IMPROVED AND VISUALLY ENHANCED CASE-BASED RETRIEVAL OF ROOM CONFIGURATIONS FOR ASSISTANCE IN ARCHITECTURAL DESIGN EDUCATION (2020)

VIKTOR ESENSTADT, CHRISTOPH LANGENHAN, KLAUS-DIETER ALTHOFF, ANDREAS DENGEL

GERMAN RESEARCH CENTER FOR ARTIFICIAL INTELLIGENCE INSTITUTE OF COMPUTER SCIENCE, UNIVERSITY OF HILDESHEIM CHAIR OF ARCHITECTURAL INFORMATICS, TECHNICAL UNIVERSITY OF MUNICH

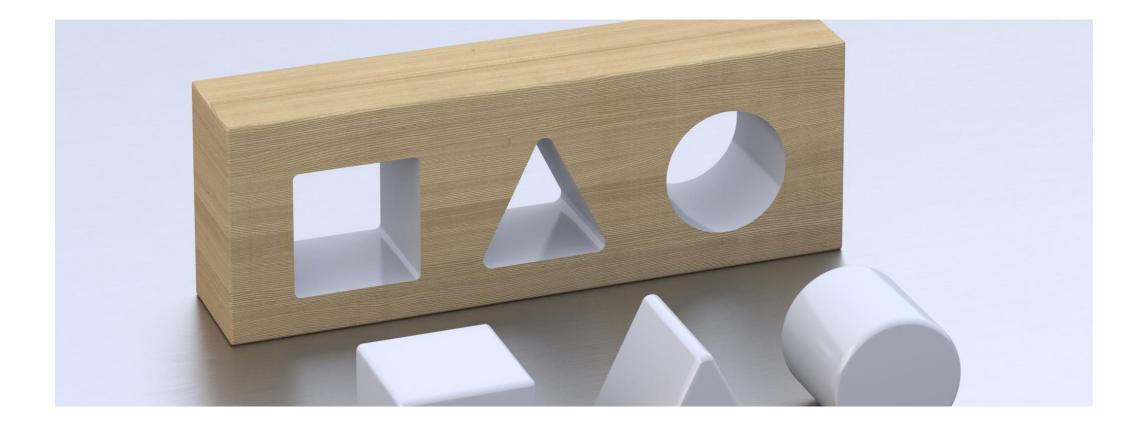
CONTENTS

Introduction

Concepts & Foundations

Combined Retrieval + UI

Evaluation

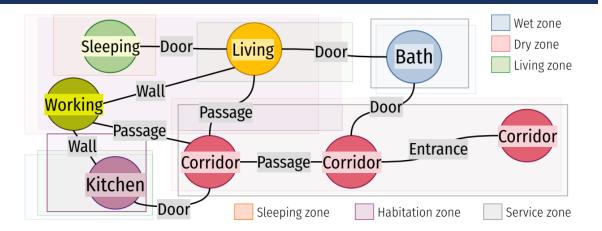

Conclusion & Future Work

Reflections

INTRODUCTION

	Problem?	Early conceptual design phase Manual search for design ideas in academia
 >	Proposed solution	Retrieval – CNN & CBR UI
	Based on	Metis-I & Metis-II Design retrieval & autocompletion projects

CONCEPTS & FOUNDATIONS



RELATED WORK; CASE-BASED REASONING

- Related CBR approaches:
 - **ARCHIE** Excel-*ish* representation (Goal, Plan, Outcome)
 - PRECEDENTS Design Issues, Design Concepts, & Forms (semantic connections)
 - CBArch Vectors & Human similarity percentages (latter used as heuristics)
 - VAT Topology, Ontology (relationship between rooms/areas), Visualization
- Metis-I & Metis-II
 - Attribute-value-based
 - Graph-based

ROOM CONFIGURATION

- Type of room + connection
- Graph-based
- Semantic Fingerprints (FP)
 - Based on dividing spaces into concepts
 - Identifies and separates different buildings

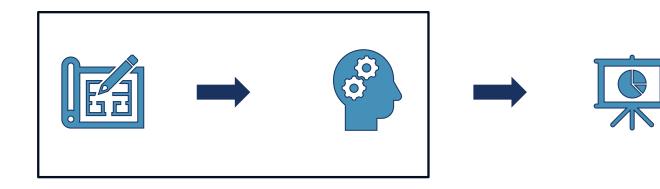
 ${\bf Fig. 1.}$ An example of a room configuration graph and ARZ assignment.

Concepts	Level	Unit	Zone	Room
Entities	Attic Floor	Circulation	Circulation Zone	Bedroom
	Upper Floor	Apartment	Living Zone	Workroom
	Ground Floor	Terrace	Function Zone	Bathroom
	Basement	Balcony	Sleeping Zone	Kitchen
				Corridor
				Staircase

Fig. 3. Taxonomy - Example of entities

Fig I: https://link.springer.com/chapter/10.1007/978-3-030-58342-2_14

Fig 3: https://www.researchgate.net/publication/230675749_Sketch-based_Methods_for_Researching_Building_Layouts_through_the_Semantic_Fingerprint_of_Architecture


ARCHITECTURAL ROOM ZONES (ARZ)

- Dividing floor plan sections into zones
- Additional information on top of types & connections
- Established in earlier papers, however..
 - Combination of zones & room configuration + FP is new
 - Maybe it will help?

Table 1. Architectural room zones with the corresponding room types.

ARZ name	Description	Room types
Wet zone	Frequent contact to water	KITCHEN, TOILET, BATH
Dry zone	No frequent contact to water	LIVING, SLEEPING, WORKING CORRIDOR, CHILDREN
Living zone	Social + free time activities	LIVING, KITCHEN
Sleeping zone	Rest + relax activities	SLEEPING
Habitation zone	Frequent human contact	LIVING, SLEEPING, WORKING KITCHEN, CHILDREN, EXTERIOR
Service zone	Rare presence of humans	CORRIDOR, TOILET, BATH STORAGE, PARKING, BUILDINGSERVICES

$GRAPH \rightarrow AI \rightarrow RESULT; HOW?$

THE ANSWER IS (ALWAYS) TENSORS

- ConnMap
 - Numerical codes relations
 - Example: 542
 - 5 Kitchen
 - 4 Corridor
 - 2 Passage
- Downsides:
 - Many repeats;
 - Not sufficiently distinguishable (for ML)

- Z-ConnMap
 - Same as before, however...
 - Each room type associated with a zone
 - Example: 51422
 - 5 (Kitchen) + I (Wet zone)
 - 4 (Corridor) + 2 (Dry zone)
 - 2 (Passage)
- More sparsity more happiness

______Operation == "MIRROR_Y" Irror_mod.use_x = False irror_mod.use_y = True irror_mod.use_z = False **operation** == "MIRROR_Z" irror_mod.use_x = False rror_mod.use_y = False irror_mod.use_z = True election at the end -add _ob.select= 1 er_ob.select=1 ntext.scene.objects.active "Selected" + str(modifier irror_ob.select = 0 bpy.context.selected_ob ata.objects[one.name].sel pint("please select exactle OPERATOR CLASSES -----

COMBINED RETRIEVAL + UI

DATA AUGMENTATION

Problem: Lack of data

Solution: GAN

CNN-based Used Z-ConnMap

Restrictions in generation:

Rooms could only be replaced with others from the same zone

CONTEXT-BASED PRESELECTION OF CASES

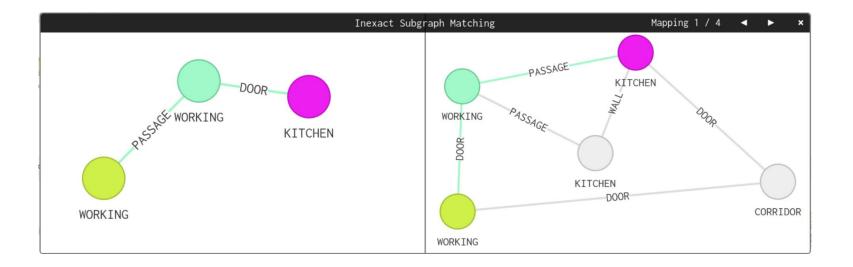
- "Warm-up" before similarity search;
 - Preselection
- MetisCBR graph-based retrieval; slow for larger dataset
- Turned to Z-ConnMap-based retrieval
- Specific CNN to assign labels (Table 2)
- Retrieval:
 - Use CNN to fetch cases with similar labels

Table 2	. Currently	implemented	design	contexts.
---------	-------------	-------------	--------	-----------

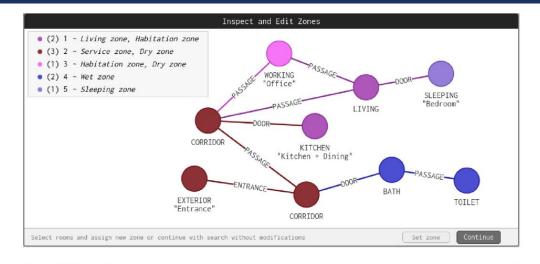
Type	Contexts	Explanation	×
Structural	SparseConnections RoomTypeDominance	Number of edges < number of rooms A room type dominates the configuration	OR
Temporal	PreDesign FullDesign	Different states of the room configuration during the early design phases	XOR
Typological	SocialHousing StandaloneHousing UnknownHousing	Housing category of the room configuration	XOR

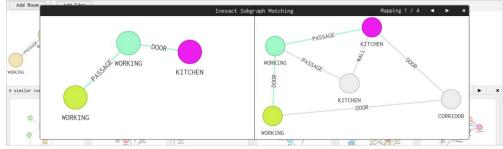
SEARCH CONTINUES - GRAPH MATCHING

- After preselection
- Graph matching/isomorphism
- VF2 & CRI
 - Applied to rooms, adjacency, accessibility respectively
 - ..and all combined


Table 3. Currently implemented graph matching methods and semantic FPs.

Sem. Fingerprint	Algo.	Matching types	Features
Room Graph	CRI	Exact graphs w/o preselection	Matches exact structure only All semantics are ignored
Adjacency	VF2	Exact and inexact graphs and subgraphs	Semantics of edges are ignored Matches rooms semantics only
Accessibility	VF2	Exact and inexact graphs and subgraphs	Semantics of rooms are ignored Matches edges semantics only
Full Room Graph	VF2	Exact and inexact graphs and subgraphs	Matches rooms as well as edges semantics


EXACTVS. INEXACT MATCHING


- Exact
 - Room types (living, sleeping) + semantics (door, passage)
 - Exact match

- Inexact
 - Replacement strategies;
 - Similar rooms are interchangeable
 - Similar semantics are interchangeable

UI: ROOMCONF EDITOR

Fig. 3. RoomConf Editor. *Above:* Pre-search zone modification window. *Below:* The mapping between query (left) and case (right), where the room color codes indicate matched rooms and the edge colors show the connection direction. The user can click through different exact and inexact mappings. These are the mapping differences to Metis-WebUI that used arrows for rooms and the per-FP visualization. In the background, the query and the search results can be seen. (Color figure online)

COMPLETE SYSTEM

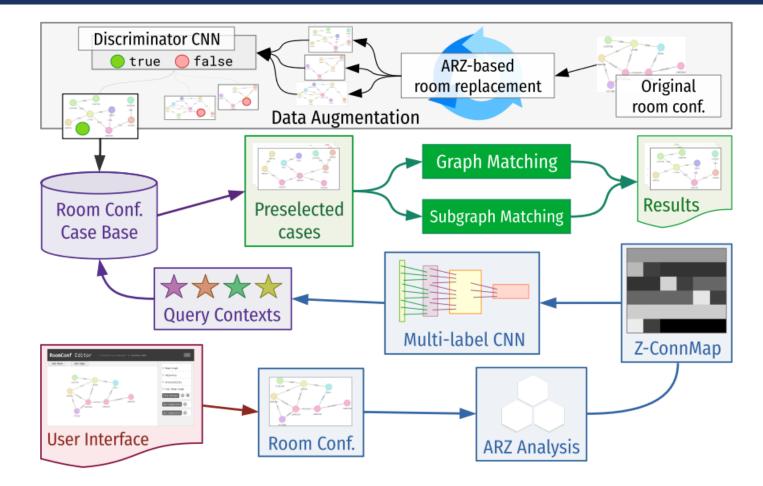
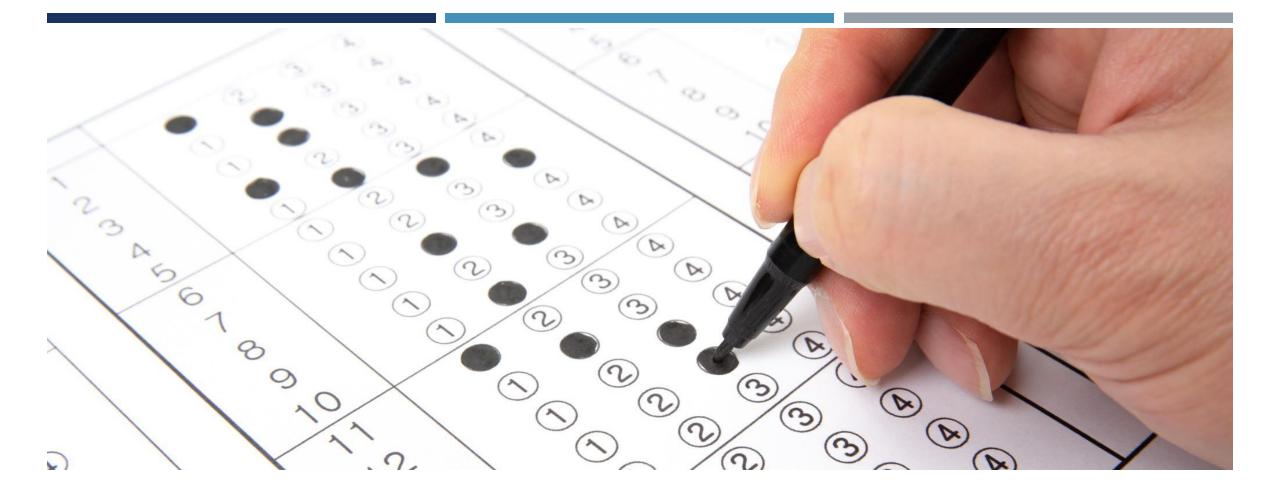



Fig. 2. Overview of the retrieval process of the combined system.

EVALUATION

WHAT ARE WE CHECKING?

Improvement of retrieval process by:						
Adding zones	Using zoned connection maps	for context-based preselection	combined with exact & inexact (sub)graph matching			
Combine the above with the UI						

ANALYSIS STATISTICS

2852 room configuration cases

- 250 manually created
- 2602 generated

For preselection:

- CNN labeller trained on 250 original cases
- Labelled the rest (prediction)
- ..then trained on them afterwards

QUANTITATIVE ANALYSIS

- Complexity calculated as $|N_{edges}| \cdot |N_{nodes}|$
- 20 queries of varying complexities
- Retrieval time predominant metric

PRESELECTION RESULTS

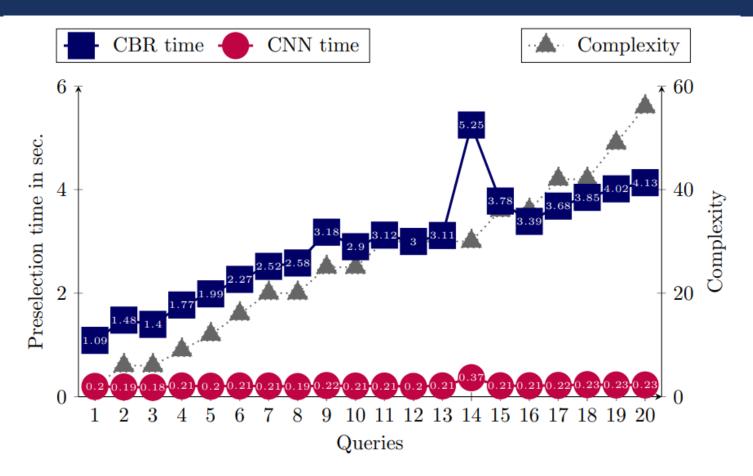
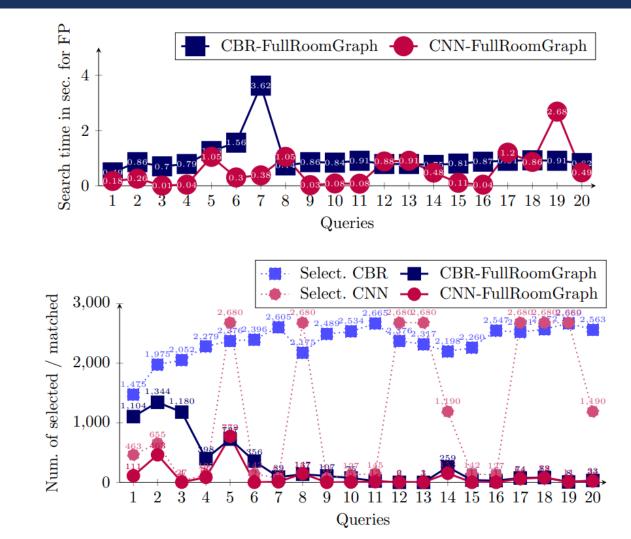



Fig. 4. Results of the preselection evaluation.

GRAPH MATCHING RESULTS

USER STUDY

8 people tested application

Thinking out loud – say what you are thinking

Tasks:

- Create room configuration
- Initiate search process
- Rate relevance of results using similarity examination

Finally – verdict; usable for education?

RESULTS

T	UI satisfactory, however	Semantic FPs were unknown to users, caused confusion Bubbles (nodes) should scale with room area
	Zones:	Some required more explanation
2	Some stretched the system – created deliberate bad designs	System self-corrected after zone changes
	Conclusions?	All were positive – none completely declined All could see potential use in education at different levels

CONCLUSIONS

Created an Al-based digital assistance system for education

Specific interface

CNNs and graph matching to find similar reference of room configurations

Evaluated through quantitative experiment and user study

Future work – use user feedback to further develop application

REFLECTIONS

DISCLAIMER: I MIGHT BE STUPID

REFLECTIONS

- Overall idea very cool
- Inspiring to see educational angle
- Z-ConnMap confusing
 - Matrix structure unclear
- Preselection phase why?
 - Didn't really understand the point
- Interesting to see combination with additional generative AI for complete floor plan generation