Grass Growth Prediction. Management decisions are largely based on grass growth, 
which varies based on soil/grass type, farming practices, climatic factors etc. In PBI, 
the farmer estimates a grass cover in paddocks and a calculation is done to determine 
the average growth rate since the previous grass cover. PBI-CBR aims to predict growth 
rates using machine learning (ML), by forecasting the growth-rate in the coming week 
using previous cases. Note, Teagasc currently uses a mechanistic model (a.k.a. a first-
principles model) called the Moorepark St. Gilles Grass Growth model (MoST) that 
can predict growth-rates and continues to be tested [4]. However, key parameters of 
this model are not available for all farms (e.g., soil maps). A future system may combine 
PBI-CBR and MoST to make predictions, alternating between both models.  

The PBI Dataset. We used the PBI dataset recorded from thousands of private farms 
in Ireland between 2013-2017. The primary feature of concern is the average grass 
growth rate for a farm since the last grass cover recorded, but location features (Farm 
ID-anonymized and County) are also important for explanation purposes. Ideally, to 
explain a prediction our system aims to provide an explanatory case from the same 
farm, but a case from a nearby farm in the same county is also acceptable. This was the 
advice given by the domain experts running the current system, although ultimately this 
proposal needs to be user tested. 

1.3 Outline of Paper 

Section 2 discusses noise in the PBI dataset used here and how a Bayesian approach is 
both useful and intuitive for case exclusion. Section 3 describes Experiment 1 (Expt. 1) 
which compares four systems on accuracy and explanatory success, and the tradeoff 
between both measures. Section 4 describes Expt. 2 which shows how updating priors 
using Bayesian analysis can improve prediction accuracy, possibly providing a means 
to deal with climate change in DSSs for this domain. Section 5 reviews relevant previ-
ous work in the area before final conclusions in Section 6. 

2 Noise: The Gold-Standard and Working-Farm Datasets 

We believe that this grass-growth domain is representative of the datasets and problems 
that AI will face in many smart agriculture contexts, especially in being highly noisy. 
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The data is gathered by end users (farmers) and, as such, is understood to contain errors, 
miss-recordings, adjustments, and estimates. For example, some of the recordings in 
the dataset are based on physical measurements with a device, whereas others are esti-
mates from visual inspections. This inherent noise has profound implications for how 
prediction and explanation need to be handled in this domain. On the one hand, we need 
a systematic way to remove possibly-poor cases. On the other hand, we need to keep as 
many cases as possible, because each additional case has potential to improve the sys-
tem’s accuracy and interpretability. Indeed, case exclusion could also affect the tradeoff 
between predictive accuracy and explanatory adequacy. Our solution to these noise is-
sues is to use one dataset to clean another; to use a gold-standard dataset gathered under 
controlled conditions by researchers (with is idealized but noise-free) to clean a work-
ing-farm dataset gathered by farmers as part of their daily work (which is noisy). Tech-
nically, we use a gold-standard set of historical grass-growth measurements to give a 
prior belief about the distribution of grass growth each week, which in turn allows us 
to exclude cases from the working-farm case-base that may contain errors; what we call 

Bayesian Case-Exclusion. As we shall see, this solution seems to exclude noisy cases 
while retaining enough high-quality ones to maintain accurate predictions and explana-
tions. Next, we describe these two datasets and how the working-farm case-base was 
built. 

 
2.1 A Gold-Standard Dataset: Teagasc Grass Growth (1982-2010) 

The gold-standard dataset of grass-growth measurements we used covers 28 years of 
carefully-controlled, weekly measurements in which samples taken by researchers from 
the same pasture were cut, dried and weighted on a weekly basis at the Teagasc Moore-
park Dairy Research Centre, Fermoy, Co. Cork (a major location for dairy farming). 
These measurements are somewhat idealized as they come from one location, which 

 
Fig. 2. The gold-standard dataset of grass growth measurements from 1982–2010 at Teagasc, 
Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ire-
land [7], where the distribution of grass growth each week of the year is given as box plots. 
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was not grazed (i.e., the livestock’s impact – such as urine and trampling – on grass 
growth was excluded). However, they are very accurate and can thus serve as a good 
benchmark for determining outlier cases in the PBI dataset. 

2.2 Case Definition and Case-Base Construction 

The dataset used to construct the working-farm case-base came from the weekly grass 
covers entered by farmers in PBI. This dataset’s growth rates were calculated using the 
grass covers recorded by farmers showing the estimate of grass available on a given 
farm for a given day. Some of these grass covers are known to be in-error; for example, 
often multiple entries are made on the same day, where the last entry of the day was the 
intended record. For the years 2013-2017, this dataset had 99,087 grass cover-records, 
that reduced to 92,635 when these same-day entries were removed. These grass cover- 
records are the raw data from which the cases used in PBI-CBR were generated to 
create the working-farm case-base. 

Case Generation. Let a farm’s data be 𝑓 = {𝑥&, 𝑥(, …𝑥*}, where 𝑥, is a grass cover-
record for a single day, and 𝑛 the total number of grass covers recorded (note the grass 
covers are in chronological order). The features of 𝑥, used to generate a case (𝐶,) in the 
case-base are the average growth rate since the previous grass cover (𝑔𝑟), the week 
(𝑤𝑘), month (𝑚𝑡ℎ), and season (𝑠𝑒𝑎𝑠) in which the grass cover was recorded. Weather 
data (𝑤,) at the county level was scraped from Met Éireann (www.met.ie), and added 
as an average from 𝑥, until 𝑥,9&. The weather information in 𝑤, is the maximum daily 
temperature (𝑚𝑎𝑥𝑡), the average soil temperature 10cm below the surface (𝑠𝑜𝑖𝑙𝑡) on a 
given day, and the average global radiation (𝑔𝑟𝑎𝑑) in a given day. Finally, 𝑔𝑟 from 
𝑥,9& is also added to 𝐶, as the target feature for prediction. Thus, a case is represented 
as: 

						𝐶,(𝑥,, 𝑤,, 𝑥,9&) = 〈𝑥,(𝑔𝑟, 𝑤𝑘,𝑚𝑡ℎ, 𝑠𝑒𝑎𝑠), 𝑤,(𝑚𝑎𝑥𝑡, 𝑠𝑜𝑖𝑙𝑡, 𝑔𝑟𝑎𝑑), 𝑥,9&(𝑔𝑟)	〉 (1) 

Case Base Construction. Taking the raw-data grass cover-records (N=92,635) the 
cases as defined in (1) were constructed. However, given that the system has to predict 
one week ahead, only those cases where the target 𝑥,9&(𝑔𝑟) was recorded 5-9 days after 
𝑥, were included in the case base. Also, cases from January and December were 
excluded (as they tend to show zero growth), though they might be appropriate in a 
final deployed system. Finally, only those cases with accurate historical weather 
information until the next grass cover were considered (weather is a crucial factor in 
growth predictions). These steps resulted in a working-farm case-base of N=20,760 
cases for use in experimental tests. Note, in each system variant (except for the Control) 
the number of cases in this working-farm case-base is reduced further by the respective 
method(s) used. 

 
2.3 The Current Experiments 

In the remainder of this paper, two experiments are reported that test several variants 
of the Bayesian Case-Exclusion idea. In Expt. 1, we examine what happens in this 



7 

predictive CBR-system when cases are not excluded (Control), versus experimental 
systems in which we use the gold-standard dataset’s distributions in different ways to 
modify or exclude cases (the Exclude-2sd, Exclude-3sd and Transform-3sd systems; 
see Section 3). These experimental system-variants examine performance when cases 
are transformed with reference to the gold-standard distributions or when cases are ex-
cluded a pre-defined number of standard deviations away from the means in the gold-
standard distributions. The transformation system enables greater retention of cases, in 
turn helping with explanations. In Expt. 2, we explore Adaptive Bayesian Case-Exclu-
sion, where priors derived from the gold-standard distributions are updated year-on-
year, to see if performance improves (see Section 4). 

3 Experiment 1: Bayesian Case-Exclusion 

PBI-CBR is a CBR system for predicting grass growth, using the growth rates calcu-
lated from each farm. Two different datasets are used in the experiments, the gold-
standard Teagasc data (1982-2010) and the PBI dataset (2013-2017), where the former 
is used to transform or exclude cases from the latter when making predictions for a 
particular farm in a given week of a given year. Hence, the gold-standard dataset is our 
“prior” belief (in Bayesian parlance), which is used to make probabilistic inferences in 
how to handle noise. In the working-farm case-base, the current week is used to predict 
one week ahead, allowing a farmer to make informed management decisions. In gen-
eral, for this prediction, a mean squared error (MAE) of ≤ 10 kg DM/ha/day is suffi-
cient. The main problem is the noise in the working-farm case-base, hence we use 
Bayesian Case-Exclusion to exclude outlier cases when making predictions. PBI-CBR 
also explains predictions using post-hoc, personalized explanation-by-example by ref-
erencing nearest neighboring cases from the same farm or county. So, the tests involve 
two measures: (i) predictive accuracy, as MAE for the growth-rate prediction measured 
in kg DM/ha/day, (ii) explanatory success, as the percentage of times nearest-neighbor 
cases are found from either the same-farm or same-county to the test-cases in the k 
nearest neighbors retrieved (a measure recommended by experts). However, it should 
be noted again that the “success” of these explanations is dependent on future user test-
ing. Crucially, we tested four variants of the system: 

• Control. A basic system that uses all the cases in the working-farm case-base 
(N=20,760; see Section 2.2); this case base was built mostly from the PBI dataset 
(from 2013-17) and, accordingly, is quite noisy and has many outliers.  

• Exclude-2sd. A Bayesian system that excludes cases two-standard deviations away 
from the weekly, mean growth-rates of the gold-standard dataset (see Fig. 2). The 
rationale being that grass growth in a given week approximates a normal distribution 
(verified by plotting thousands of growth rates in histograms) and using the proper-
ties of such a distribution can aid in making probabilistic assumptions for how to 
exclude cases. Formally, the data for growth rate (𝐺𝑅) in a given week across all 
years in the gold-standard dataset approximates 𝐺𝑅~𝑁(𝜇I, 𝜎I(), where 𝑁 is a normal 
distribution with parameters 𝜇I and 𝜎I for the mean and standard deviation, 



8 

respectively. All cases outside 𝜇I ± 2𝜎I are excluded (as well as other query-cases), 
thus excluding cases with ~5% probability of occurring. This step reduces the work-
ing-farm case-base by 42% (N=12,042 cases). 

• Exclude-3sd. This is identical to the Exclude-2sd system but 𝜇I ± 3𝜎I is used to 
exclude cases, thus excluding cases with ~0.3% probability of occurring. This re-
duces the working-farm case-base by 21% (N=16,443 cases). 

• Transform-3sd. This is a Bayesian system that transforms the growth-rates of cases 
using the gold-standard distributions. That is, the distribution of growth in a given 
week from the gold-standard dataset [𝐺𝑅~𝑁(𝜇I, 𝜎I()] is used to transform the 
growth-rate values of cases for the same week in the working-farm case-base, to fit 
to the parameters 𝜇I and 𝜎I(. Formally, to transform the growth-rate (𝑔𝑟) in a grass 
cover 𝑥 in any given week of the year we use: 

																																																				𝑦IO = P𝑥IO − 	𝜇R ×
TU
T
+	𝜇I																							 (2) 

where 𝑥IO is the growth rate in grass cover 𝑥, 𝑦IO is the transformed growth rate of 
𝑥IO, 𝜇 and 𝜎 are the mean and standard deviation for the overall growth rate in that 
week in the working-farm case-base, respectively, and 𝜇I and 𝜎I are the mean and 
standard deviation for the overall growth rate in that week in the gold-standard da-
taset, respectively. The intuition being that the gold-standard dataset is closer to the 
ground-truth, hence if it is used to transform the growth rates (in the working-farm 
case-base), the overall deviation from the ground truth will reduce. Note, in this 
system cases that fall outside 𝜇I ± 	3𝜎I after the transformation are still excluded, 
and, so, the working-farm case-base is reduced by 2% (N=20,282 cases). 

    As we shall see, exclusion methods improve prediction accuracy, with varying levels 
of explanatory success. The transform system retains as many cases as possible, aiding 
accuracy and explanatory success. Indeed, there are indications that the transformed 
case-base is closer to the ground truth as the correlation of Pearson’s 𝑟 between 𝑚𝑎𝑥𝑡 
and growth-rate across all cases increases from 𝑟 = 3.92	to 𝑟 = 5.11 after transfor-
mation, reflecting known dependencies between temperature and grass-growth (< 5°C 
grass does not grow, from 5-10°C it grows with temperature [4]).  

3.1 Method: Procedure and Measures 

For each system variant Monte Carlo cross-validation was used with 30 resampling 
iterations, each time taking 80/20% data for training and testing, respectively. An un-
weighted k-NN algorithm with Euclidean distance was used for case retrieval, with the 
averaged value of all nearest neighbors’ target-growth-rates used as the prediction. Se-
lected values of k ranging from 5-1000 were tested for each system variant to observe 
effects on prediction and explanatory outcomes. For each evaluation of k for each sys-
tem, three measures were taken: (i) the MAE (ii) the %Farm-Retrieval-Success, the 
percentage of times the k-nearest-neighbors contained a case from the same farm as the 
query, and (iii) the %County-Retrieval-Success, the percentage of times the k-nearest-
neighbors contained a case from the same county as the query.  
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3.2 Results and Discussion 

Fig. 3a shows the results of running the system variants – Control, Exclude-2sd, Ex-
clude-3sd, Transform-3sd – for all values of k in three graphs, one for each measure: 
MAE, %Farm-Retrieval-Success (%FRS), and %County-Retrieval-Success (%CRS). 
Across all systems, MAE is worst for the lowest and highest k with some improvement 
in between (k = 20-35). With regard to %FRS all system variants are very similar, 
though success does change for different values of k. For all systems, %FRS is very 
poor for low values of k, but beyond k = 50 it rises to ~80%; showing that only higher 
values of k deliver enough cases from the same farm to explain the predictions made. 
For all systems, %CRS is much better, as it starts high (~80%) for low values of k and 
rapidly reaches ~100%; showing that finding explanatory cases for a prediction from 
the same county is a common occurrence. However, the differences between the system 
variants are, perhaps, more interesting.  
    Overall, the Control system, which includes all cases, does the worst; it never gets 
lower than a MAE of 15 kg DM/ha/day (recall, acceptable error is ≤	10 kg DM/ha/day). 
Similarly, the two exclusion-systems – Exclude-2sd and Exclude-3sd – do not reach the 
acceptability threshold. Overall, Bayesian Case-Exclusion does much better than the 
Control, but only Exclude-2sd with k = 35 has the somewhat acceptable MAE of ~10.01 
kg DM/ha/day. Overall, the Transform-3sd system is the best with a MAE < 10 kg 
DM/ha/day for all values of k (note, many current mechanistic models have MAEs of 
~10-20 kg DM/ha/day, showing the potential for AI solutions in this domain). 
    Finally, the best system is Transform-3sd; in Fig. 3a, comparing the 1st and 2nd 
graphs, we can see the tradeoff between MAE and %FRS for all values of k. The 1st 
graph shows that the lowest error (MAE = 8.6 kg DM/ha/day) occurs at k ~ 35, but at 
this level %FRS is poor at ~7% (see 2nd graph). Accordingly, k = 1000 is required to 
improve %FRS to ~85%. However, even at this value for k, an acceptable MAE is 
achieved (~9.8 kg DM/ha/day), making Transform-3sd the only system that success-
fully balances the tradeoff between accuracy and explanation. Note, with additional 
data from a given farm, it should be possible to improve this tradeoff even further. 
 
4 Experiment 2: Updating Priors Year-on-Year 

In Expt. 1 Bayesian exclusion or transformation of cases from the working-farm case-
base gave improved performance. However, these systems exclude cases using param-
eters from the gold-standard dataset, gathered between 1982 and 2010. Recently cli-
mate change appears to be impacting the distribution for grass growth. For example, in 
the hot Irish summer of 2018 grass-growth stopped during July (normally it is ~100 kg 
DM/ha/day). In Expt. 1, this not considered, but Expt. 2 rectifies this by combining the 
two datasets to update Bayesian priors year-on-year by Bayesian analysis (e.g., see [3])  
to estimate the unknown distributions of grass growth each week with a view to making 
predictions in 20172 (the final year’s data). Hence, Expt. 2 has six versions of PBI- 

                                                        
2    Predictions could only be made for 2017 because the earlier years of the PBI dataset (2013-

2016) have too few cases, as the DSS was in its early years of adoption. 
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CBR, three systems from in Expt. 1 (Exclude-2sd, Exclude-3sd, Transform-3sd) and 
three variants of these in which priors were updated (Update-Exclude-2sd, Update-Ex-
clude-3sd, Update-Transform-3sd). The updating procedure used is described next. 

4.1 Updating Priors in Exclusion and Transformation Systems 

To perform Bayesian updating, we take priors from the gold-standard dataset and then 
progressively use each year’s data from the PBI-dataset to update them. First, take the 
gold-standard dataset and, binning all its data into weeks, for any given week, let the 
growth rate (𝐺𝑅) approximate a normal distribution 𝐺𝑅~𝑁(𝜇, 𝜎(), where 𝜇 and 𝜎(	are 
its mean and variance, respectively. In 2013, all the data for this week was processed 
into cases (see Section 3). Then, we proceed with transformation or exclusion methods 
on these cases depending on the system variant (as in Expt. 1), which gives the new 
data 𝐷 = {𝐶&, 𝐶( …𝐶*} where 𝑛 is the number of cases. Take the prior to be 

Fig. 3. The tradeoff between error and explanation. (a) Expt. 1 shows that as the value for k 
approaches 1000, more explanatory cases are retrieved, but the MAE for all systems also 
increases. Transform-3sd has the best MAE of ~8.6 kg DM/ha/day at k ~ 35, but same-farm 
explanatory success is low at ~7%; however, at k = 1000, the tradeoff is balanced, with the 
MAE still acceptable and %FRS at ~85%. (b) Expt. 2 shows MAE is improved for almost 
every update-variant, although the improvement in the transform-system is minimal; explan-
atory success and MAE are similar to Expt. 1, but poorer, likely due to less training data. 
Finally, note the log scale on the x-axis. 

(a) Experiment 1 (b) Experiment 2
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𝜇~𝑁(𝜇], 𝜎](), where the value 𝜎] is initially chosen as 43 and 𝜇] is initially chosen as 
𝜇. Here the value for 𝜎( is assumed to remain fixed4. Bayes rule shows that the posterior 
(for a given week) is proportional to the likelihood times the prior, in addition, because 
𝜎( and 𝜎]( are known we can ignore the constant of proportionality and derive that the 
posterior 𝜇^ is: 

																																								𝜇^~𝑁 _
T`

T`9Ta`*
𝜇] +

Ta`

T`9Ta`*
𝑛𝑥 ,			 T`Ta`

T`9Ta`*
b      (3) 

where 𝑥 is the empirical mean of the growth rates in the cases of 𝐷, for a full derivation 
and explanation the reader is referred to [3]. Although in CBR the word “Bayesian” 
usually infers the use of Bayesian networks, in this experiment it is used in a more 
traditional sense and refers to the estimation of an unknown distribution (a.k.a. the pos-
terior) of grass growth using a prior belief (a.k.a. the prior) and a sample of data from 
the new year (i.e., the likelihood). 
    Using equation (3) we update values for 𝜇] and 𝜎](, the new value of 𝜇] was then 
used to update the original 𝜇 from the gold-standard dataset, which was used with 𝜎( 
(the fixed variance from the gold-standard dataset) to repeat the whole process in 2014 
for the same week. This process is repeated for all weeks of each year until the end of 
2016 when all training data was collected. The latest priors in each week were again 
used to exclude or transform cases in 2017 for evaluation5. All evaluations were carried 
out on 2017 because there was insufficient training data in previous years to ensure 
adequate evaluations (2017 has ~40% of usable cases), though the years prior to 2017 
were all used in the year-on-year updating to acquire the training data. 

4.2 Case-Base Sizes after Transformation or Exclusion 

Expt. 2 has six system variants, the Exclude-2sd, Exclude-3sd and Transform-3sd sys-
tems from Expt. 1, and matched versions of these systems, which used the updating 
methods described above called Update-Exclude-2sd, Update-Exclude-3sd and Up-
date-Transform-3sd. In the updated variants, several aspects change, so the number of 
cases after transformation or exclusion vary slightly: Exclude-2sd (N=12,042), Update-
Exclude-2sd (N=12,183), Exclude-3sd (N=16,443), Update-Exclude-3sd (N=16,379), 
Transform-3sd (N=20,282), and Update-Transform-3sd (N=20,120). 

4.3 Method: Procedure and Measures 

For each system variant the respective case base was split in a ~60/40% ratio of training 
and testing cases, respectively; the former coming from the PBI data from 2013-2016 

                                                        
3  The relatively large value of 4 was chosen to represent that we are not highly certain of the 

validity of the gold standard prior mean when compared to a typical dairy farm pasture. 
4  The variance 𝜎( wasn’t adapted; if it changes it could lead to an unfair evaluation as updated-

variants may differ a lot in the amount of data excluded compared to non-updated variants. 
5  Note, for transform methods some knowledge about a given week’s data distribution would  

need to be inferred if we were doing this in a live-system for formula (2) to be used. 
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and the latter from 2017. Crucially, note that results will be different from identical 
systems in Expt. 1 because of the different ratio for splits. For case retrieval, an un-
weighted k-NN was again used with Euclidean distance for selected values for k ranging 
from 5-1000. The same three measures were used as in Expt. 1: Mean Absolute Error 
(MAE), %Farm-Retrieval-Success (%FRS), and %County-Retrieval-Success (%CRS). 

4.4 Results and Discussion 

Fig. 3b shows the results of running the six system variants – Exclude-2sd, Exclude-
3sd, Transform-3sd, Update-Exclude-2sd, Update-Exclude-3sd and Update-Trans-
form-3sd – for all values of k in three graphs, one for each measure: MAE, %FRS, and 
%CRS. In general, the shape of the results replicates many of the findings of Expt. 1.  
    Regarding MAE, as before the transformation-versions do better than the exclusion-
versions, the error decreases in order from exclude-3sd to exclude-2sd to transform-
3sd; k = 75 is optimal for all systems, doing better than the lower and higher values of 
k. Overall the MAE scores (and explanation-success scores) are not as good as in Expt. 
1, perhaps, reflecting the different ratios in the training and testing splits (i.e., they were 
80/20% in Expt. 1 and ~60/40% in Expt. 2); note, the evaluation dataset is reduced to 
one-year in Expt. 2 (i.e., 2017), whereas it is across all 5 years in Expt. 1 (2013-17). 
    Expt. 2 shows that systems with Bayesian updating (Update-Exclude-2sd, Update-
Exclude-3sd and Update-Transform-3sd) do better than systems without updating (Ex-
clude-2sd, Exclude-3sd, Transform-3sd) at nearly every value of k, though the improve-
ments are relatively modest, particularly in the transform version (see Fig. 3b).  
    Regarding explanation measures (%FRS, %CRS) the overall curve-shapes are simi-
lar to those in Expt. 1, with maximum values being %FRS=68% and %CRS=100%, in 
contrast to %FRS=85.94% and %CRS=99.98% in Expt. 1. Acceptable tradeoffs for 
accuracy and explanation are achieved for both of the transform systems (Transform-
3sd, Update-Transform-3sd) in that at k = 1000 the MAE is ~9.95 kg DM/ha/day with 
~67.5% explanatory-success rate for same-farm cases in both systems. These systems 
would likely improve if training and testing splits were more favorable as in Expt. 1. 

5 Related Work 

This work impinges on many areas, though the most relevant literatures are arguably in 
case-based maintenance, Bayesian CBR, and explanation in CBR DSSs for smart agri-
culture. Here we review the relevant literature and discuss its relevance to this work. 
    Case base maintenance (i.e., case base editing/deleting/exclusion/inclusion etc.) is a 
notable area of research for the CBR community [19]. However, the most popular meth-
ods have tended to focus on classification [16, 20-25], as opposed to regression [17]. 
Redmond and Highley [17] did try to convert Edited Nearest Neighbors [22] to handle 
regression by assigning two hyperparameters for agree and accept thresholds, but they 
acknowledge that applying the classification algorithms to regression is difficult. Our 
method requires no hyperparameters, though it does require the specification of a 
prior(s). Furthermore, most of the literature on case base maintenance is concerned with 
deleting cases to optimize case-bases; here we have used the phrase “case exclusion” 
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rather than “case deletion” because we believe it is important to retain cases for future 
use. For instance, cases deemed outliers with extreme environmental conditions may 
be useful if climate change results in these extreme conditions becoming common or 
more data becomes available (e.g., soil type) identifying them as non-outlier data. 
    Much work has been done using Bayesian methods in CBR systems. Nikpour et al. 
[8] used Bayesian posterior distributions to modify case descriptions and dependencies 
in a model, showing the capability of such an approach to increase similarity assess-
ment. Moreover, the vast majority of work combining CBR and Bayesian methods has 
involved combining Bayesian Networks with CBR systems, for which there are many 
architectures and approaches [27]. However, beyond the combination of Bayesian 
methods and CBR, these systems have little in common with the present work, which 
uses prior distributions for case exclusion. The best algorithm for a particular problem 
regarding case base maintenance will likely always depend on the domain in question 
[19], but here we present a novel option. 
    XAI within CBR has been shown to be important in intelligent systems [9, 31, 32], 
with some consideration of smart agriculture [10]. Additionally, it has been argued that 
recommender systems should play a central part in smart agriculture [12], and CBR is 
a popular approach for such systems [6]. Pu and Chen [26] have conducted user studies 
showing that designers should build trusted interfaces into recommender systems due 
to the high likelihood users will return. As smart agriculture arguably requires a recom-
mender component [12], and it suffers from a user retention issue; this is of particular 
relevance. Moreover, in understanding the effects of environmental changes, Cho et al. 
[12] note that global warming and pollution have made environmental and agricultural 
modelling difficult, thus suggesting the use of a recommender system to support users, 
but no specific instances are described. Moreover, Holt [14] suggested that CBR could 
be used to help farm management decisions. CBR gives a unique ability to offer intui-
tive exemplar-based explanations, and user studies have shown it potentially superior 
to rule-based explanations [13], frameworks have been proposed for CBR XAI [18], 
but to the best of our knowledge no instance in smart agriculture has been proposed 
until the present paper. Branting et al. [10] did use CBR in the agricultural advisory 
system CARMA (which also produces explanations), but it only forms part of the con-
sultation process, whilst our solution appears to be the first pure CBR approach. 

6 Conclusions and Future Research 

We have shown that a CBR system can be used for decision support in dairy farming 
to predict a key aspect of the enterprise accurately, while also providing case-based 
explanations that are personalized for a specific farm. To deal with noise in the dataset, 
we have used historical distributions based on accurate research measurements to de-
termine what cases should or should not be included in the predictive model (i.e., our 
Bayesian exclusion approach). Furthermore, we have shown that transforming key-at-
tributes of cases based on a goal-standard distribution (that is closer to a ground truth) 
can improve accuracy, and that using Bayesian analysis for updating priors year-on-
year also improves performance. By our knowledge, all of this work is novel.   
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    These systems have the ability to improve the sustainability of grasslands for dairy 
farming into the future. Accordingly, for us, the key question for future research is 
whether these techniques can continue to deliver accurate predictions in the face of 
climate change. One would hope that these CBR systems can maintain predictive ac-
curacy by selectively picking useful cases from historical datasets (e.g., as soon as the 
data is available, we plan to test PBI-CBR against the extreme weather of 2018). So, 
though we may experience significant climate shifts, there will always be a case some-
where in the historical record that can provide accurate predictions.  
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