
Processing of Rank Joins in Highly Distributed

Systems

Christos Doulkeridis1, Akrivi Vlachou1, Kjetil Nørvåg1, Yannis Kotidis2 and Neoklis Polyzotis3

1Norwegian University of Science and Technology (NTNU), Trondheim, Norway
2Athens University of Economics and Business (AUEB), Athens, Greece

3UC Santa Cruz, California, USA
{cdoulk,vlachou,noervaag}@idi.ntnu.no, kotidis@aueb.gr, alkis@cs.ucsc.edu

Abstract—In this paper, we study efficient processing of rank
joins in highly distributed systems, where servers store frag-
ments of relations in an autonomous manner. Existing rank
join algorithms exhibit poor performance in this setting due to
excessive communication costs or high latency. We propose a
novel distributed rank-join framework that determines the subset
of each relational fragment that needs to be fetched to generate
the top-k join results. At the heart of our framework lies a score
bound estimation algorithm that utilizes statistics to produce
sufficient score bounds for each relation, which guarantee the
correctness of the rank join result set. Furthermore, we propose
a generalization of our framework that supports approximate
statistics, in the case that the exact statistical information is not
available. In addition, we demonstrate how our algorithms can
utilize distributed statistics to process top-k join queries without
any modifications. An extensive experimental study validates the
efficiency of our framework and demonstrates its advantages over
existing methods.

I. INTRODUCTION AND MOTIVATION

Rank-aware query processing has attracted much interest

lately, as users are often overwhelmed by the size of query

results. Ranked queries help users to identify a limited set

of the most interesting results, thereby enabling effective

decision-making. From the aspect of the database system,

the challenge associated with ranked queries is to efficiently

process the query by inspecting carefully selected tuples,

without examining all stored data exhaustively.

As data management becomes inherently distributed due to

massive content generation and storage at disparate locations,

the importance of distributed processing of rank-aware queries

is even more evident. In this paper, we consider a generic

distributed setup where servers store relational fragments

individually, resembling horizontal partitioning of relations.

Contemporary applications increasingly adopt this storage

model when deployed either on widely distributed networks or

on cloud computing platforms. We focus on the evaluation of

distributed rank join queries. In general, such queries join m

relations Ri that may be fragmented into several parts stored

at different servers. The resulting tuples are ordered using a

scoring function f() (order by clause) and the top-k answers

based on their scores are returned to the user (limit clause).

Rank join queries adhere to the following template, where the

relations Ri are widely distributed to different servers:

Supplier Product Discount

S1 Monitor 100

S2 CPU 160

S3 CPU 120

S4 HardDisk 190

S5 HardDisk 90

S6 DVD-RW 200

Customer Product Price

C1 Monitor 800

C2 CPU 240

C3 HardDisk 500

C4 CPU 550

C5 HardDisk 700

C6 Monitor 600

Q1:
SELECT *

FROM Customers C, Suppliers S

WHERE C.product=S.product

ORDER BY (C.price + S.discount)

LIMIT 2

Q2:
SELECT *

FROM Customers C, Suppliers S

WHERE C.product=S.product

AND S.product=’CPU’

ORDER BY (C.price + S.discount)

LIMIT 2

S
e
rv
e
r
1

S
e
rv
e
r
2

S
e
rv
e
r
3

S
e
rv
e
r
4

Fig. 1. Example of distributed top-k join queries.

SELECT some attributes
FROM R1,R2,. . . ,Rm

WHERE join condition AND selection predicates
ORDER BY f(R1.s1, R2.s2, ..., Rm.sm)
LIMIT k

Applications of a distributed rank join query can be derived

from the scientific domain. For example, astronomers tend to

have a distributed measurement infrastructure, in that different

telescopes may point to the same area of the sky and collect

information about a set of metrics (attributes). We can imagine

each server storing information about different ”slices” of the

sky with corresponding measurements (tuples). Then, a query

may join the relations of different telescopes using the slice

identifier as the join key, so as to assemble together different

measurements corresponding to the same positions in the sky

and rank the results according to a user-specified function.

Another application is decision-making in an international

company that maintains geographically dispersed departments

over the world. Departments include, among others, produc-

tion, inventory, sales, etc. Each department (server) produces

large amounts of data on a daily basis; for instance informa-

tion about customer orders is recorded at sales departments.

Decision-making over widely distributed enterprise data can

be facilitated by efficient support for top-k join queries, for

example retrieval of the top-k opportunities for product sale.

Consider a Suppliers relation and a Customers relation, which

are fragmented in an horizontal manner over the servers

(multiple inventory and sales departments respectively) at

different locations around the globe. If all data were available

in a traditional centralized database, it would be depicted as

in Fig. 1, where a bracket shows the server that stores a subset

of tuples. A product is sold to a customer at a certain price,

as shown at the Customers table. The company buys these

products from suppliers, as depicted in the Suppliers table. A

sale maximizes the associated profit, if the amount paid by a

customer plus the discount offered by a supplier is maximized.

In this scenario, the sales manager is interested in finding the 2

most profitable sales for any product (Query Q1). Similarly, in

Query Q2 the manager is only interested in sales of a specific

product (CPU in this example). Our algorithms support both

queries and we will use them as examples in the paper.

In this paper, we propose a framework for rank join query

processing over widely distributed data, which is a challenging

problem. For instance, one major difference compared to cen-

tralized rank join processing is that tuples (or fixed-size blocks

of tuples) cannot be iteratively read from each relation. This

results in several communication round-trips in the network,

which is prohibitively expensive even for moderate number of

servers. Moreover, the number of tuples that need to be fetched

and joined to compute the correct result, can be significantly

more than the value of k requested by the user. Thus, our

premise is to compute a bound on the scores of tuples (score

bound), which restricts the tuples that need to be retrieved

from each relation, and then contact once each server that

stores tuples within the bound to fetch the relevant tuples.

In existing approaches for distributed top-k queries, such as

Fagin’s algorithm [1] or its improvements (e.g. KLEE [2]), the

joining attribute is a unique identifier present in all relations. In

contrast, we address a generalization of this problem, focusing

on arbitrary user-defined join attributes between relations. The

state-of-the-art algorithms for this problem [3]–[5] rely on

local sampling for score bound estimation, which is ineffective

in the general case of non-uniformly distributed data. In

summary, the contribution of our work is manifold:

• We provide the first thorough investigation of rank join

query processing in large-scale distributed systems. To

this end, we propose the DRJN (Distributed Rank JoiN)

framework for efficient processing of rank join queries

over horizontally fragmented data (Section III).

• We propose a novel score bound estimation algorithm that

derives sufficient bounds on the scores of tuples for each

relation participating in the query. The algorithm exploits

statistics in order to produce score bounds that guarantee

the generation of the correct result set (Section IV).

• We generalize the basic DRJN framework to work with

approximate statistics, in the case that the statistics do

not accurately describe the underlying data (Section V).

We show that the generalized DRJN framework still

produces the correct result at the cost of more than a

single phase of score bound estimation, and supports a

wide variety of complex queries (Section VII).

• We demonstrate the suitability of our framework without

any modifications, for applications that require distributed

storage of statistics over the servers (Section VI).

• We show that our algorithm consistently outperforms the

state-of-the-art algorithms [3]–[5] (Section VIII).

II. PROBLEM STATEMENT

The system consists of NS servers, where each server Si

stores fragments of one or more relations Rj . The fragment

of Rj stored at Si contains a subset of the tuples that belongs

to Rj . In the following, we assume that we have m relations

Ri i ∈ [0 . . . m). Each relation Ri has a scoring attribute si

and a join attribute ai. We emphasize that the join relationship

is many-to-many and our framework supports more than one

join and scoring attributes for each relation, but we only use

one in our discussion in order to keep the notation simple.

In case of multiple join or scoring attributes, our techniques

are applicable assuming that the necessary statistics (described

by more dimensions) are available. We also stress that servers

store relation fragments in an autonomous manner.

Our framework supports top-k join queries (such as Query

Q1 or Q2) posed by any querying server Si, henceforth men-

tioned as SQ, which is responsible for query processing. Each

query may refer to a different subset of the m relations Ri.

Also, each query combines scoring attributes from different

relations by means of a scoring function f that is monotone.

The restriction of monotonicity is a common property [1] and

it conveys the meaning that whenever the score of all attributes

of a tuple τ1 is at least as good as another tuple τ2, then we

expect that the overall score of τ1 is as least good as τ2. The

result of a top-k join query is the ranked list of the k objects

with best score values. Without loss of generality, in this paper

we are interested in retrieving the k objects with the minimum

score values, therefore lower scores indicate better rank.

Naive algorithms. One plain solution is to follow a data

shipping approach [6], by having SQ assemble locally all

fragments of the relations Ri that participate in the query, and

then process the rank join in a centralized way. However, the

incurred network cost is high, as the complete relations Ri are

transferred to SQ, whereas only few tuples are typically neces-

sary for producing the top-k results. Another naive algorithm

is for SQ to repetitively contact all servers that store fragments

of the relations Ri, retrieve batch of tuples, and process

them using any centralized rank join algorithm [7]–[9], thus

reducing communication costs. However, even if knowledge

of which servers store fragments of Ri was available to SQ

(which is not trivial in large-scale distributed systems), the

total induced latency is high due to multiple communication

round-trips.

III. THE DRJN FRAMEWORK

In the aforementioned setup, the challenge is to process

rank join queries in an efficient way, such that the required

communication cost and the round trips are minimized. In

order to achieve these goals, it is necessary to determine the tu-

ples that should be retrieved from each relation fragment. The

DRJN framework utilizes statistics in the form of histograms

to derive sufficient score bounds that produce the correct top-k

join results. The bounds define the (range of score values of)

tuples that need to be retrieved from the relation fragments.

Fig. 2 illustrates the notion of score bounds for a (centralized)

rank join algorithm, where tuples are sorted based on score,

S5 HardDisk 90

S1 Monitor 100

S3 CPU 120

S2 CPU 160

S4 HardDisk 190

S6 DVD-RW 200

C2 CPU 240

C3 HardDisk 500

C4 CPU 550

C6 Monitor 600

C5 HardDisk 700

C1 Monitor 800

Score

bound:

120

Score

bound:

500

Top-k join results

Fig. 2. Example of score bounds.

Algorithm 1 The DRJN algorithm.

1: Input: k, Function f , m relations Ri

2: Output: Ranked join result res
3: tuplesRi

← ∅, 0 ≤ i < m
4: {(ei, Li), γk} ← BoundEstimation({Ri|i ∈ [0, m)}, k, f)
5: for (Ri ∈ [R0 . . . Rm)) do
6: for (Sj ∈ Li) do
7: tuplesRi

← tuplesRi
+ Sj .getTuples(ei)

8: end for
9: end for

10: res← RankJoin({tuplesR0
}, . . . , {tuplesRm−1

})
11: return res

and the bound determines the tuples that need to be accessed.

The exact way of storage of the histograms is orthogonal to

our framework, but for simplicity in the following we will

assume a single master server SM that is responsible for

collecting and storing the statistics. As will be demonstrated

in Section VI, the DRJN framework is applicable without

modifications when the statistics are collaboratively stored by

the participating servers in a distributed fashion.

Algorithm 1 provides the pseudocode for distributed rank

join query processing on SQ. Initially, SQ computes a score

bound for each participating relation using BoundEstimation()

(line 4). Together with the bound ei for each relation Ri, the

function returns the list Li of servers that store the tuples

specified by the bound and the estimated score γk of the k-th

join result. Then, for a relation Ri, SQ issues a getTuples()
request to each server in Li using bound ei to restrict the tuples

that need to be fetched, and assembles all relevant tuples (lines

6-8). Actually, all tuples τ of Ri that have a scoring value

τ.si smaller or equal to ei (τ.si ≤ ei) are retrieved in a batch.

When all necessary tuples are retrieved, SQ performs a local

centralized rank join algorithm [7]–[9] (line 10) and is able to

report the result (res) (line 11). Obviously, the main challenge

related to this algorithm is the procedure used for estimating

appropriate bounds for the scoring values.

IV. DISTRIBUTED BOUND ESTIMATION

In this section, we present the distributed score bound esti-

mation algorithm, which derives score bounds ei of relations

Ri based on the score distribution captured in histograms.

Notice that existing techniques for centralized rank join pro-

cessing, e.g. [10], typically employ data synopsis such as

histograms for capturing the score distribution.

20 40 60 80

1
2
3

CPU4

price

#tuples

1 0

2 4

2 4

3 2

3 2

1 0

2 3

0 00-19

20-39

40-59

60-79

C
P
U

H
a
rd
D
is
k

M
o
n
it
o
r

D
V
D
-R
W

2-dim histogram

Fig. 3. Example histogram of relation Suppliers.

A. Data Model and Statistics

For each relation Ri, a histogram HRi is maintained. This is

a 2-dimensional histogram on (ai, si) that essentially records

the number of tuples in Ri that correspond to each distinct

value vz of ai, that fall in a range of values of si (defined by

the bins’ low and high value). Thus, as far as the join attributes

are concerned, we assume that each bin represents only one

join value (we drop this restriction later in Section V). Let n

denote the number of distinct values vz (0 ≤ z < n) of the join

attribute. For each distinct value vz , the set of bins HRi

vz
can be

viewed as a one-dimensional histogram that approximates the

distribution of scoring values for vz . For example, a histogram

of relation Suppliers and join attribute product equal to ’CPU’

captures the number of products of type CPU for different

ranges of price (scoring attribute), as depicted in Fig. 3.

Furthermore, in our examples and implementation, equi-width

histograms are employed, even though better performance can

be achieved with optimized histograms [11], [12].

B. Joining Histograms

Differently to traditional rank-join algorithms, our algorithm

performs a rank-join on histogram bins instead of tuples.

Histogram bins are accessed sorted in ascending order of their

score range. Moreover, histograms bins of different relations

(also mentioned as individual bins) are joined and produce

join combinations of bins. A valid join combination of bins is

produced by a set of bins with the same value of the join

attribute. Henceforth, this new bin is referred to as joined

bin. For each joined bin, the number of tuples is computed

by multiplying the number of tuples in the individual bins.

Furthermore, the score of a joined bin is estimated by applying

the scoring function f on the higher value of score range of

each individual bin. Thus, the score of the joined bin is an

upper bound of the score of any join tuple produced by the

individual bins.

Example 1: (Joining histograms) Consider again the exam-

ple of Fig. 1 and assume that the histograms depicted in Fig. 4

capture the data distribution of relations R0=Suppliers and

R1=Customers respectively. Each bin of a histogram repre-

sents the number of suppliers (resp. customers) that handle

(resp. request) a particular product for the range of prices

specified by the boundaries of the bin. On the right, some

joined bins are depicted for product ’CPU’ when the scoring

function f is the sum of discount and price. For instance, the

combination of the first two bins of each histogram for ’CPU’,

which contain 6 and 10 tuples respectively, produce a joined

bin of 60 (=6 × 10) tuples with score in the range 0-28. The

10 0

5 20

2 5

10 10

3 0

6 1

10 5

2 00-9

10-19

20-29

30-

C
P
U

H
a
rd
D
is
k

M
o
n
it
o
r

D
V
D
-R
W

D
is
c
o
u
n
t

SUPPLIERS

Product

10 3

5 5

7 5

2 8

2 4

10 1

9 4

2 10-19

20-39

40-59

60-

C
P
U

H
a
rd
D
is
k

M
o
n
it
o
r

D
V
D
-R
W

P
r
ic
e

CUSTOMERS

Product

6

12

30

600-28

10-38

20-48

30-58

JOINED BINS

C
P
U

T
o
ta
l
=
 D
is
c
o
u
n
t
+
 P
r
ic
e

......

Fig. 4. Example of joining histograms.

score of the tuples in this joined bin is set to 28, i.e., the high

value of the range. Recall that the aim is to retrieve the top-k

results with minimum scores.

The objective of our algorithm is twofold: first, to identify

the histogram bins that produce at least k join tuples with

the smallest scores, and second, to ensure that no other

combination of histogram bins can produce join tuples with

smaller score values. To this end, histogram bins are joined

until: (1) the number of join tuples exceeds k, and (2) the

score of any join tuple produced by any unseen histogram bin

is not smaller than the score (γk) of the current k-th join tuple.

C. The Bound Estimation Algorithm

Algorithm 2 describes our distributed bound estimation

method for ranked multi-way join queries on a server SQ based

on the available histograms. The histograms of the m relations

Ri are explored in a round-robin fashion. In each iteration, SQ

retrieves the next bin of histogram HRi (line 7) of Ri from

the master server SM . The retrieved bin is added to a list with

retrieved bins from Ri (line 8). Then, the newly retrieved bin

is combined with the retrieved bins of the other relations (line

9), and the valid join combinations of bins are kept in a queue.

The getScore() method checks the queue and returns the score

value of the k-th join tuple (γk), such that the number of tuples

of the joined bins with score smaller or equal to γk sum up to

more than k. The actual score of the k-th join tuple is smaller

than or equal to γk. Also, the total number of tuples of all

joined bins in the queue is computed (line 11). Moreover, the

estimated score bound ei for relation Ri is set equal to the

high score of the bin (line 12), indicating that tuples of the

last retrieved histogram bin of Ri contribute to the join result.

Then, the list Li of servers per relation Ri is updated (line 13).

Furthermore, a threshold value t is computed (line 14), which

is the best possible (minimum) score that can be produced

by unseen histogram bins. The algorithm terminates when the

condition of line 15 holds, namely that k join results have

been produced and none of the unseen bins can produce a

tuple with better score than the k-th best join result retrieved

thus far.

Example 2: (Bound Estimation Algorithm) Consider the

case of Fig. 4, and assume that the sales manager is interested

to find the k=50 most profitable combinations of products

for v0=’CPU’ in terms of total price (Query Q2). Initially,

the querying server SQ retrieves the first bins HR0

v0
[0] and

HR1

v0
[0] of the respective histograms (where v0=’CPU’), thus

Algorithm 2 Bound Estimation.

1: Input: Relations {Ri}, k, Function f
2: Output: Bounds ei, 0 ≤ i < m
3: halt← false, j ← 0, t← 0, queue← ∅
4: binsRi ← ∅, ei ← 0, 0 ≤ i < m
5: while (!halt) do
6: for (Ri ∈ [R0 . . . Rm)) do

7: binz ← get(HRi
vz

[j]), 0 ≤ z < n
8: binsRi.add(binz), 0 ≤ z < n
9: queue.add(binsR0 ⊲⊳ . . . ⊲⊳ binsRi−1 ⊲⊳ binz ⊲⊳

binsRi+1 ⊲⊳ . . . ⊲⊳ binsRm−1)
10: γk ← getScore(queue, k)
11: res← getResultsNo(queue)
12: ei ← H

Ri
vz

[j].high
13: Li.update(binz)
14: t← min{f(0, .., 0, ex, 0, .., 0)}, 0 ≤ x < m
15: if (res ≥ k and γk ≤ t) then
16: halt← true
17: end if
18: end for
19: j ← j + 1
20: end while
21: return {(ei, Li),γk}

producing res=60 results. Furthermore, SQ sets the estimated

bounds e0 and e1 for each relation, based on the maximum

value of the bin range. In this case, e0=9 and e1=19. Although

the number of results is more than 50 (res ≥ k), the threshold

is t=9 and the 50-th score in the queue is in worst case γk=28,

so the algorithm does not terminate (γk > t). Therefore,

SQ retrieves the next bins of the histograms, namely HR0

v0
[1]

and HR1

v0
[1] and computes the number of join results based

on all bins retrieved so far. A total of res=108 results is

computed, and the bounds are updated to e0=19 and e1=39.

The threshold t is now set to 19. Still, another round-trip is

required, which updates e0=29 and e1=59, and eventually sets

t=29. Then the algorithm terminates (γk ≤ t) and reports

e0=29 and e1=59.

Using Algorithm 2, SQ computes sufficient bounds of the

scoring values ei for retrieving only the necessary tuples from

fragments of Ri. Algorithm 1 relies on this bound estimation

to produce the correct result set. The following theorem proves

the correctness of the bound estimation.

Theorem 1: (Correctness) The DRJN algorithm using the

score bound estimation reports the correct top-k join result set.

Proof: For simplicity, we will show the proof for 2

relations, but the proof can be extended to handle the case

of m inputs. Assume that the bound estimation algorithm

halts at score bounds e1 and e2. Algorithm 1 produces at

least k join tuples and the score of the k-th tuple τ =
τ1 1 τ2 is smaller than the threshold f(τ) ≤ t, where

t = min{f(0, e2), f(e1, 0)}.

The proof is by contradiction. Assume there exists a join

tuple τ ′ = τ ′

1
1 τ ′

2
with f(τ ′) < f(τ) that belongs to the

top-k join result set, but it is not produced by our DRJN

algorithm (i.e., τ ′

1
.s1 > e1 or τ ′

2
.s2 > e2). Since f(τ ′) <

f(τ), this implies that f(τ ′) < t, hence f(τ ′

1
, τ ′

2
) < f(0, e2)

and f(τ ′

1
, τ ′

2
) < f(e1, 0). From the first inequality, due to the

monotonicity of f and since the score τ ′

1
.s1 ≥ 0, we derive

that τ ′

2
.s2 < e2. Similarly, we conclude that τ ′

1
.s1 < e1, which

leads to a contradiction. Thus, the join tuple τ ′ must have been

produced by DRJN .

D. Estimation of the Number of Fetched Bins

When the querying server SQ accesses the histogram bins

from the master server SM one bin at a time, this may result

in many messages and unnecessary networking overhead. An

alternative idea is to facilitate access to bins in batches,

thereby reducing the cost of bound estimation and making the

DRJN framework more efficient. The remaining issue is the

estimation of the number of bins (c) required to probe from

each histogram in one batch, in order to retrieve the top-k join

results. The aim of the querying server SQ is to estimate c in

order to fetch only the necessary bins with one message, and

avoid transferring too many bins. We first present an estimation

model for two relations, namely R0 and R1 and then we extend

the model for more relations in a straightforward manner.

Let NR0
and NR1

represent the number of tuples in each

relation. Furthermore, let n denote the number of distinct

values of the joining attribute and let b denote the number

of bins in each histogram of each joining attribute. Assuming

uniform distribution of values of the joining attribute, there

exist
NR0

n
and

NR1

n
tuples with the same value of joining

attribute, respectively.

Similarly, each bin of relation R contains, on average, NR

nb

join results, assuming uniform distribution over the scoring

attribute. As a result, each pair of bins of R0 and R1 that join

together produces, on average,
NR0

nb
×

NR1

nb
results for a specific

value of the joining attribute. If x represents the number of

join attributes values requested in the selection predicate of

query Q2 (x ∈ [1 . . . n]), then when joining the corresponding

pairs of bins produces, on expectation, x
NR0

NR1

n2b2
results.

In the case of symmetric join evaluation, assuming that c

bins are accessed from each relation, then a total number of

c2 bins can be joined together. We need to identify the value

of c, such that:

c2x
NR0

NR1

n2b2
=k

which leads to:

c = nb
√

(k
xNR0

NR1

)

Extending this formula to m relations, we derive:

c = nb m

√

(k
xNR0

...NRm−1

)

This estimated value c is used by SQ as desired number of

bins that need to be fetched from SM .

E. Supporting Different Join Strategies

Algorithm 2 employs a symmetric join evaluation as join

strategy. Thus, the histograms of the different relations Ri are

accessed in a round-robin fashion. Nevertheless, the proposed

distributed score bound estimation algorithm supports other

join strategies as well. The join strategy influences not only the

efficiency of the bound estimation in terms of computational

cost, but more importantly the accuracy of the estimated

bounds.

For example, a beneficial strategy is HRJN* [7] that prior-

itizes access to the most promising relations in terms of pro-

ducing join results. HRJN* intentionally retrieves histograms

bins of the relation that has a higher potential to generate

results. In more detail, HRJN* observes the retrieved bins and

the current score bounds, in order to decide which relation

can give a bin that will increase the overall threshold, so that

the top-k join tuples can be determined without accessing

more bins. Therefore, HRJN* may retrieve fewer histogram

bins from some relations leading to more accurate score

bounds. In the experimental evaluation, we study in detail

the performance gains that can be attained, when the HRJN*

strategy is employed.

V. DRJN WITH APPROXIMATE STATISTICS

The DRJN framework provides sufficient score bounds

for each relation for retrieving the top-k join results, in the

case that the number of join tuples are accurately estimated.

However, in the general case, the estimated number of join

tuples that will be produced may be inaccurate. We use the

term approximate statistics to refer to this general case.

For example, consider the case where the domain of the join

attribute is of high cardinality, resulting in non-negligible cost

if one histogram is created for each join value. Let us assume

an enumeration of all join attribute values {v0, . . . , vn−1}.

Assuming a fixed budget na of histograms per relation, we

can partition the join attribute values into na subsets. When

the master server SM creates the histogram, a plain way to

combine the bins of each subset is by employing the uniform

frequency assumption [13]. Thus, the indexed bins capture the

average distribution of the scores of all join attribute values

in this particular subset, leading to inaccurate estimates on

the number of join tuples. This comprises a simple example

of using approximate statistics, while other examples are

examined in Section VII.

In this section, we generalize our framework for handling

approximate histograms. The generalized DRJN algorithm

produces the correct rank-join result at the cost of more than

a single phase of score bound estimation.

A. Determining Sufficient Score Bounds

Algorithm 2 can be employed for estimating the score

bounds using the available approximate statistics, however two

problematic situations can occur after retrieving the tuples

based on the estimation:

1) The retrieved tuples produce k′ join results, which

are fewer than k (k′ < k), since Algorithm 2 may

overestimate the number of join tuples produced by the

retrieved bins. In this case, Algorithm 1 cannot return k

join tuples.

2) More than k join results are produced, but the score (γk)

of the k-th join tuple is higher than the estimated k-th

score (γk), i.e., γk > γk. Algorithm 2 may overestimate

the number of join tuples, which in turn leads to the

underestimation of the score of the k-th join result. Even

though more than k results are produced, the correctness

of the algorithm is not guaranteed, because there may

exist join tuples with score in the interval [γk, γk] that

have not been retrieved.

Fortunately, both these situations can be easily detected by

checking the number of retrieved tuples, and comparing the

estimated score γk to the actual score γk of the k-th join tuple.

Then, these cases are efficiently handled, as described in the

following.

For the first case, the number of the missing values can

be computed as km = k − k′ and the bound estimation

(Algorithm 2) is invoked for a second time for k + km join

tuples. Notice that the number of joined tuples may again be

overestimated, leading to fewer than k join results. As long as

fewer than k total results have been obtained, another phase of

score bound estimation is required. When k join results have

been retrieved, either the correct result is already retrieved, or

the situation of the second case occurs.

For the second case, at least k join tuples have been

retrieved, but our algorithm must check whether there exist

join tuples with score in the interval [γk, γk] that have not

been retrieved. Since an upper bound of the score γk of the k-

th tuple is known, Algorithm 2 is slightly modified in order to

take as input the score γk and provide score bounds sufficient

to produce all join tuples that have scores smaller than or

equal to γk. Thus, if γ denotes the input score, the only minor

modification of Algorithm 2 is to replace the conditions of

line 15 by: γ ≤ t, and line 21 should return: {(ei, Li),γ}.

Obviously, as the bound estimation needs to be invoked

more than a single time, an incremental version of Algorithm 2

can be employed that resumes processing from its previous

state of termination. Then, in each score bound estimation

phase, only the additional histogram bins are retrieved. Due

to space limitations, we omit further implementation details of

the incremental algorithm as it is straightforward to implement.

B. The Generalized DRJN Algorithm

To address the aforementioned situations, we introduce a

generalized version of the DRJN algorithm. Algorithm 3

describes the distributed rank join algorithm in the presence

of approximate statistics. The algorithm performs bound es-

timation, fetches tuples from the servers and executes rank

join (lines 6-12), similar to Algorithm 1. If more than k join

results are retrieved (line 13) and the score of the k-th result

(γk) is higher than the estimated score (γk) (lines 16-18), then

more tuples need to be fetched to ensure the correctness of the

result set. More precisely, all tuples that produce join results

with score in the interval [γk, γk] have to be retrieved. For this

purpose, a call to the overloaded function of bound estimation

is used (line 17), which takes as input the score γk instead of

a number of tuples k.

On the other hand, if k′ (< k) results are produced (lines

19-23), then the score bounds need to be updated in order to

get additional (k − k′) results. In both cases (lines 17, 22),

the incremental version of the bound estimation algorithm is

invoked. Algorithm 3 terminates and returns the result set,

Algorithm 3 The generalized DRJN algorithm.

1: Input: Relations Ri, k, Function f
2: Output: Ranked join result res
3: halt← false
4: tuplesRi

← ∅, 0 ≤ i < m
5: {(ei, Li), γk} ← BoundEstimation({Ri|i ∈ [0, m)}, k, f)
6: while (!halt) do
7: for (i ∈ [0 . . . m)) do
8: for (Pj ∈ Li) do
9: tuplesRi

← tuplesRi
+ Pj .getTuples(ei)

10: end for
11: end for
12: res← RankJoin({tuplesRi

})
13: if (res ≥ k) then
14: if (γk ≤ γk) then
15: halt← true
16: else
17: {(ei, Li), γk} ←BoundEstimation({Ri|i ∈ [0, m)}, γk,

f)
18: end if
19: else
20: km ← k − k′

21: k ← k + km

22: {(ei, Li), γk} ←BoundEstimation({Ri|i ∈ [0, m)}, km,
f)

23: end if
24: end while
25: return res

when k join tuples with score lower than γk are retrieved

(line 15).

Notice that Algorithm 3 returns the correct and complete

result set, at the expense of (potentially) more than a single

phase of bound estimation and tuple fetching. The following

theorem proves that as soon as any k join tuples have been

produced, Algorithm 3 terminates with at most one additional

phase of bound estimation.

Theorem 2: (Stopping Condition) After any k join tuples

have been produced, the generalized DRJN algorithm reports

the correct top-k join result set with at most one additional

phase of bound estimation.

Proof: Based on the proof of Theorem 1, DRJN reports

the correct top-k join result, if the k-th tuple τ = τ1 1 τ2 has a

score γk, such that: f(τ) = γk ≤ t = min{f(0, e2), f(e1, 0)}.

We distinguish two cases:

1) γk ≤ γk: From the last call of Algorithm 2, we have

γk ≤ t, therefore f(τ) = γk ≤ t. Consequently, the

algorithm halts and, since f(τ) ≤ t, the reported result

is correct. No additional phase of bound estimation is

required.

2) γk > γk: The call of Algorithm 2 in line 17 takes

as input γk and returns γk. After this phase of bound

estimation, the returned value γk has two properties,

namely γk ≤ t and γk = γk. Therefore, the algorithm

halts because γk = γk, and reports the correct result

because γk = γk ≤ t. Only a single additional phase of

bound estimation was required.

VI. DRJN WITH DISTRIBUTED STATISTICS

In several applications it is not feasible to maintain his-

tograms that describe all available data at a single master

server SM . One reason may be that servers are autonomous.

Another reason is that the server may become a bottleneck

when the query workload increases, since every querying

server SQ needs to access the master server for each posed

query, thereby affecting the scalability of the system [14].

As will be demonstrated presently, the DRJN framework is

independent of the storage model for histograms, and does

not rely on the existence of the master server. Therefore,

we propose an alternative storage model based on distributed

indexing of histograms over the servers.

In order to create and maintain the histograms in a dis-

tributed fashion, we organize the servers in an overlay network.

The histograms are created in a completely decentralized

manner and stored using a distributed hash table (DHT) that

defines the overlay network. The reason for using a DHT

as opposed to any other type of overlay network is mainly

because DHTs provide guarantees for efficient retrieval, with

logarithmic cost with respect to the network size. In addition,

DHTs offer advantages with respect to scalability as well as

fault tolerance. The DHT provides a simple interface that

consists of put(key, value) and get(key) functions. A hash

function h() is used to hash histogram bins to servers. Any

DHT can be employed to realize our framework, however

in our examples and implementation we use Chord [15] as

the underlying DHT. Notice that our algorithm for bound

estimation is applicable in the case of distributed statistics,

by simply plugging in the appropriate get() function of the

DHT (line 7 of Algorithm 2).

A. Distributed Histogram Indexing

Let us assume that b denotes the number of bins for each

join attribute. We assume that each histogram HRi

vz
has the

same number of bins. Obviously this is not a requirement,

but we use it for ease of presentation. We can define a total

ordering (enumeration) of relations and histogram bins. Any

bin of the histogram that belongs to a particular relation is

assigned a unique identifier ℓ, which belongs to the range of

values ℓ ∈ [0 . . . m × n × b). The j-th bin HRi

vz
[j] of the z-th

histogram of the i-th relation is assigned the unique identifier:

ℓ(i, z, j) = i × n × b + z × b + j.

The hash function maps each bin to a server SH and is

defined as:

h() : [0 . . . m × n × b) → [0 . . . NS), such as

h(HRi

vz
[j]) = ℓ(i, z, j) mod NS

In a nutshell, each server adds its own piece of statistics

to the network, by placing bins of histograms (of its own

data) to specific servers, according to an appropriate hash

function h(), as shown in Fig. 5. This does not compromise

server autonomy, since only metadata (statistics) of restricted

size are indexed by the DHT. As several servers may store

tuples of same relation and their scoring values may belong

to the same histogram bin, SH aggregates the information in

the individual bins and maintains the total number of tuples,

{S
2
}

60-79

{S
2
}

40-59

{S
2
}

{S
2
}

{S
2
}

{S
2
}

{S
2
}

60-79

40-59

20-39

S
24

S
20

S
10

S
2

S
28

20 40 60 80

1
2
3

CPU4

1

3

2

1

0-19

1
0-19

{S
2
}

20-39
3

2

1

price

#tuples
1 0

2 4

2 4

3 2

3 2

1 0

2 3

0 00-19

20-39

40-59

60-79

C
P
U

H
a
rd
D
is
k

M
o
n
it
o
r

D
V
D
-R
W

2-dim histogram

Fig. 5. Distributed indexing of histogram bins in Chord.

as well as the list of servers that store the respective tuples.

Notice that the hash function may use a coarse partitioning of

the score domain, while the servers create bins independently

with the only restriction being that each bin is completely

contained within one partition used in hashing.

In addition, SH maintains the individual histogram bins, in

order to efficiently handle updates of servers. Maintenance

of histograms follows a soft-state approach, similar to the

technique employed in [16].

Additionally, standard techniques used for load balanc-

ing [17] and replication in DHTs [18] can be used in the

DRJN framework. Another plain solution is to employ mul-

tiple hash functions to share the load to multiple servers.

B. Reducing the Cost of Bound Estimation

The technique used for distributed indexing of the his-

tograms uses as its basic indexing unit a histogram bin.

In many situations, retrieval of the histograms during query

execution is improved by enabling batch access to multiple

consecutive histogram bins using a single message (as already

described in Section IV-D). For this purpose, an alternative

indexing scheme is required that intentionally places groups

of bins to the same server. Although several alternatives for

grouping histogram bins do exist, we demonstrate how the

indexing can be adapted to support queries similar to query Q2
(see Fig. 1), which are very common in practical applications1.

Such queries restrict the values vz of the join attribute(s)

using selection predicates. In the case that the observed query

workload in the system consists mainly of queries like Q2 that

refer to different selection predicates, it is beneficial to group

bins by their corresponding vz value and place them on the

same server.

The alternative indexing scheme of bins in the DHT is

implemented by simply changing the bins enumeration. In

particular, all bins that belong to the histogram of joining value

vz are assigned the same unique identifier. Algorithm 2 can

be easily adapted to support accessing histogram bins in a

batch. In each iteration, instead of requesting one bin of each

histogram HRi

vz
, a group consisting of c bins is requested. In

1We emphasize that the particular grouping of bins is used merely as a
showcase, and other groupings can be supported by the DRJN framework
by adapting the indexing scheme.

SELECT *
FROM Customers C, Suppliers S
WHERE C.product = S.product
 AND C.product = ’CPU’
 AND S.location = ’New York’
ORDER BY (C.price+S.discount)
LIMIT k

SELECT *
FROM Customers C, Suppliers S, Factory F
WHERE C.product = S.product
 AND S.location = F.location
 AND C.product = ’CPU’
 AND S.location = ’New York’
ORDER BY (C.price+S.discount+F.quality)
LIMIT k(a) (b)

Fig. 6. Query with: (a) additional predicates, (b) multiple join attributes.

this way, we can reduce communication cost, by using one

message to transmit a group of bins, instead of one bin.

VII. SUPPORT FOR MORE COMPLEX QUERIES

In this section, we examine the case of more complex

queries, which are commonly encountered in practice. In

particular, we demonstrate that our framework supports such

queries by means of the generalized DRJN algorithm.

A. Queries with Additional Predicates

So far, our examples and algorithms assumed that selection

predicates were applied only on the join attributes. However,

quite often a query may contain additional predicates on other

(non-join) attributes. In the following, we show that the gen-

eralized DRJN framework supports such queries effectively.

As an example, consider the query in Fig. 6(a) which uses a

predicate on attribute location of relation S. Notice that any

other attribute of S could be used in the query instead of

location. Obviously, we can no longer assume the existence

of a histogram that captures the distribution of the score values

per joining attribute of relation S for the tuples that S.location

= ’New York’ holds. Such an assumption would make the

number of required histograms explode, since the possible

combinations of predicates may be huge.

Instead, our premise is to perform bound estimation using

only the histogram on Discount and Product, similarly to the

previous sections. Algorithm 2 for bound estimation cannot be

employed, as its derived bounds would not be sufficient for

retrieving the top-k join results. This is because the estimated

number of join tuples overestimates the actual number of join

tuples that satisfy the predicate on S.location. Clearly, this is

a case of approximate statistics. Therefore, if we employ the

generalized DRJN algorithm (without any modifications) that

handles approximate statistics, then we can effectively process

the query.

B. Queries with Multiple Join Attributes

In the general case, different attributes of relation Ri can

be used as join attributes in different queries. Therefore, it is

natural to index one histogram for each join attribute of Ri.

Then, for any query that uses a single join attribute of Ri,

Algorithm 1 can be applied to produce the correct result. This

corresponds to queries, such as Q1 and Q2, that have been

examined so far in previous sections.

Nevertheless, if more than one join attributes of Ri appear

in the same query, then the correctness of Algorithm 1 is not

guaranteed. For example, consider the query in Fig. 6(b) that

uses two join attributes product and location of S. Let us

assume the existence of histograms on product and discount,

and location and discount. For instance, the first histogram

provides information on the number of tuples of S that have

a score (discount) in a particular range and refer to a specific

product (e.g. ’CPU’). However, given these histograms, it is

not possible to infer how many tuples of those belong to a

particular location (e.g. ’New York’). Thus, the number of

tuples that satisfy both join conditions cannot be estimated

accurately.

In order to have enough information to compute the exact

number of join tuples, a histogram is required that captures

the number of tuples for any combination of join values of

different join attributes. Unfortunately, as the number of poten-

tial join attributes increases, the number of such combinations

grows rapidly. Thus, this solution becomes quite costly in

practice. Instead, in the following, we show how the existing

histograms can be used to estimate the number of join tuples.

The proposed solution is to take the minimum value of the

bins for ’CPU’ and ’New York’ as the number of estimated

join tuples. This is because in the best case these tuples

will have both values ’CPU’ and ’New York’. Therefore, the

estimated number of join tuples will be an overestimation of

the real number of join tuples. Consequently, the generalized

DRJN algorithm can be applied to retrieve the complete and

correct result set.

VIII. EXPERIMENTAL EVALUATION

In this section, we provide an extensive experimental evalu-

ation of our proposed framework. We implemented in Java all

algorithms and simulated the server interconnections. In all

experiments, we adopt the more challenging setup that uses

distributed statistics, which incurs higher cost of estimation

when compared to using a single master server. The DHT

employed in our experiments is Chord [15].

A. Experimental Setup

Datasets and queries. We use the following synthetic data

distribution for generating the scoring attributes of relations:

a) uniform (UN), and b) skewed (zipf distribution) with

varying parameter of skewness 0.5 and 1, denoted as ZI0.5

and ZI1.0 respectively. After data generation, the tuples are

assigned to servers uniformly at random. We evaluate two

generic types of queries Q1 and Q2. We use the weighted

sum function as scoring function, and each query differs from

another, due to the random generation of different weights. In

all cases, 100 queries of each type are generated at random

and we present average results in all charts.

Comparative evaluation. We compare our distributed

bound estimation framework against a bound estimation ap-

proach based on sampling (denoted as SB), which is the

state-of-the-art for ranked join processing in highly distributed

systems [3]–[5]. SB estimates score bounds by examining only

local data tuples on the querying server SQ, and then SB

retrieves tuples from all servers using the estimated bounds.

In addition, we study the effect of different rank join

strategies on the performance of the DRJN framework. We

use symmetric join evaluation (denoted as DRJN) and the

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 100 200 300 400 500 600 700 800 900 1000

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s

top-k

DRJN(est)

DRJN(res)

DRJN(total)

SB(total)

(a) Number of messages.

 1

 10

 100

 1000

 10000

 100000

 1 100 200 300 400 500 600 700 800 900 1000

E
s
ti
m

a
te

d
 S

c
o
re

top-k

DRJN

SB

(b) Estimated scores.

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1 100 200 300 400 500 600 700 800 900 1000

N
u
m

b
e
r

o
f
re

tr
ie

v
e
d
 t
u
p
le

s

top-k

DRJN

SB

(c) Retrieved tuples.

 20

 40

 60

 80

 100

 1 100 200 300 400 500 600 700 800 900 1000

P
e
rc

e
n
ta

g
e
 o

f
tu

p
le

s
 p

ru
n
e
d

top-k

DRJN

SB

(d) Percentage of tuples pruned.

Fig. 7. Comparative performance of DRJN and SB for Q1, s=0.02 and zipfian dataset (ZI1.0).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 100 200 300 400 500 600 700 800 900 1000

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s

top-k

DRJN(est)

DRJN(res)

DRJN(total)

SB(total)

(a) Number of messages.

 1

 10

 100

 1000

 10000

 100000

 1 100 200 300 400 500 600 700 800 900 1000

E
s
ti
m

a
te

d
 S

c
o
re

top-k

DRJN

SB

(b) Estimated scores.

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1 100 200 300 400 500 600 700 800 900 1000

N
u
m

b
e
r

o
f
re

tr
ie

v
e
d
 t
u
p
le

s

top-k

DRJN

SB

(c) Retrieved tuples.

 20

 40

 60

 80

 100

 1 100 200 300 400 500 600 700 800 900 1000

P
e
rc

e
n
ta

g
e
 o

f
tu

p
le

s
 p

ru
n
e
d

top-k

DRJN

SB

(d) Percentage of tuples pruned.

Fig. 8. Comparative performance of DRJN and SB for Q2, s=0.06 and zipfian dataset (ZI0.5).

HRJN* join strategy (denoted as DRJN *). Furthermore, we

explore the quality of the results obtained using the variant of

our framework that employs approximate statistics.

Metrics. Our metrics include: a) the number of messages

required for score bound estimation and result retrieval, b) the

estimated score bounds, c) the number of retrieved tuples, d)

the percentage of pruned tuples at each server locally, and e)

(in the case of approximate statistics) the quality of the results

in terms of completeness (recall) after a single phase of bound

estimation. We point out that all metrics used can be accurately

measured using simulations, since they are independent of

the actual networking environment used for deployment. This

makes the method of simulation particularly appropriate for

our experimental evaluation, as it additionally facilitates the

scalability study of our framework.

Parameters. Unless mentioned explicitly, we use the fol-

lowing default setup in our experiments: number of servers

NS=1024, cardinality of each relation |Ri|=1M, join selectiv-

ity s=0.02, uniform dataset, query Q2 and the join strategy is

symmetric join. We vary the network size (NS) from 512 to

4096 servers. We also vary the join selectivity (s) from 2·10−3

to 10−1. In order to test the effect of k we vary its value from

1 to 1000. We emphasize that the size of the relations does

not affect the performance of DRJN , as the size of the result

set is always k, therefore we do not vary the values of |Ri|.

B. Experimental Results

Experiments with Query Q1. In Fig. 7, we examine the

comparative performance of DRJN and SB for zipfian dataset

with skew equal to 1 (ZI1.0) and join selectivity s=0.02. Recall

that query Q1 does not have any selection predicate. Thus,

processing Q1 is quite demanding, since any join combination

of any predicate value can appear in the top-k results.

First, in Fig. 7(a), we show the number of messages that

DRJN requires for estimation (DRJN (est)), for retrieval of

results (DRJN (res)), as well as the total number of messages

(DRJN (total)). In addition, we depict the total number of

messages for SB (SB (total)). Notice that the total cost of SB

is due to result retrieval, as SB has zero cost for estimation

because it uses only local data. DRJN needs always almost

5 times fewer messages than SB for queries with k ≤ 500,

which are more common in practice. We observe that for Q1
the cost of estimation dominates the total cost of DRJN . This

is attributed to the fact that the estimation of DRJN is accurate

enough to prune many tuples during result retrieval in contrast

to SB , as will be shown in Fig. 7(c). Also notice that the cost

of estimation remains practically stable as k increases.

In addition, we show the estimated score bounds of each

algorithm in Fig. 7(b). As we are interested for top-k join

results with minimum scores, the estimated score values

should be as small as possible. The estimation of DRJN is

almost two orders of magnitude better than SB . This enables

DRJN to retrieve only few tuples that have scores smaller than

the estimated score bounds, and it explains the significant gain

in terms of number of messages attained by DRJN . For the

same experiment, we also report the number of tuples retrieved

by each approach in Fig. 7(c). The loose bound estimation

of SB results in the retrieval of too many tuples, which

makes the networking cost excessive. Moreover, the individual

processing cost at each server increases, as redundant work is

performed to retrieve unnecessary tuples. In contrast, DRJN

needs to retrieves 3 orders of magnitude fewer tuples, to

produce the top-k join result. This gain is because: a) the

estimated score bound is tighter, thus reducing the number

of tuples that are retrieved from each server, and b) only a

limited set of servers that actually store tuples with scores

smaller than the bound are contacted. In Fig. 7(d), we also

measure the percentage of tuples pruned at servers due to

the estimated scores. In all cases, DRJN manages to prune

almost 100% of the local tuples that do not affect the top-

k join result, while SB performs worse and its performance

deteriorates with increasing values of k.

We repeated the same experiment using the zipfian (ZI0.5)

and the uniform (UN) datasets (figures omitted due to space

limitations). In all setups, DRJN consistently outperforms SB

and the relative gain is always high.

Experiments with Query Q2. In the following, we test the

performance of our framework using query Q2, which uses a

predicate additionally to the join condition. Fig. 8 depicts the

results for synthetic dataset (ZI0.5) and we set s=0.06.

As shown in Fig. 8(a), DRJN needs always one order of

magnitude fewer messages than SB in total for processing

the top-k join. We observe that DRJN can process Q2 with

smaller cost than Q1, when comparing to Fig. 7(a), because

the presence of a predicate in Q2 reduces the number of

candidate join tuples that may appear in the top-k results. The

chart in Fig. 8(b) shows the estimated scores. Again, DRJN

clearly outperforms the competitive method for all values of

k. In Fig. 8(c), the number of retrieved tuples is depicted.

DRJN needs to retrieve about two orders of magnitude fewer

tuples, thus providing a feasible solution compared to SB ,

which needs to transfer too many tuples. Finally, in Fig. 8(d),

the percentage of pruned tuples is shown. DRJN manages

to prune eagerly almost 98% of the local tuples that qualify

the predicate condition of Q2, thereby also saving processing

costs at individual servers.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 100 200 300 400 500 600 700 800 900 1000

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s

top-k

DRJN(est)

DRJN(res)

DRJN(total)

SB(total)

(a) Number of messages.

 1

 10

 100

 1000

 10000

 100000

 1 100 200 300 400 500 600 700 800 900 1000

E
s
ti
m

a
te

d
 S

c
o
re

top-k

DRJN, s=0.02

SB, s=0.02

DRJN, s=0.1

SB, s=0.1

(b) Estimated scores.

Fig. 9. Experiments with uniform (UN) dataset and Q2.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s

top-k

DRJN(est)

DRJN(res)

DRJN(total)

SB(total)

(a) Number of messages.

 1

 10

 100

 1000

 10000

 100000

 1 10 20 30 40 50 60 70 80 90 100

E
s
ti
m

a
te

d
 S

c
o
re

top-k

DRJN, s=0.02

SB, s=0.02

DRJN, s=0.1

SB, s=0.1

(b) Estimated scores.

Fig. 10. Experiments with k ≤ 100, UN and Q2.

Experiments with Uniform (UN) data. In Fig. 9, we test

the performance of DRJN using a uniform dataset and Q2.

As shown in Fig. 9(a), we set the join selectivity to s=0.02.

Even though the uniform data distribution is not likely to

appear in real applications, we examine the uniform case

as it benefits the competitor sampling approach (SB). SB

performs best in the case of uniformity, while for skewed

datasets the local samples cannot accurately provide good

score estimates. However, we observe that DRJN is still more

efficient in terms of required number of messages by one

order of magnitude. In Fig. 9(b), we compare the estimated

scores for s=0.02 and s=0.1. Even in the case of the uniform

dataset, DRJN is more than one order of magnitude better in

estimating scores for all tested values of join selectivity.

Experiments with k ≤ 100. In Fig. 10, we examine the

case of smaller values of k, which are quite common in

practice. Again, we use the uniform dataset, in order to study

the setup where the competitor approach SB performs best.

In Fig. 10(a), we show the number of messages required

by each algorithm for processing the distributed top-k join

query. DRJN still outperforms SB even for smaller values

of k ≤ 100. In Fig. 10(b), we show the estimated scores of

each algorithm for different values of s=0.02 and s=0.1. SB

achieves its best estimates for s=0.1, however even in that case,

DRJN provides significantly more accurate score estimates,

as shown in the chart. In general, we conclude that the benefits

of DRJN over SB are sustained for smaller values of k.

Comparison of Join Strategies. We also compare the per-

formance of our framework using two different join strategies:

symmetric join (denoted DRJN) vs. HRJN* [7] (denoted

DRJN *) for Q2. First, in Fig. 11(a), we assess the accuracy

of estimation between DRJN and DRJN *. For all values of

k, DRJN * computes more accurate bounds. This is in accor-

dance with the results of centralized settings. In Fig. 11(b), the

improvement in score estimation is reflected in the reduced

number of transferred tuples by DRJN *. Thus, the tighter

scores computed by DRJN * reduce the communication costs

at query processing, by retrieving fewer tuples over the net-

work. Moreover, we depict in Fig. 11(c) the improvement

of DRJN * over DRJN in terms of number of messages

required for the estimation. This quantifies the cost of retrieval

of histogram bins, in order to estimate the scores. As shown

in the chart, DRJN * manages to significantly decrease the

number of messages required for bound estimation. The same

conclusion is drawn by inspecting Fig. 11(d) for the ZI0.5

dataset. The only difference is that in this case the absolute

number of messages is smaller than for the UN dataset.

Scalability with Network Size. In Fig. 12, we study the

scalability of our approach with respect to network size (from

512 to 4096 servers). We increase the size of each relation

to have the same number of tuples per server. The number of

tuples (|Ri|) in each relation that participates in query ranges

from 500K to 4M tuples. We set top-k=500, join selectivity

s=0.02, we use the uniform dataset and Q2.

First, we compare the quality of estimation in Fig. 12(a).

Again, our framework outperforms estimation based on sam-

pling by two orders of magnitude, irrespective of the network

size for both join strategies (DRJN or DRJN *). This verifies

the scalability of our framework with network size. These

benefits are also reflected in the number of retrieved tuples

(Fig. 12(b)) that each approach needs to transfer over the

network, in order to produce the correct top-k join result.

Our framework outperforms the approach based on sampling

consistently. We emphasize that the number of retrieved tuples

for producing the top-k join results is the dominant factor for

communication costs, therefore our approach scales gracefully

with increasing number of servers.

 20

 40

 60

 80

 100

 120

 140

 160

 1 100 200 300 400 500 600 700 800 900 1000

E
s
ti
m

a
te

d
 S

c
o
re

top-k

DRJN

DRJN*

(a) Estimated scores (UN).

 50

 100

 150

 200

 250

 300

 1 100 200 300 400 500 600 700 800 900 1000

N
u
m

b
e
r

o
f
re

tr
ie

v
e
d
 t
u
p
le

s

top-k

DRJN

DRJN*

(b) Retrieved tuples (UN).

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 100 200 300 400 500 600 700 800 900 1000

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s
 f
o
r

e
s
ti
m

a
ti
o
n

top-k

DRJN

DRJN*

(c) Cost of estimation (UN).

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 100 200 300 400 500 600 700 800 900 1000

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s
 f
o
r

e
s
ti
m

a
ti
o
n

top-k

DRJN

DRJN*

(d) Cost of estimation (ZI0.5).

Fig. 11. Comparative performance of different join strategies (DRJN vs. DRJN *) for Q2.

 1

 10

 100

 1000

 10000

 100000

 512 1024 2048 4096

E
s
ti
m

a
te

d
 S

c
o
re

Number of Servers

DRJN

DRJN*

SB

(a) Estimated scores.

 1

 10

 100

 1000

 10000

 100000

 1e+006

 512 1024 2048 4096

N
u
m

b
e
r

o
f
re

tr
ie

v
e
d
 t
u
p
le

s

Number of Servers

DRJN

DRJN*

SB

(b) Retrieved tuples.

 0

 20

 40

 60

 80

 100

 512 1024 2048 4096

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s
 f
o
r

e
s
ti
m

a
ti
o
n

Number of Servers

DRJN

DRJN*

(c) Cost of estimation.

 0

 100

 200

 300

 400

 500

0.02 0.01 0.002

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s
 f
o
r

e
s
ti
m

a
ti
o
n

Join selectivity (s)

DRJN

DRJN*

(d) Varying join selectivity.

Fig. 12. Scalability study with network size and varying join selectivity.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

R
e
c
a
ll

top-k

Group 2

Group 5

Group 10

(a) Uniform dataset (UN).

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

R
e
c
a
ll

top-k

Group 2

Group 5

Group 10

(b) Zipf dataset (ZI0.5).

 50

 100

1 2 5 10
C

o
n
s
tr

u
c
ti
o
n
 C

o
s
t
(%

)
Number of grouped (approximated) bins

(c) Savings in construction cost.

Fig. 13. Experiments with approximate statistics.

Furthermore, we compare the number of messages required

for estimation only for the two join strategies employed in our

framework. As sampling does not need to exchange messages

in order to make the estimate, it is not included in the chart

of Fig. 12(c). Notice that our framework requires only a

limited set of messages for performing the estimation, and

this number is not significantly affected by the actual size of

the network. However, this overhead is trivial compared to the

number of tuples transferred by the competitor approach based

on sampling. This also demonstrates the scalability of our

approach. Moreover, in terms of the individual join strategies,

DRJN * requires fewer messages to estimate the necessary

score bounds that produce top-k join results.

In addition, in Fig. 12(d), we study the effect of varying

the join selectivity (s) on the number of messages required

for estimation. We use 1024 servers, top-k=500, the uniform

dataset and Q2. We observe that for small values of join selec-

tivity (2 ·10−3), both join strategies require more messages for

estimation, because the finding the top-k join results becomes

harder. However, the comparative gain of DRJN * over DRJN

also increases, and for s = 2 · 10−3, DRJN * saves more than

25% of the cost of DRJN . This demonstrates that DRJN * is

a viable solution for setups with small values of s.

Experiments with Approximate Histograms. In Fig. 13,

we present the results obtained using the approximate statis-

tics. We test three different numbers (2, 5 and 10) of bins that

are grouped into one using the uniform frequency assumption,

as described in Section V. We evaluate the performance of

the DRJN framework with symmetric join, by measuring

the recall achieved after a single phase of bound estimation.

Recall quantifies the number of retrieved join results that

actually belong to the real top-k join results. We stress that

the algorithm produces the correct result and we plot the recall

achieved after the first phase of bound estimation only.

In Fig. 13(a), we use the uniform dataset. As depicted in

the chart, the algorithm achieves high recall values almost

for all values of k. This is due to the fact that the uniform

distribution allows a good approximation. Therefore, we also

try the performance of our algorithm using a skewed dataset.

We use the zipfian distribution ZI0.5, in order to measure the

effect of approximate statistics in a skewed dataset. Fig. 13(b)

shows that for ’Group 2’ the recall is always over 80% after

the first phase of estimation, regardless of k. Also for the

other setups, we manage to achieve significant recall values,

especially for higher values of k. Then, in Fig. 13(c), we show

the savings in construction costs, when grouping histogram

bins. The cost relates to the number of messages required to

index the histograms in the DHT. For the case of ’Group 2’,

we save almost 50% of the construction cost required when

no grouping is used.

IX. RELATED WORK

Rank-aware query processing and optimization [8], [19]–

[21] has attracted much interest in the database community

lately. Fagin et al. [1] focus on equi-joins of ranked data

when the joining attribute is a unique identifier present in all

relations. KLEE [2] is proposed to efficiently handle the same

query type in a much more distributed setting. However, in this

work, we are interested in a generalization of this problem,

focusing on arbitrary user-defined join attributes between

relations. It is not straightforward how to adapt Fagin’s algo-

rithms nor KLEE to address this problem. A variety of rank

join algorithms have been proposed for centralized settings,

including J∗ [9], NRA-RJ [22], rank-join algorithm [7], and

DEEP [10].

Despite the importance of rank join query processing, only

few studies focus on widely distributed data sources, including

PJoin [3], [4] and the approach described in [5]. All those

approaches are based on sampling to estimate score bounds

that prune tuples which cannot belong to the result set. This

is the state-of-the-art in distributed rank join processing.

In contrast, we propose an approach that exploits statistics

in the form of histograms, which can be stored in either a

centralized or distributed manner, in order to derive tight score

bounds that eagerly prune irrelevant tuples. Hence, we propose

query processing algorithms that do not rely on sampling, thus

making our approach robust independently of the underlying

data distribution.

We recognize existing work on joins in P2P systems, such

as PeerDB [23], PIER [16], or continuous joins [24]. However,

these systems cannot be straightforwardly adapted to support

rank joins. Distributed statistics in the form of equi-width

histograms have also been used to support different queries or

operations, such as distributed top-k queries [2] or cardinality

estimation [25]. A recent related work is [26], however the

focus is on the overhead of accessing each data source.

X. CONCLUSIONS

In this paper, we studied rank join query processing in

highly distributed environments. Our framework (DRJN) re-

lies on statistics that enable the establishment of a bound for

the score value of each relation that is sufficient to retrieve the

necessary tuples for producing the final results. The DRJN

framework exploits the stored statistics and estimates score

bounds that guarantee the correctness of the result. Moreover,

we generalized our framework to support approximate statis-

tics, still producing the correct result, at the expense of more

than a single phase of score estimation. In addition, we showed

that DRJN is applicable even when the statistics are stored in

a distributed manner. Finally, we demonstrated the efficiency

of our framework through extensive experiments.

ACKNOWLEDGMENT

Christos Doulkeridis was supported under the Marie-Curie IEF

grant number 274063. Akrivi Vlachou was partially supported by

the Greek State Scholarship Foundation (IKY). Yannis Kotidis was

partially supported by the Basic Research Funding Program, AUEB.

REFERENCES

[1] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” in Proceedings of PODS, 2001, pp. 102–113.

[2] S. Michel, P. Triantafillou, and G. Weikum, “KLEE: A framework for
distributed top-k query algorithms,” in Proceedings of VLDB, 2005, pp.
637–648.

[3] K. Zhao, S. Zhou, K.-L. Tan, and A. Zhou, “Supporting ranked join in
peer-to-peer networks,” in DEXA Workshops, 2005, pp. 796–800.

[4] K. Zhao, S. Zhou, and A. Zhou, “Towards efficient ranked query
processing in peer-to-peer networks,” in Cognitive Systems, 2005, pp.
145–160.

[5] J. Liu, L. Feng, and C. He, “Semantic link based top-k join queries in
P2P networks,” in Proceedings of WWW, 2006, pp. 1005–1006.

[6] D. Kossmann, “The state of the art in distributed query processing,”
ACM Comput. Surv., vol. 32, no. 4, pp. 422–469, 2000.

[7] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid, “Supporting top-k join
queries in relational databases,” in Proceedings of VLDB, 2003, pp. 754–
765.

[8] I. F. Ilyas, W. G. Aref, A. K. Elmagarmid, H. G. Elmongui, R. Shah,
and J. S. Vitter, “Adaptive rank-aware query optimization in relational
databases,” ACM Trans. Database Syst., vol. 31, no. 4, pp. 1257–1304,
2006.

[9] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter,
“Supporting incremental join queries on ranked inputs,” in Proceedings

VLDB, 2001, pp. 281–290.
[10] K. Schnaitter, J. Spiegel, and N. Polyzotis, “Depth estimation for ranking

query optimization,” in Proceedings of VLDB, 2007, pp. 902–913.
[11] A. Aboulnaga and S. Chaudhuri, “Self-tuning histograms: building

histograms without looking at data,” in Proceedings of SIGMOD, 1999,
pp. 181–192.

[12] D. Donjerkovic, R. Ramakrishnan, and Y. Ioannidis, “Dynamic his-
tograms: Capturing evolving data sets,” in Proceedings of ICDE, 2000,
p. 86.

[13] V. Poosala, V. Ganti, and Y. E. Ioannidis, “Approximate query answering
using histograms,” IEEE Data Eng. Bull., vol. 22, no. 4, pp. 5–14, 1999.

[14] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi, “Indexing multi-
dimensional data in a cloud system,” in Proceedings of SIGMOD, 2010,
pp. 591–602.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of SIGCOMM, 2001, pp. 149–160.

[16] R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo, P. Maniatis,
T. Roscoe, S. Shenker, I. Stoica, and A. R. Yumerefendi, “The archi-
tecture of PIER: an internet-scale query processor,” in Proceedings of

CIDR, 2005, pp. 28–43.
[17] B. Godfrey, K. Lakshminarayanan, S. Surana, R. M. Karp, and I. Stoica,

“Load balancing in dynamic structured P2P systems,” in Proceedings of

INFOCOM, 2004.
[18] R. Akbarinia, E. Pacitti, and P. Valduriez, “Data currency in replicated

DHTs,” in Proceedings of SIGMOD, 2007, pp. 211–222.
[19] N. Bruno, S. Chaudhuri, and L. Gravano, “Top-k selection queries over

relational databases: Mapping strategies and performance evaluation,”
ACM Trans. Database Syst., vol. 27, no. 2, pp. 153–187, 2002.

[20] C.-M. Chen and Y. Ling, “A sampling-based estimator for top-k selection
query,” in Proceedings of ICDE, 2002, pp. 617–627.

[21] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-k query
processing techniques in relational database systems,” ACM Computing

Surveys, vol. 40, no. 4, 2008.
[22] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid, “Joining ranked inputs

in practice,” in Proceedings VLDB, 2002, pp. 950–961.
[23] W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou, “PeerDB: a P2P-based

system for distributed data sharing,” in Proceedings of ICDE, 2003, pp.
633–644.

[24] S. Idreos, E. Liarou, and M. Koubarakis, “Continuous multi-way joins
over distributed hash tables,” in Proceedings of EDBT, 2008, pp. 594–
605.

[25] N. Ntarmos, P. Triantafillou, and G. Weikum, “Counting at large:
Efficient cardinality estimation in internet-scale data networks,” in
Proceedings of ICDE, 2006, p. 40.

[26] B. Arai, G. Das, D. Gunopulos, V. Hristidis, and N. Koudas, “An
access cost-aware approach for object retrieval over multiple sources,”
in Proceedings of VLDB, 2010.

