Summary Knowledge-intensive Case-Based Reasoning

Kerstin Bach October 24, 2022

Background

- A. Aamodt and E. Plaza, 1994: <u>Case-based reasoning; Foundational</u> <u>issues, methodological variations, and system approaches.</u> Al Communications, 7(1), pgs. 39-59.
- 2. Chapters 2, 3, 6, and 8 in Richter & Weber's <u>Case-Based Reasoning</u> <u>Textbook</u>
- 3. A. Aamodt: <u>Knowledge-intensive case-based reasoning in Creek.</u> ECCBR 2004. LNAI 3155, Spinger, 2004. pgs. 1-16.

- Retrieve
- Reuse
- Revise
- Retain

Knowledge Containers

Similarity measures

The retrieval of similar cases is based upon the use of similarity functions (or measures) to compute the distance or similarity of two cases.

Case base

The systems experience is stored as cases within the case base which can be seen as a special form of a data base.

Vocabulary

The cases themselves, the similarity measures and the adaptation knowledge are composed upon a vocabulary that contains the objects of interests (terms, attributes, concepts).

Adaptation knowledge

Adaptation knowledge is used whenever a retrieved case's solution has to be adapted to be suitable to solve the presented problem. An example for this kind of knowledge is given by adaptation rules like "If X is not available use Y instead."

Distribution of Knowledge

How to read papers

- Context of the paper: Motivation and group or person who's presenting the work
- · Goal of the presented research: What is the goal / motivation of work?
- Methodology: scientific and / or technical approach that is presented
- Related work: how do others address the same/similar problem
- Method: Design, Implementation and Experiments
- Evaluation

Introduction

- David Aha: <u>The omniprescence of case-based reasoning in science and</u> <u>application.</u> Proceedings of the Seventeenth SGES International Conference on Knowledge Based Systems and Applied Artificial Intelligence, 1998. pp 261-273.
- Edwina Rissland: <u>AI and Similarity.</u> IEEE Intelligent Systems, May/June 2006. pp 39-49.

Pensum Papers

- Smyth, B., Keane, M.T. (2022). A Few Good Counterfactuals: Generating Interpretable, Plausible and Diverse Counterfactual Explanations. In: Keane, M.T., Wiratunga, N. (eds) Case-Based Reasoning Research and Development. ICCBR 2022. Lecture Notes in Computer Science(), vol 13405. Springer, Cham. https://doi.org/10.1007/978-3-031-14923-8_2
- Wijekoon, A., Wiratunga, N., Nkisi-Orji, I., Palihawadana, C., Corsar, D., Martin, K. (2022). How Close Is Too Close? The Role of Feature Attributions in Discovering Counterfactual Explanations. In: Keane, M.T., Wiratunga, N. (eds) Case-Based Reasoning Research and Development. ICCBR 2022. Lecture Notes in Computer Science(), vol 13405. Springer, Cham. https://doi.org/10.1007/978-3-031-14923-8_3
- Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., & Su, J. K. (2019). This looks like that: deep learning for interpretable image recognition. Advances in neural information processing systems, 32.
- Eisenstadt, V., Langenhan, C., Althoff, KD., Dengel, A. (2020). Improved and Visually Enhanced Case-Based Retrieval of Room Configurations for Assistance in Architectural Design Education. In: Watson, I., Weber, R. (eds) Case-Based Reasoning Research and Development. ICCBR 2020. Lecture Notes in Computer Science(), vol 12311. Springer, Cham.

Example Question

 In his paper, David Aha discusses successes and failures of CBR ventures.

Present 1-2 successful approaches as well as reasons he identified for failure.

Exam Schedule

Time	Name
10:00 – 10:30	Thomas
10:30- 11:00	Kristin
11:00– 11:30	Marte
11:30- 12:00	Mathias

Exams will take place in room 254 (Gamle Fysikk), aka Kerstin's office, on November 28, 2023