
Branch-and-Bound Algorithm for Reverse Top-k Queries

Akrivi Vlachou1,2, Christos Doulkeridis1,3, Kjetil Nørvåg1 and Yannis Kotidis4

1Norwegian University of Science and Technology (NTNU), Trondheim, Norway
2Institute for the Management of Information Systems, R.C. “Athena”, Athens, Greece

3University of Piraeus, Piraeus, Greece
4Athens University of Economics and Business (AUEB), Athens, Greece

{vlachou,cdoulk,noervaag}@idi.ntnu.no, kotidis@aueb.gr

ABSTRACT

Top-k queries return to the user only the k best objects based on
the individual user preferences and comprise an essential tool for
rank-aware query processing. Assuming a stored data set of user
preferences, reverse top-k queries have been introduced for retriev-
ing the users that deem a given database object as one of their top-k
results. Reverse top-k queries have already attracted significant in-
terest in research, due to numerous real-life applications such as
market analysis and product placement. Currently, the most effi-
cient algorithm for computing the reverse top-k set is RTA. RTA
has two main drawbacks when processing a reverse top-k query:
(i) it needs to access all stored user preferences, and (ii) it cannot
avoid executing a top-k query for each user preference that belongs
to the result set. To address these limitations, in this paper, we iden-
tify useful properties for processing reverse top-k queries without
accessing each user’s individual preferences nor executing the top-
k query. We propose an intuitive branch-and-bound algorithm for
processing reverse top-k queries efficiently and discuss novel op-
timizations to boost its performance. Our experimental evaluation
demonstrates the efficiency of the proposed algorithm that outper-
forms RTA by a large margin.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Query processing

General Terms

Algorithms, Experimentation, Performance

Keywords

Reverse top-k query, branch-and-bound algorithm

1. INTRODUCTION
Given a database of objects described by a set of numerical scor-

ing attributes and a user with a preference function defined over
these attributes, a top-k query retrieves the k objects with best score
for the particular preference function. In the model that is widely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

p
1

p
5 9.3

8.4

Huey’s top-2

id score

p
2

p
4

p
3

p
6

p
5

Hotel database

id rating stars

p
1 9 3

27
8 5
8 4

10 3

6 4

User preferences

user w[rating] w[stars]

Huey

Dewey
0.9

Louie

0.1
0.80.2

0.5 0.5

p
4

p
3 5.6

4.8

Dewey’s top-2

id score

p
5

p
3 6.5

6.5

Louie’s top-2

id score

DATABASETOP-k RESULTS REVERSE TOP-k RESULTS

p
1
’s reverse top-2

Huey 0.9 0.1

p
3
’s reverse top-2

p
5
’s reverse top-2

Huey 0.9 0.1

p
4
’s reverse top-2

Dewey 0.2 0.8

Dewey 0.2 0.8

Louie 0.5 0.5

Louie 0.5 0.5

Figure 1: Example of reverse top-k queries.

used in related work [4, 10] and in practice, the users express their
preferences through linear top-k queries, which are defined by as-
signing a weight to each of the scoring attributes, indicating the im-
portance of each attribute to the user. Assuming a stored data set of
user preferences, reverse top-k queries have been proposed [19,20]
to retrieve the user preferences that make a given object belong to
the respective top-k result set. From the perspective of a manufac-
turer, it is important to identify the customers who are potentially
interested in her products and to estimate the visibility of a product
based on the different user preferences for which it appears in the
top-ranked positions. Hence, reverse top-k queries comprise an es-
sential tool for business analysis, allowing manufacturers to assess
the impact of their products in the market based on the competition.

More formally, a reverse top-k query returns for a point q and a
positive integer k, the set of linear preference functions (in terms
of weighting vectors) for which q is contained in their top-k re-
sult. Consider for example a database containing information about
different hotels as well as user preferences, as depicted in Fig-
ure 1. For each of the six hotels, the rating and the number of stars
are recorded, and maximum values on each attribute are prefer-
able1. The database also stores the preferences of three users (Huey,
Dewey and Louie) in terms of weights on each attribute. Different
users may have different preferences about a potential hotel. For in-
stance, Huey prefers hotels with high rating values, whereas Dewey
is interested in hotels with many stars. Louie is indifferent or val-
ues equally rating and stars. On the left part of the figure, the top-2
hotels are depicted for each user along with their scores. On the
right part, the reverse top-2 results are shown for the hotels. Notice

1In the remaining of this paper, minimum values will be preferable,
without loss of generality.

that p2 and p6 have empty reverse top-2 result sets, i.e., they do not
belong to the top-2 list of any user.

Currently, the most efficient algorithm for computing the reverse
top-k set is the RTA algorithm [19]. RTA has two main draw-
backs when processing a reverse top-k query: (i) it needs to access
all stored user preferences, and (ii) it cannot avoid executing a top-
k query for each user preference (determined by the corresponding
user weights) that belongs to the result set. As a result, the perfor-
mance of RTA is sensitive to the cardinality of the reverse top-k
result; for queries with result sets of high cardinality RTA often
becomes inefficient. Since we expect that reverse top-k queries
will be posed for query points that are highly ranked, and therefore
have a result set of high cardinality, this drawback severely limits
the practicality of RTA.

To alleviate the shortcomings of RTA, in this paper, we study the
conditions in which a set of weighting vectors (representing linear
preference functions) can be immediately added to the result set.
Therefore, we focus on whether a data point may be ranked higher
than the query point for a set of weighting vectors. In addition,
we address the question whether a set of weighting vectors can be
excluded from the reverse top-k result. Based on these properties,
we develop an efficient branch-and-bound algorithm assuming that
both data sets are indexed by multidimensional access methods.

The contributions of this paper are summarized here:

• We introduce useful properties for processing reverse top-k
queries without accessing each user’s individual preferences
nor executing the respective top-k query.

• We present a novel algorithm that processes sets of weighting
vectors, without having to examine each vector individually,
and use this algorithm as basic building block for our reverse
top-k algorithms.

• We propose a framework for reverse top-k query process-
ing that employs the branch-and-bound methodology and ex-
ploits the introduced properties.

• We present two optimizations of the basic branch-and-bound
algorithm (BBR) that use result sharing (BBR∗) and an ag-
gregate R-tree (BBRA) to boost its performance.

• We conduct a thorough experimental evaluation that demon-
strates the efficiency of our proposed algorithms.

The rest of this paper is structured as follows: Section 2 reviews
related work. Section 3 presents some preliminaries, while Sec-
tion 4 introduces the theoretical properties. Then, in Section 5, we
present how sets of weighting vectors can be processed, without
having to examine each one individually. Section 6 describes the
branch-and-bound algorithm and its optimizations. In Section 7,
we present the results of the experimental evaluation, and we con-
clude in Section 8.

2. RELATED WORK
Recently, the support of efficient top-k query processing has at-

tracted much attention in the database research community. As re-
verse top-k queries are inherently related to top-k query processing,
we summarize some representative work here. Onion [4] precom-
putes and stores the convex hulls of data points in layers. Then,
the evaluation of a linear top-k query is accomplished by process-
ing the layers inwards, starting from the outmost hull. Prefer [10]
uses materialized views of top-k result sets, according to arbitrary
scoring functions. During query processing, Prefer selects the ma-
terialized view corresponding to the function that is most similar

to the query scoring function, and examines a subset of the data
elements in this view. Efficient maintenance of materialized views
for top-k queries is discussed in [26]. The robust index [24] is
a sequential indexing approach that improves the performance of
Onion [4] and Prefer [10]. The main idea is that a tuple should be
placed at the deepest layer possible, in order to reduce the probabil-
ity of accessing it at query processing time, without compromising
the correctness of the result. Fagin et al. [7] introduce TA and NRA
algorithms for computing the top-k queries over multiple sources,
where each source provides a ranking of a subset of attributes only.
Variations of them have been proposed that try to improve some of
their limitations and have been studied in other application areas,
leading to various threshold-based algorithms [1, 5, 9, 14]. Branch-
and-bound processing of top-k queries has been studied in [17].

Reverse top-k queries [19, 20] have been proposed for assessing
the impact of a potential product in the market, based on the num-
ber of users that deem this product as one of their top-k products
according to their preferences. Recently, various applications of re-
verse top-k queries have appeared, including identifying the most
influential products [22], and monitoring the popularity of locations
based on user mobility [21].

Evaluation of multiple top-k queries has been studied in [8].
Given a data set of points and a set of ranking functions, the au-
thors propose some methods to compute the top-k for all functions
(all top-k query). The proposed methods exploit the fact that sim-
ilar queries share common results to avoid evaluating the top-k
queries one-by-one. The first algorithm (BINL) assumes that the
data points are indexed by a multidimensional index and the func-
tions are partitioned into groups based on their similarity. BINL
processes each group of functions separately and uses bounds in
order to avoid computing the exact score of the MBRs. Although
BINL reduces the score computations that are required to retrieve
the top-k sets of all functions, BINL does not support early ter-
mination, which means that the entire index of the data points has
to be traversed once for each group of functions. The second al-
gorithm (BLPTA) relies on materialized views. BLPTA answers
multiple top-k queries by traversing each view once and can termi-
nate early. In addition, the authors show that the proposed methods
can be used also for processing reverse top-k queries. Obviously,
if the result set for all top-k queries is known, it is trivial to find
the reverse top-k set of a query point. Nevertheless, as shown in
the experimental evaluation of [8], computing the all top-k query
instead of a reverse top-k query is more expensive and it is useful
only if the result of the all top-k query is maintained for answering
multiple reverse top-k queries. A recent approach for evaluating
multiple top-k queries has appeared in [27]. The proposed frame-
work can be employed to process reverse top-k queries efficiently,
however it requires to pre-process all top-k queries in W , and then
build an index over the k-th ranked objects of each query. In con-
trast, our approach does not require such heavy pre-processing, and
more importantly it avoids processing all top-k queries.

Different reverse query types, which take as input a data point
and aim to find the queries that have this data point in their result
set have been studied. Reverse nearest neighbor (RNN) queries
were originally proposed in [11]. An RNN query finds the set of
points that have the query point as their nearest neighbor. Recently,
reverse furthest neighbor queries [25] are introduced, that are sim-
ilar to RNN queries. The reverse skyline query [6, 13] identifies
customers that would be interested in a product based on the dom-
inance of the competitors products. In [3], the authors generalize
the concept of reverse queries and propose the inverse queries that
take as an input more than one data point. In particular, inverse

1

1

2 3 4 5 6 7 8 910

2
3
4
5
6
7
8
9

10

p
1

p
9

p
2

p
4

p7

p
8

p
10

p
3

p
6

p
5

d1

d2
e

1

e
2

e
4

e
5

e
6 e

7

(a) Data set S

w
2

1

1

2 3 4 5 6 7 8 910

2
3
4
5
6
7
8
9

10

p
1

p
9

p
2

p4 p7

p
8

p
10

p
3

p
6

p
5

d1

d2

w
1

(b) Reverse top-k query

Figure 2: Data set S and reverse top-k query.

range queries, inverse k-nearest neighbor queries, and inverse sky-
line queries are studied.

Several papers have proposed methods that aim to quantify the
impact of products in the market. DADA [12] aims to help manu-
factures position their products in the market, based on three types
of dominance relationship analysis queries. Creating competitive
products has been recently studied in [23]. Nevertheless in these
approaches, user preferences are expressed as data points that rep-
resent preferable products, whereas reverse top-k queries examine
user preferences in terms of weighting vectors. Miah et al. [15]
study a different problem, again from the perspective of manufac-
turers. The authors propose an algorithm that selects the subset
of attributes that increases the visibility of a new product. Cus-
tomer identification and product positioning has been recently stud-
ied in [2], where the attractiveness of a product is defined based on
the concept of reverse skyline query.

3. PRELIMINARIES
Let D denote a data space defined by a set of n dimensions

{d1, . . . , dn}. Let S denote a set of database objects on D with
cardinality |S|. Each dimension represents a numerical scoring at-
tribute. A database object can be represented as a point p ∈ S, such
that p = {p[1], . . . , p[n]}, where p[i] is a value on dimension di.
Thus, the values p[i] are numerical non-negative scores that evalu-
ate the corresponding attributes of database objects. Without loss
of generality, in this paper, we further assume that smaller score
values are preferable.

In this paper, we assume that the data set S is indexed by a mul-
tidimensional index, such as an R-tree. The R-tree groups together
nearby points in the data space and represents them by minimum
bounding rectangles (MBRs) in the next higher level of the tree. An
MBR is the smallest rectangle completely enclosing a set of points
and each MBR contains at least one data point. Each MBR m is
described by the coordinates of two of its opposite corners, namely
the lower-left corner (m.l) and the upper-right corner (m.u). An
intermediate entry ei corresponds to the minimum bounding rect-
angle (MBR) ei.m that encloses the entries of the lower level, while
a leaf entry corresponds to a data point. Figure 2(a) depicts an ex-
ample of a data set S indexed by an R-tree.

3.1 Top-k Queries
Top-k queries are defined based on a scoring function f that ag-

gregates the individual scores of an object into an overall score.
The most important and commonly used case of scoring functions
is the weighted sum function, also called linear. Each dimension
di has an associated query-dependent weight w[i] indicating di’s
relative importance for the query. The aggregated score fw(p) for

Symbols Description

D Data space
n Data dimensionality
S Data set of data points
W Data set of weighting vectors
V Subset of W
p[i] Value of point p on dimension i
q n-dimensional query point
w Weighting vector
m Minimum bounding rectangle (MBR)
ℓV (m) Lower bound of score of m based on V
uV (m) Upper bound of score of m based on V
q ≺V m q precedes m based on V
RTOPk(q) Reverse top-k result set

Table 1: Overview of symbols.

data point p is defined as a weighted sum of the individual scores:
fw(p) =

∑n

i=1
w[i] · p[i], where w[i] ≥ 0 (1 ≤ i ≤ n) and∑n

i=1
w[i] = 1. Since the weights represent the relative impor-

tance between different dimensions the assumption
∑n

i=1
w[i] = 1

does not influence the definition of top-k queries.

DEFINITION 1. (Top-k query): Given a positive integer k and

a user-defined weighting vector w, the result set TOPk(w) of the

top-k query is a set of points such that TOPk(w) ⊆ S,

|TOPk(w)| = k and ∀pi, pj : pi ∈ TOPk(w), pj ∈ S −
TOPk(w) it holds that fw(pi) ≤ fw(pj).

A delicate situation arises when two (or more) objects share the
same score for the k-th position. In this case, for simplicity reasons,
we assume that it suffices to report any one of them as k-th result.

3.2 Reverse Top-k Queries
Given a query object q, the reverse top-k query identifies all

weighting vectors for which q belongs to the top-k result set. The
formal definition of the reverse top-k query follows. Notice that
this definition corresponds to the bichromatic version of the reverse
top-k query (cf. [19]), which assumes that a set of user preferences
W exists.

DEFINITION 2. (Reverse top-k query [19]): Given a point q
and a positive number k, as well as two data sets S and W of

data points and weighting vectors respectively, a weighting vector

wi ∈ W belongs to the reverse top-k (RTOPk(q)) result set of q,

if and only if ∃p ∈ TOPk(wi) such that fwi
(q) ≤ fwi

(p).

In Figure 2(b), a data set S is depicted together with two differ-
ent weighting vectors w1 and w2. Geometrically, in the Euclidean
space a linear top-k query can be represented by a vector w. In
this example, the dimension d1 is preferable for w1, whereas d2 is
more preferable for w2. Assuming that p4 is the query point, the
shaded areas define its rank, which is equal to the number of the
points enclosed in the corresponding shaded area of a weighting
vector wi. We notice that w1 belongs to the reverse top-3 query
result set, since only 2 objects are contained in the shaded area of
w1. However, w2 belongs to the reverse top-4 query result set (but
not to the reverse top-3), since there exist 3 objects in the shaded
area of w2.

4. THEORETICAL PROPERTIES
In this section we analyze the effect of a set V ∈W of weighting

vectors on (a) the score of a single data point p ∈ S, and (b) on the
score of a set of data points {pi} ∈ S (represented by an MBR
m, i.e., each pi is enclosed in m). In particular, we derive lower
and upper bounds on the scores of p and m. The derived bounds
establish score precedence relationships between a query point q
and other data point(s). Eventually, this allows us to determine
whether the rank of q based on V is affected by a set of data points.
Table 1 summarizes the most important symbols used in this paper.

4.1 Score Bounds on Points and MBRs
First, we provide a formal definition of the score of a data point

based on a weighting vector w ∈W .

DEFINITION 3. (Score of point p): Given a data point p ∈ S
and a weighting vector w ∈ W , the score of p is: fw(p) =∑n

i=1
w[i] · p[i].

Given a set of weighting vectors V ⊆ W , we define the mini-
mum and maximum score of a data point p based on V . We denote
the score-lower-bound and score-upper-bound of p with ℓV (p) and
uV (p) respectively.

DEFINITION 4. (Score-lower-bound of point p): Given a set of

weighting vectors V and a data point p, the score-lower-bound of

p is: ℓV (p) =
∑n

i=1
min∀w∈V (w[i]) · p[i].

DEFINITION 5. (Score-upper-bound of point p): Given a set of

weighting vectors V and a data point p, the score-upper-bound of

p is: uV (p) =
∑n

i=1
max∀w∈V (w[i]) · p[i].

Capitalizing on these scores of a point p with respect to a set of
weighting vectors V , we are able to derive a lower bound and an
upper bound of the score of p in a straightforward manner.

LEMMA 1. (Score bounds of p): Given a set of weighting vec-

tors V and a data point p, the score fw(p) of p is lower-bounded

by ℓV (p) and upper-bounded by uV (p), i.e., it holds that ∀w ∈ V :

ℓV (p) ≤ fw(p) ≤ uV (p).

PROOF. It holds that: fw(p) = w[1] ·p[1]+ · · ·+w[n] ·p[n] ≤
max∀w∈V (w[1]) · p[1] + · · ·+max∀w∈V (w[n]) · p[n] = uV (p).
Similarly, it holds that: fw(p) = w[1] · p[1] + · · ·+ w[n] · p[n] ≥
min∀w∈V (w[1])·p[1]+· · ·+min∀w∈V (w[n])·p[n] = ℓV (p).

In the following, we generalize the score bounds for the case of
a set of data points that are represented by a minimum bounding
rectangle (MBR) m and we denote as m.l the lower-left corner and
as m.u the upper-right corner. Given a set of weighting vectors
V ⊆ W and an MBR m of data points, we can define a lower and
upper bound of the scores of all data points that are enclosed in m
based on any w ∈ V . The bounds are ℓV (m) = ℓV (m.l) and
uV (m) = uV (m.u) respectively.

LEMMA 2. (Score bounds of MBR m): Given a set of weight-

ing vectors w ∈ V ⊆ W and an MBR m ∈ S, the score fw(p)
of every point p ∈ m is lower-bounded by ℓV (m) = ℓV (m.l)
and upper-bounded by uV (m) = uV (m.u), i.e., it holds that

∀p ∈ m, ∀w ∈ V : ℓV (m) ≤ fw(p) ≤ uV (m).

PROOF. It holds that: fw(p) = w[1] · p[1] + · · · + w[n] ·
p[n] ≤ max∀w∈V (w[1]) · p[1] + · · ·+max∀w∈V (w[n]) · p[n] ≤
max∀w∈V (w[1]) ·m.u[1] + · · · + max∀w∈V (w[n]) ·m.u[n] =
uV (m). Similarly, it holds that: fw(p) = w[1] ·p[1]+ · · ·+w[n] ·
p[n] ≥ min∀w∈V (w[1]) · p[1] + · · ·+min∀w∈V (w[n]) · p[n] ≥
min∀w∈V (w[1]) · m.l[1] + · · · + min∀w∈V (w[n]) · m.l[n] =
ℓV (m).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

w[1]

w[2]

w
2
w

3

w
1(0.2,0.8)

(0.3,0.7)
(0.4,0.6)

(0.5,0.5)w4m
V1

m
V2

Figure 3: Example of data set W .

In the case in which an MBR mV that encloses the set of weight-
ing vectors V is given, the definition of the bounds ℓV (p) and
uV (p) of the scores for a data point p can be derived by means
of the lower-left corner and the upper-right corner of the MBR mV

respectively.

EXAMPLE 1. In Figure 3, a set V = {w1, w2, w3, w4} of four

2-dimensional weighting vectors is depicted, which are enclosed by

an MBR defined by the lower-left corner [0.2, 0.5] and the upper-

right corner [0.5, 0.8]. Then, the values ℓV (p) = 0.2 · p[1] + 0.5 ·
p[2] and uV (p) = 0.5 · p[1] + 0.8 · p[2] define a lower and an

upper bound respectively of the score fw(p) of any data point p
based on V . For example, consider a data point p with p[1] = 5
and p[2] = 3, then fw1

(p) = 3.4, fw2
(p) = 3.6, fw3

(p) = 3.8
and fw4

(p) = 4, while ℓV (p) = 2.5 and uV (p) = 4.9.

4.2 Score Precedence
Consider a reverse top-k query, defined by a query point q and a

value k, and a multidimensional index (R-tree) over data set S. The
goal is to find under which conditions a set of weighting vectors
V ⊆ W belongs to the reverse top-k result of q. In order to solve
this problem, we first determine whether q has a better rank than a
set of data points that are enclosed in an MBR m.

Given a set V ⊆ W of weighting vectors, we can exploit the
score bounds of data points and MBRs in order to map their po-
tential scores to intervals. For instance, ∀w ∈ V the score fw(q)
of the query point belongs to the interval [ℓV (q), uV (q)]. Simi-
larly, the score fw(p) of every point p ∈ m belongs to the inter-
val [ℓV (m), uV (m)]. We define a partial order between the query
point and the MBRs of S based on the score bounds, which is used
to compare the potential score of q to the score of the MBRs.

DEFINITION 6. (Score precedence): Given a set V ⊆ W of

weighting vectors, a query point q, and an MBR m of data points,

if uV (q) < ℓV (m), then we say that q precedes m and we denote

q ≺V m. Similarly, if uV (m) < ℓV (q), we say that m precedes

q and we denote m ≺V q. Otherwise, we say that q and m are

incomparable and we denote m ≍V q.

By studying the possible precedence relationships between the
score interval of q and of an MBR m, we distinguish the following
three cases (as depicted in Figure 4):

• Case 1: If uV (q) < ℓV (m), i.e., q precedes m (q ≺V m),
then ∀w ∈ V the score fw(q) of q is better than the score
fw(p) of every point p ∈ m. Consequently, no point p ∈ m
can affect the rank of q for any weighting vector w ∈ V .

1 2 3 4 5 6 7 8 910

q u
V

(m)

m

score

u
V
(q)

l
V

(m)

l
V
(q)

(a) Case 1: q precedes m (q ≺V m)

1 2 3 4 5 6 7 8 910

qu
V

(m)

m

score

u
V

(q)

l
V

(m)

l
V

(q)

(b) Case 2: m precedes q (m ≺V q)

1 2 3 4 5 6 7 8 910

q

u
V
(m)m

score

u
V
(q)

l
V

(m)

l
V

(q)

(c) Case 3: q, m incomparable (m ≍V q)

Figure 4: Intervals of scores and precedence relationships between query point q and MBR m.

• Case 2: If uV (m) < ℓV (q), i.e., m precedes q (m ≺V q),
then every data point p ∈ m has a better score than q for any
weighting vector w ∈ V . This means that all points p ∈ m
have a better rank than q for any weighting vector w ∈ V .

• Case 3: If none of the above cases holds, then q and m are
incomparable (m ≍V q) and there exists an overlap between
the intervals. In this case, it cannot be determined whether
q has a better or worse score than a data point p ∈ m for
a weighting vector w ∈ V . This means that q can have a
better rank than some points of m for a weighting vector
w ∈ V , while it can have a worse rank for other points of
m or another w′ ∈ V .

5. INTOPK ALGORITHM
To address limitations of existing approaches, the first step is to

provide a method for determining if a given set of weighting vec-
tors V ⊆W belongs to the reverse top-k results of q or not. To this
end, we present the INTOPk algorithm that efficiently answers this
question. Intuitively, INTOPk attempts to handle a set of weight-
ing vectors without accessing each individual vector nor processing
the top-k query, thus providing the missing functionality of RTA.
This constitutes a key technical contribution of this paper. In the
next section, we will describe how INTOPk can be exploited by a
branch-and-bound algorithm that can directly compete with RTA.

In the following, a set V ⊆ W of weighting vectors is repre-
sented by an MBR denoted as mV . Given a data set S, the IN-
TOPk algorithm takes as an input the MBR mV , a query point q
and a value k, and returns whether q belongs to the top-k result set
for all or none of the weighting vectors enclosed in mV . If none of
these cases holds, the INTOPk algorithm returns that it cannot give
a definite answer.

5.1 Pruning Property and Result Inclusion
By exploiting score precedence between the query point q and

an MBR mV of weighting vectors V , we can derive a useful prun-
ing property for sets of weighting vectors V ⊆ W . The pruning
property enables discarding MBRs of weighting vectors at once,
without even accessing the individual vectors.

THEOREM 1. (Pruning property): Given a set of weighting vec-

tors V ⊆ W represented by an MBR mV , and a reverse top-k
query RTOPk(q), if k data items (MBRs or data points) precede

q based on V , then mV can be safely pruned, i.e., no weighting

vector w ∈ V belongs to the reverse top-k result of q.

PROOF. By contradiction. Let us assume that w ∈ V belongs to
the reverse top-k result of q. Since k data items precede q based on
V and any MBR encloses at least one data point, it holds that ∃pi,
1 ≤ i ≤ k such that uV (pi) < ℓV (q), which leads to fw(pi) ≤
uV (pi) < ℓV (q) ≤ fw(q). This means that there exist at least k
data points with better score than q for any w ∈W . This leads to a

contradiction, since by definition if w belongs to the reverse top-k
result of q, then at most k − 1 data points pi have a better score
than q based on w.

Additional pruning can be achieved in the case that V consists
of a single vector w. Again, w can be discarded without evaluating
the top-k query, based on the following lemma.

LEMMA 3. Given a single weighting vector w ∈ W and a re-

verse top-k query RTOPk(q), if for at least k data points pi it

holds that u{w}(q) > ℓ{w}(pi), then the weighting vector w ∈W
can be safely excluded from the reverse top-k result of q.

PROOF. Let pi, 1 ≤ i ≤ k′ be the k′ (≥ k) data points such that
u{w}(q) > ℓ{w}(pi). Moreover, for any data point by definition it
holds that ℓ{w}(p) = fw(p) = u{w}(p). Thus, ∀pi it holds that:
fw(pi) = ℓ{w}(pi) < u{w}(q) = fw(q). Since for at least k
data points it holds that fw(p) < fw(q) (k data points have a better
score than q for w), it means that w is not in the reverse top-k result
of q.

Notice that Lemma 3 does not hold for MBRs of weighting vec-
tors, but only for a single weighting vector.

Furthermore, we derive a rule for immediate inclusion of an
MBR of weighting vectors to the reverse top-k query result, with-
out examining each weighting vector individually.

THEOREM 2. (Result inclusion): Given a set of weighting vec-

tors V ⊆ W represented by an MBR mV , and a reverse top-k
query RTOPk(q), if fewer than k data points pi exist such that

uV (q) > ℓV (pi), then all weighting vectors w ∈ V can be safely

added to the reverse top-k result of q.

PROOF. Let pi, 1 ≤ i ≤ k′ < k be the k′ data points such
that uV (q) > ℓV (pi). Then, for all remaining points p ∈ S −
{pi} it holds that uV (q) ≤ ℓV (p). We will prove the theorem by
contradiction. Let us assume that ∃w ∈ V that does not belong
to the reverse top-k result of q. This means that there exist k data
points p′i such that fw(p

′
i) < fw(q) from which we derive that

ℓV (p′i) ≤ fw(p
′
i) < fw(q) ≤ uV (q), i.e., ℓV (p′i) < uV (q). Since

∀p ∈ S − {pi} it holds that uV (q) ≤ ℓV (p) and the size of set
{pi} is k′ (< k), this leads to a contradiction.

The aforementioned theorems 1 and 2 and lemma 3 guide the de-
sign of an efficient algorithm for determining whether all weighting
vectors in V or none of them belong to the reverse top-k results set
of q.

5.2 Algorithmic Description
Algorithm 1 describes the pseudocode for the INTOPk algo-

rithm. The algorithm contains an initialization phase, which is fol-
lowed by a traversal of the R-tree of data set S. The algorithm uses
two counters to determine whether mV belongs to the result set or

Algorithm 1 INTOPk()

1: Input: MBR mV of weighting vectors, query RTOPk(q)
2: Output: -1: discard mV , 0: inconclusive, 1: add mV

3: precincPoints← 0, precEntries← 0
4: e← RtreeS.getRoot()
5: if (uV (q) > ℓV (e.m)) then

6: heapS.enqueue(e)
7: if (e.m ≺V q) then

8: precEntries++
9: while (!heapS.isEmpty()) do

10: e← heapS.dequeue()
11: if ((precincPoints ≥ k) and (ℓV (e.m) ≥ ℓV (q))) then

12: if (mV is a single w) then

13: return -1
14: else

15: return 0
16: if (e.m ≺V q) then

17: precEntries– –
18: C ← expand(e)
19: for all (ei ∈ C) do

20: if (uV (q) > ℓV (ei.m)) then

21: if (ei.m ≺V q) then

22: precEntries++
23: if (precEntries ≥ k) then

24: return -1
25: if (ei is a data point) then

26: precincPoints++
27: else

28: heapS.enqueue(ei)
29: if (precincPoints ≥ k) then

30: return 0
31: else

32: return 1

not. The first counter denoted as precEntries counts the entries e
such that e.m precede q based on V . If the number of these entries
is greater than or equal to k, then we can exclude mV from the re-
sult set based on Theorem 1. The second counter precincPoints
counts the data points that are either incomparable or precede q.
Based on Theorem 2, if fewer than k such entries exist, mV can be
added to the result set2.

In the initialization phase (lines 3–8), the root e of the R-tree is
accessed. If uV (q) > ℓV (e.m), then some of the data points en-
closed in e.m may have a better rank than q for some weighting
vector enclosed in mV . Therefore, the root entry is inserted into a
heap (heapS) that contains entries of S that need to be further exam-
ined. This heap is sorted in ascending order of ℓV (m), because the
entries with small (better) lower bound values have a higher prob-
ability to discard mV . Then, the algorithm tests if e.m precedes
q. If that is the case, then all points enclosed in e.m have a better
rank than q for all weighting vectors in mV . Since we assume that
at least one data point is enclosed in each MBR e.m, precEntries
increases by one. Note that if q precedes the root entry e.m, then
q has a better rank than any point of S, and the algorithm returns 1
(line 32) indicating that all weighting vectors of mV can be added
to the result set.

During the traversal of the R-tree (lines 9–28), in each iteration,
the entry e of the heap with the best ℓV (m) value is examined.
The INTOPk algorithm excludes mV from the result set whenever

2For simplicity, we assume that q does not belong to S, but it is
straightforward to adapt the algorithm for this case too.

it can safely decide that none of the weighting vectors in mV can
be included to the result set. Thus, if k data points have been re-
trieved that are either incomparable or precede q (line 11), it checks
whether an MBR e.m that has not been examined yet can exclude
mV from the result set. Since the MBRs are examined sorted based
on ℓV (m), if the value ℓV (m) of the next MBR is larger or equal
to ℓV (q), it means that there exists no other MBR that precedes q
and mV cannot be excluded from the result set. In addition, since
k data points exist that are incomparable or precede q, mV cannot
be added to the result set. Therefore, INTOPk returns that it can-
not give a definite answer, i.e., inconclusive. On the other hand, if
mV represents a single weighting vector (line 12), then based on
Lemma 3 mV can be discarded.

If precincPoints is smaller than k, then the entry e will be ex-
panded. If e.m precedes q based on V , then we reduce
precEntries (line 17), since e will be expanded and the enclosed
entries (MBRs or data points) will be counted. Since e is a non-leaf
entry (only non-leaf entries are added to the heap), we expand the
MBR and retrieve the list of children entries C. If q precedes a child
entry, then this child entry is ignored, since it cannot influence the
ranking of q. Note that also if uV (q) = ℓV (ei.m) the entry can
be ignored, because based on the definition only points that have a
better score influence the ranking of q. Otherwise, for each ei.m
that precedes q, we increase precEntries by one (line 22). In the
case, where ei.m is a leaf entry, then we test if q precedes ei.m and
if this is not the case we increase precincPoints by one. Non-leaf
entries are added to the heap and a new iteration of the algorithm
starts. If all entries of S have been either discarded or examined
and fewer than k data points that are incomparable or precede q
have been found, then all weights of mV can be added to the result
set (line 32).

EXAMPLE 2. In Figure 5, consider a reverse top-k query with

k = 2 where the query point q has coordinates q[1] = 5 and

q[2] = 6.5. Furthermore, let mV be defined by the lower-left cor-

ner mV .l=[0.2, 0.5] and the upper-right corner mV .u=[0.5, 0.8].
Then, the lower and upper bound of q are ℓV (q)=4.25 and

uV (q)=7.7, respectively. In the initialization phase, the root of the

R-tree is accessed. Then, in the first iteration of INTOPk the root

entry is expanded and entries e1 and e2 are inserted in heapS.

Since e2 has a smaller ℓV value, it is accessed first. During the ex-

pansion of e2, entries e6 and e7 are inserted in the heap. Next, e6 is

accessed (based on the ℓV value) and the data points p3 and p5 are

retrieved. The values of the counters become precEntries = 1
and precincPoints = 2. In the next iteration, e7 is accessed and

precincPoints = 2 ≥ k, but the INTOPk algorithm continues

with the next iteration. This is because ℓV (e7.m) < ℓV (q) and

entries that may discard mV can still be retrieved. Afterwards, e7
is expanded and the data points p8 and p9 are retrieved. Point p8
causes the increase of precEntries = 2 and therefore INTOPk

terminates by returning -1 indicating that none of the weighting

vectors of mV belongs to the reverse top-2 result set of q.

6. BRANCH-AND-BOUND ALGORITHM
In this section, we present the branch-and-bound algorithm for

efficiently retrieving the reverse top-k result set of a query point q.
First, we present the basic version of the algorithm in Section 6.1,
and then we study two optimizations that boost its performance.
In Section 6.2, we employ result sharing of consecutive INTOPk
evaluations, in order to reduce the number of invocations that are
required. Finally, in Section 6.3, we propose an algorithm that em-
ploys an aggregate R-tree, thus resulting in additional performance
gains.

1

1

2 3 4 5 6 7 8 910

2
3
4
5
6
7
8
9

10

p1

p9

p2

p4 p7

p8

p1

p3

p6

p5

d
2

d
1

d
2

p
1

1 9
p

2
1.5 6

p
3

3 1.5
p

4
3.5 7.5

p
5

4 3
p

6
5 5

p
7

7 6.5

p
8

7.5 0.5
p

9
8 4

p
10

8.5 8.5

d
1

e
1

e
4

e
5

e
2

e
6 e

7

root

1 2 3 4 5 6 7 8 910

q
root

score

e2

11

e1

e6

e7

p3

p5

p8

Figure 5: Example of INTOPk algorithm.

6.1 Basic Branch-and-Bound Algorithm
Algorithm 2 describes our basic branch-and-bound

algorithm (BBR). The algorithm uses an R-tree to index the data
set of weighting vectors W . Intuitively, as our algorithm traverses
this index, it bounds the search space of results for the reverse top-
k query by discarding MBRs of weighting vectors that cannot con-
tribute to the result set. Essentially, each time an entry of the R-tree
is processed, our algorithm tests whether the weighting vectors that
are enclosed by the MBR of the entry, forming a set V , may be-
long to the result set or whether it can be discarded. This test is
accomplished in practice by using INTOPk algorithm, as described
in Section 5. If INTOPk algorithm is inconclusive about V , the
current entry of the R-tree needs to be expanded, and smaller sub-
sets of V need to be examined for inclusion or pruning. The goal
of BBR is to expand as few entries as possible by either discarding
entries of the R-tree or by adding them to the result set immediately.
BBR traverses the R-tree that indexes the data set W and main-

tains a heap (heapW) of R-tree entries. Initially, the root of the R-
tree is inserted in heapW. The entries in the heap are sorted based
on their distance to a given weighting vector, for example their dis-
tance to the vector w[i] = 1/n, ∀i. Notice that the benefits of
accessing weighting vectors based on their similarity to the given
vector has been investigated and evaluated experimentally in [20].
Then, in each iteration an entry e (MBR) is accessed from the heap
and the INTOPk algorithm is executed for its MBR e.m. Depend-
ing on the result of INTOPk algorithm, e is either added to the
result set, or expanded or discarded. In the case that an entry is ex-
panded, all its children entries are inserted in the heap (line 8). Oth-
erwise, if the weighting vectors that correspond to an entry should
be added, then all data points (i.e., weighting vectors) stored in the
subtree rooted at e are retrieved and added to the result set (line 11).
The expandAll() method in the pseudocode retrieves all weight-
ing vectors stored in the subtree rooted at e.

THEOREM 3. (Correctness of BBR): The BBR algorithm al-

ways produces the correct reverse top-k result set.

PROOF. (Sketch): In BBR, every entry e of the R-tree index-
ing W is either added to the results or discarded (we note that ex-
panding an entry also eventually results in adding or discarding the
enclosed entries). Hence, it suffices to show that BBR never dis-
cards an entry that contains a weighting vector that is a reverse
top-k result (false negatives), and never adds an entry that contains
a weighting vector that is not a reverse top-k result (false positives).

• False negatives: Algorithm 1 decides to discard an entry e
in two cases. In the first case, k discrete entries ei.m were
found that precede q based on V and Theorem 1 verifies

Algorithm 2 BBR

1: Input: Point q, value k
2: Output: Reverse top-k result set RTOPk(q)
3: heapW.enqueue(RtreeW.getRoot())
4: while (!heapW.isEmpty()) do

5: e← heapW.dequeue()
6: i← INTOPk(e.m, q, k)
7: if i = 0 then

8: heapW.enqueue(expand(e))
9: else

10: if i = 1 then

11: RTOPk(q)← RTOPk(q)
⋃

expandAll(e)
12: return RTOPk(q)

that no vector w ∈ V can belong to the result. In the sec-
ond case, only single weighting vectors are discarded, for
which it holds that there exist at least k data points pi such
that u{w}(q) > ℓ{w}(pi), and Lemma 3 proves that these
weighting vectors can be safely discarded.

• False positives: Algorithm 1 adds an entry e to the result
set, if fewer than k data points pi exist such that uV (q) >
ℓV (pi). Theorem 2 proves that in this case, any w ∈ V
belongs to the reverse top-k result.

6.2 Branch-and-Bound with Result Sharing
As BBR traverses the R-tree indexing W , for each entry that

needs to be processed, a traversal of the R-tree indexing S is initi-
ated. Clearly, the performance of BBR depends on the number of
invocations of the INTOPk algorithm, which is the cause of I/Os
on the index of data set S. To improve the performance of BBR, it
is beneficial to avoid INTOPk invocations (and the respective I/Os)
when possible. Therefore, we employ a result sharing method that
greatly reduces the accesses on this index. The new result sharing
approach is termed BBR∗ and is depicted in Algorithm 3.

BBR∗ exploits previously computed results to avoid redundant
processing. As explained in Section 5, Algorithm 1 achieves to
discard an entry mV due to the retrieval of k data items mi (data
points or MBRs) of the index on S that precede q on mV . These
data items can potentially lead to discarding subsequent weighting
vectors, i.e., if mi precede q based on the next entry m′

V . There-
fore BBR∗ maintains this set of MBRs in a list of bounded size k,
denoted as topk, and uses this list for avoiding invocations of the
INTOPk algorithm.

Algorithm 3 BBR∗

1: Input: Point q, value k
2: Output: Reverse top-k result set RTOPk(q)
3: heapW.enqueue(RtreeW.getRoot())
4: while (!heapW.isEmpty()) do

5: mV ← heapW.dequeue()
6: precEntries← 0
7: for all (mi ∈ topk) do

8: if (uV (mi) ≤ ℓV (q)) then

9: precEntries++
10: if (precEntries < k) then

11: i← INTOPk(mV , q, k)
12: if i = 0 then

13: heapW.enqueue(expand(mV))
14: else

15: if i = 1 then

16: RTOPk(q)← RTOPk(q)
⋃

expandAll(mV)
17: else

18: update topk
19: return RTOPk(q)

In the pseudocode of Algorithm 3, each time an entry mV is
accessed (line 5), a test is conducted between q and each of the
MBRs maintained in the list topk (lines 6– 9). If k MBRs precede
q (line 8), then the INTOPk invocation based on mV is avoided
(line 10). The list topk is updated each time the INTOPk algorithm
results in discarding an entry mV (line 18).

6.3 Branch-and-Bound with Aggregate R-tree
The aggregate R-tree (aR-tree) [16] is a variant of the R-tree that

combines indexing with pre-aggregation. In the aggregate R-tree,
each data object is associated with a score. In addition, each en-
try is annotated with a score value that aggregates the scores of all
children entries. Even though different aggregation functions can
be employed by an aggregate R-tree, we assume that each entry
adds the scores of its children entries. Furthermore, the score of
each data object is set equal to one. Thus, the score of each en-
try corresponds exactly to the number of all points contained in its
subtree (i.e., all points enclosed by the entry’s MBR).

By employing an aggregate R-tree for indexing the dataset S, the
performance of the branch-and-bound reverse top-k algorithm can
be improved even further. In Algorithm 1, the counter precEntries
estimates the number of points that precede q. Increasing the counter
by one is a lower bound of the actual number of data points, since
each MBR is assumed to enclose at least one data point. In the
case of the aggregate R-tree, the exact number of points that are
stored in the subtree rooted by an entry ei is known. The only
necessary modification in Algorithm 1 is to replace the increment
(decrement) of precEntries by one, with an increment (decre-
ment) by the score of the respective entry (lines 8, 17 and 22).
Then, precEntries provides an exact value, rather than an esti-
mate. By using the aggregate score, Algorithm 1 can determine
faster whether mV should be discarded, and thus fewer entries of
the R-tree index on S are expanded. Similarly, the performance of
BBR∗ can be improved by the aggregate R-tree, if in Algorithm 3
the counter precEntries is increased (line 9) based on the aggre-
gate score of the respective entry.

7. EXPERIMENTAL EVALUATION
In this section, we present an extensive experimental evalua-

tion of the proposed branch-and-bound algorithm for reverse top-k

Parameter Values

Data dimensionality n 2,3,4,5,6,7,8,9
Data set S distribution UN,CO,AC,CL,RE
Data set cardinality |S| 100K,1M,5M
Data set W distribution UN,CL
Weights cardinality |W | 100K,1M
#queries 1000
Queries selected from k-skyband,skyline
top-k 10,20,30,40,50
#clusters for W ,S: CW ,CS 5
Variance σ2

W , σ2

S 0.052

Table 2: Experimental parameters.

queries. All variants of the presented algorithms are implemented
in Java and the experiments run on a server with 2x4 cores (AMD
Opteron), 32GB RAM, and 2TB HDD. The block size is set to 4KB
and the buffer of the R-tree has a size of 100 nodes.

7.1 Experimental Setup
Data sets. In the experimental study, we employ both real (RE)

and synthetic data sets, namely uniform (UN), correlated (CO),
anti-correlated (AC), and clustered (CL). In the case of synthetic
data sets, the generated values of each attribute belong to [0, 10K].
For the uniform data set, all attribute values are generated indepen-
dently using a uniform distribution. The anti-correlated data set is
generated by selecting a plane perpendicular to the diagonal of the
data space using a normal distribution, and within the plane each
attribute value follows a uniform distribution. Similarly, for the
correlated data set, first a plane perpendicular to the diagonal of the
data space is selected by using a normal distribution and within the
plane, each attribute value is generated using a normal distribution.

We also use two real data sets. HOUSE (Household) consists
of 127930 6-dimensional tuples, representing the percentage of
an American family’s annual income spent on 6 types of expen-
diture: gas, electricity, water, heating, insurance, and property tax.
COLOR is a data set from UCI Machine Learning Repository that
contains image features extracted from a Corel image collection. It
consists of 68040 9-dimensional tuples describing features of im-
ages in HSV color space. Both data sets have been used before in
research related to rank-aware query processing [18].

For the data set W of the weighting vectors, two different data
distributions are examined, namely uniform (UN) and clustered
(CL). For the clustered data set W , first CW cluster centroids that
belong to the (n-1)-dimensional hyperplane defined by

∑
wi = 1

are selected randomly. Then, each coordinate is generated on the
(n-1)-dimensional hyperplane by following a normal distribution
on each axis with variance σ2

W , and a mean equal to the corre-
sponding coordinate of the centroid.

Description of RTA. For comparative purposes, we evaluate the
performance of the proposed branch-and-bound algorithm against
the state-of-the-art algorithm for reverse top-k queries,
named RTA [19, 20]. RTA works by examining each weighting
vector and trying to avoid processing of the respective top-k, when
RTA can safely decide that the vector cannot belong to the reverse
top-k result. To achieve this, RTA uses a buffer of k entries to
keep the results of the previously posed top-k query, and uses these
results to prune the next weighting vectors. In RTA, the data set
S is indexed by an R-tree and the underlying top-k processing is
performed using a state-of-the-art branch-and-bound algorithm for
top-k queries. The weighting vectors are examined in an order

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 5 4 3 2

T
im

e
 (

m
s
e
c
)

Dimensionality (n)

RTA
BBR

BBR*
BBRA

(a) Time.

 500

 1000

 1500

 2000

 2500

 5 4 3 2

I/
O

s

Dimensionality (n)

RTA
BBR

BBR*
BBRA

(b) I/Os.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

BBRABBR*BBR

S
ta

ti
s
ti
c
s

Algorithms

Intopk
Discarded

Added
|RTOPk|

(c) Statistics.

Figure 6: Comparative performance of all algorithms for UN data set and varying dimensionality (n).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 5 4 3 2

T
im

e
 (

m
s
e
c
)

Dimensionality (n)

RTA
BBR

BBR*
BBRA

(a) Time.

 200

 400

 600

 800

 1000

 1200

 5 4 3 2

I/
O

s

Dimensionality (n)

RTA
BBR

BBR*
BBRA

(b) I/Os.

 0

 1000

 2000

 3000

 4000

 5000

BBRABBR*BBR

S
ta

ti
s
ti
c
s

Algorithms

Intopk
Discarded

Added
|RTOPk|

(c) Statistics.

Figure 7: Comparative performance of all algorithms for CL data set and varying dimensionality (n).

based on pairwise similarity, to increase the probability of prun-
ing consecutive vectors. Hence, in the case of RTA, W is stored
sorted on disk, while S is indexed by an R-tree.

Algorithms. We evaluate three variants of our branch-and-bound
algorithm: basic (BBR), with result sharing (BBR∗), and using
aggregate R-tree (BBRA). The variants of the branch-and-bound
algorithm use R-tree indexes on S and W , while BBRA uses an
aggregate R-tree on S.

Metrics. Our main metrics include: a) the query execution time
required by each algorithm, and b) the I/Os used. The I/Os induced
on S are buffered I/Os, while for the I/Os on W buffering is useless,
since for a given query, W is not accessed multiple times. In the
charts showing I/Os, each bar corresponds to the total number of
I/Os induced by an algorithm, while the white part of the bar shows
the I/Os induced on S and the colored part of the bar shows the
I/Os induced on W . We also show the results of various statistics
measured that clearly explain the behavior of each algorithm. We
present average values over 1000 queries in all cases. The query
points are randomly selected from a subset of the data points in
S. To increase the probability of having non-empty result sets, this
subset is either the k-skyband or the skyline set of S.

Parameters. We conduct experiments varying the dimension-
ality n (2-9), the cardinality |S| (100K-5M), the cardinality |W |
(100K-1M), the value of k (10-50), and the data distributions for S
and W . The default setup is: n=4, |S|=100K, |W |=100K, k=10,
CW =CS=5, σ2

W =σ2

S=0.052, and we use UN distribution for both S
and W . The experimental parameters together with default values
(in bold) are shown in Table 2.

7.2 Experimental Results
Varying dimensionality n. Figure 6 presents the comparative

performance of all algorithms for uniform data distributions of S
and W , for varying n, and the default setup: |S|=100K, |W |=100K,

k=10. In terms of execution time (Figure 6(a)), BBR∗ and BBRA

improve the performance of RTA by a factor of 4 to 8, depending
on the dimensionality. RTA is inefficient in the lower dimensions
and improves its performance as the dimensionality increases. This
is mainly because the performance of RTA depends on the car-
dinality of the reverse top-k result set, which gets smaller as the
dimensionality increases (for n = 2 : |RTOPk(q)| = 13679.94
while for n = 4 : |RTOPk(q)| = 32.31). In contrast, the perfor-
mance of BBR decreases as the dimensionality increases, because
the processing of INTOPk becomes more expensive for higher di-
mensions. On the other hand, BBR∗ and BBRA scale with dimen-
sionality.

In terms of I/Os (Figure 6(b)), again BBR∗ and BBRA are up
to 4 times better than RTA. We stress that each bar corresponds to
the total number of I/Os, while the white part of the bar shows the
I/Os induced on S and the colored part of the bar shows the I/Os
induced on W . This cost breakdown analysis shows that RTA uses
more I/Os both for S and W . The branch-and-bound algorithms are
very efficient in terms of I/Os on S due to the buffering employed.
However, the important finding is that they all reduce the I/Os on
W compared to RTA, which demonstrates the efficiency of the
employed score bounds.

Figure 6(c) helps deriving some interesting insights about the
branch-and-bound algorithms. The first bar shows the number of
INTOPk evaluations for each algorithm. Both BBR∗ and BBRA

consistently require fewer INTOPk evaluations that BBR. The sec-
ond bar shows the number of discarded MBRs by each algorithm.
For BBR∗ and BBRA the white part of the bar shows the number
of MBRs discarded due to result sharing, i.e., without invoking IN-
TOPk. This clearly demonstrates the value of result sharing. The
third bar depicts the number of MBRs that were immediately added
to the results by INTOPk. The significant finding is that all algo-
rithms manage to add groups of weighting vectors to the result set,

 0

 500

 1000

 1500

 2000

 5 4 3 2

T
im

e
 (

m
s
e
c
)

Dimensionality (n)

RTA
BBR

BBR*
BBRA

(a) Time.

 200

 400

 600

 800

 1000

 5 4 3 2

I/
O

s

Dimensionality (n)

RTA
BBR

BBR*
BBRA

(b) I/Os.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

BBRABBR*BBR

S
ta

ti
s
ti
c
s

Algorithms

Intopk
Discarded

Added
|RTOPk|

(c) Statistics.

Figure 8: Comparative performance of all algorithms for CO data set and varying dimensionality (n).

 0

 500

 1000

 1500

 2000

 2500

 3000

 50 40 30 20 10

T
im

e
 (

m
s
e
c
)

Value k

RTA
BBR

BBR*
BBRA

(a) Time.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 50 40 30 20 10

I/
O

s

Value k

RTA
BBR

BBR*
BBRA

(b) I/Os.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

BBRABBR*BBR

S
ta

ti
s
ti
c
s

Algorithms

Intopk
Discarded

Added
|RTOPk|

(c) Statistics.

Figure 9: Comparative performance of all algorithms for UN data set and varying value of k.

without examining each weighting vector individually. This be-
comes clear if we compare the cardinality of the result set (fourth
bar), with the added elements (third bar). Since the added elements
are fewer, this means all algorithms managed to add some groups
of weighting vectors to the result.

Clustered data set W . In Figure 7, we use an identical setup
with the previous experiment, only now the data set W is clus-
tered. A clustered data set W simulates the case where user pref-
erences are not independent, but there exist some groups of similar
user preferences. The general observation is that both the execu-
tion time (Figure 7(a)) as well as the number of I/Os (Figure 7(b))
are smaller, when compared to the uniform data set W (see Fig-
ures 6(a) and 6(b)). Still, the relative performance between the
different algorithms is similar as in the case of uniform data set W .

Correlated data set S. In Figure 8, we study the case of cor-
related data distribution for S. The results show that the branch-
and-bound algorithms improve RTA in all setups both in terms of
time and I/Os. This is quite important, because the CO data set is
problematic for RTA even for small values of dimensionality. As
shown in Figure 8(c), the reason for this behavior is the high cardi-
nality |RTOPk| of the reverse top-k result in the case of CO data
set. However, also in this case, the branch-and-bound algorithms
significantly improve the performance of query processing. Notice
that in the case of CO data set, the I/O cost is dominated by the I/Os
induced on W , i.e., the bars in Figure 8(b) are completely colored,
in contrast to the case of AC data set.

Varying k. Figure 9 shows the effect of increased values of k to
time and I/Os for all algorithms. As shown in the chart, the branch-
and-bound algorithms scale better than RTA as k increases.

Clustered data sets S and W . In Figure 10, we employ a clus-
tered data set both for S and W . Again, the branch-and-bound
algorithms are superior to RTA in all setups. An interesting obser-
vation is that when both data sets are clustered, BBR∗ and BBRA

manage to discard a very high number of MBRs (shown in Fig-
ure 10(c)), thus causing only few INTOPk invocations.

Anti-correlated data set S. In Figure 11, the performance of
our algorithms is studied for anti-correlated data distribution of data
set S for varying dimensionality. This distribution is quite demand-
ing for all algorithms, therefore the results are depicted in log scale
at the y-axis. In all cases BBR∗ and BBRA outperform RTA, thus
verifying their superiority. Notice that we use log-scale on the y-
axis of Figure 11(b), hence the white part of the stacked bars is the
dominant cost.

Varying cardinality of S. Figure 12 shows the performance
of all algorithms for increasing the cardinality of data set S. No-
tice that the branch-and-bound algorithms maintain their advantage
over RTA as the size of S increases. Moreover, the performance of
our algorithms is influenced by the cardinality of S only slightly,
showing the scalability of our algorithms with respect to S. This
is clearly shown by the number of induced I/Os, depicted in Fig-
ure 12(b).

Varying cardinality of W . Figure 13 shows the performance
of all algorithms for increasing the cardinality of data set W from
100K to 1M. When W increases in size, the performance of RTA
drops significantly. In contrast, our algorithms BBR∗ and BBRA

scale gracefully with |W |. This is a very strong result that demon-
strates the efficiency of the branch-and-bound algorithms, in terms
of pruning W .

Higher dimensions and skyline queries. In Figure 14, we con-
duct an experiment for high dimensions (6-9) to test the perfor-
mance of all algorithms for stress conditions. Since in higher di-
mensionality the cardinality of the result set decreases, we generate
the query workload by selecting queries out of the data set’s skyline
points. This means that on average each reverse top-k query will
have more results, thus query processing becomes more expensive.
As depicted in the charts, the performance of all algorithms dete-

 0

 500

 1000

 1500

 2000

 5 4 3 2

T
im

e
 (

m
s
e
c
)

Dimensionality (n)

RTA
BBR

BBR*
BBRA

(a) Time.

 200

 400

 600

 800

 1000

 5 4 3 2

I/
O

s

Dimensionality (n)

RTA
BBR

BBR*
BBRA

(b) I/Os.

 0

 5000

 10000

 15000

 20000

 25000

 30000

BBRABBR*BBR

S
ta

ti
s
ti
c
s

Algorithms

Intopk
Discarded

Added
|RTOPk|

(c) Statistics.

Figure 10: Comparative performance of all algorithms for CL data sets S, W and varying dimensionality (n).

 10

 100

 1000

 10000

 100000

 5 4 3 2

T
im

e
 (

m
s
e
c
)

Dimensionality (n)

RTA
BBR

BBR*
BBRA

(a) Time.

 10

 100

 1000

 10000

 100000

 5 4 3 2

I/
O

s

Dimensionality (n)

RTA
BBR

BBR*
BBRA

(b) I/Os.

Figure 11: AC data set and varying n.

 0

 200

 400

 600

 800

 1000

 1200

5M1M100K

T
im

e
 (

m
s
e
c
)

Cardinality (|S|)

RTA
BBR

BBR*
BBRA

(a) Time.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

5M1M100K

I/
O

s

Cardinality (|S|)

RTA
BBR

BBR*
BBRA

(b) I/Os.

Figure 12: Performance for varying |S|.

 0

 1000

 2000

 3000

 4000

 5000

 6000

1M100K

T
im

e
 (

m
s
e
c
)

Cardinality (|W|)

RTA
BBR

BBR*
BBRA

(a) Time.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1M100K

I/
O

s

Cardinality (|W|)

RTA
BBR

BBR*
BBRA

(b) I/Os.

Figure 13: Varying |W |.

riorates. However, BBR∗ clearly outperforms all other algorithms
in all setups consistently. Again, notice the use of log-scale in the
y-axis of Figure 14(b).

Experiment with real data. Figure 15 shows the results from
the first real data set (HOUSE) employed. Notice the log-scale in
Figure 15(b). Also in these experiments, we use log-scale for the
y-axis when reporting I/O. Clearly, BBR∗ and BBRA are more
efficient than RTA, often by one order of magnitude. More im-
portantly, the gain of our algorithms increases with the values of
k. In Figure 16, we depict the results obtained in the case of the
COLOR data set. Again, BBR∗ and BBRA outperform RTA,
thus verifying their superiority also in the case of a demanding (9-

 0

 5000

 10000

 15000

 20000

 25000

 30000

 6 7 8 9

T
im

e
 (

m
s
e
c
)

Dimensionality (n)

RTA
BBR

BBR*
BBRA

(a) Time.

 1000

 10000

 100000

 1e+06

 1e+07

 9 8 7 6

I/
O

s

Dimensionality (n)

RTA
BBR

BBR*
BBRA

(b) I/Os.

Figure 14: Performance for high dimensions.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 50 40 30 20 10

T
im

e
 (

m
s
e
c
)

Value k

RTA
BBR

BBR*
BBRA

(a) Time.

 10

 100

 1000

 10000

 100000

 50 40 30 20 10

I/
O

s

Value k

RTA
BBR

BBR*
BBRA

(b) I/Os.

Figure 15: Performance for HOUSE data set.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 50 40 30 20 10

T
im

e
 (

m
s
e
c
)

Value k

RTA
BBR

BBR*
BBRA

(a) Time.

 1000

 10000

 100000

 1e+06

 1e+07

 50 40 30 20 10

I/
O

s

Value k

RTA
BBR

BBR*
BBRA

(b) I/Os.

Figure 16: Performance for COLOR data set.

dimensional) real data set. These results are in accordance with
the study on the synthetic data. We conclude that our algorithms
consistently improve the performance of RTA.

8. CONCLUSIONS
Reverse top-k queries constitute a useful tool for market analy-

sis, since they help producers to identify those customers who are
potentially interested in a particular product based on the customer
preferences and the competitors’ products. Currently, the state-of-
the-art algorithm (RTA) needs to access each individual preference
function and cannot add a preference function to the result set with-

out evaluating the corresponding top-k query. In this paper, we
propose a branch-and-bound algorithm for efficient reverse top-k
query processing. Our algorithm alleviates the shortcomings of
RTA by adding to the result set or discarding sets of preference
functions instead of individual functions. To achieve this result,
we study the conditions that ensure that a data point has a better
rank than the query point for a set of preference functions. Based
on these properties, we develop an efficient branch-and-bound al-
gorithm and propose two optimizations that boost its performance.
The experimental evaluation shows that our algorithm always out-
performs RTA and performs efficiently in all cases.

9. ACKNOWLEDGMENTS
The work of Akrivi Vlachou was supported by the Action “Sup-

porting Postdoctoral Researchers” of the Operational Program “Ed-
ucation and Lifelong Learning” (Action’s Beneficiary: General Sec-
retariat for Research and Technology), and is co-financed by the
European Social Fund (ESF) and the Greek State. The research
of Christos Doulkeridis was supported under the Marie-Curie IEF
grant number 274063 with partial support from the Norwegian Re-
search Council. The work of Yannis Kotidis has been co-financed
by the European Union (European Social Fund – ESF) and Greek
national funds through the Operational Program “Education and
Lifelong Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: RECOST.

10. REFERENCES
[1] R. Akbarinia, E. Pacitti, and P. Valduriez. Best position

algorithms for top-k queries. In Proc. of Int. Conf. on Very

Large Data Bases (VLDB), pages 495–506, 2007.
[2] A. Arvanitis, A. Deligiannakis, and Y. Vassiliou. Efficient

influence-based processing of market research queries. In
Proc. of Conf. on Information and Knowledge Management

(CIKM), pages 1193–1202, 2012.
[3] T. Bernecker, T. Emrich, H.-P. Kriegel, N. Mamoulis,

M. Renz, S. Zhang, and A. Züfle. Inverse queries for
multidimensional spaces. In Proc. of Int. Symposium on

Spatial and Temporal Databases (SSTD), pages 330–347,
2011.

[4] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo,
and J. R. Smith. The Onion technique: Indexing for linear
optimization queries. In Proc. of Int. Conference on

Management of Data (SIGMOD), pages 391–402, 2000.
[5] S. Chaudhuri and L. Gravano. Evaluating top-k selection

queries. In Proc. of Int. Conf. on Very Large Data Bases

(VLDB), pages 397–410, 1999.
[6] E. Dellis and B. Seeger. Efficient computation of reverse

skyline queries. In Proc. of Int. Conf. on Very Large Data

Bases (VLDB), pages 291–302, 2007.
[7] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation

algorithms for middleware. In Proc. of Symposium on

Principles of Database Systems (PODS), pages 102–113,
2001.

[8] S. Ge, L. H. U, N. Mamoulis, and D. W. Cheung. Efficient all
top-k computation: A unified solution for all top-k, reverse
top-k and top-m influential queries. IEEE Transactions on

Knowledge and Data Engineering (TKDE),
25(5):1015–1027, 2013.

[9] U. Güntzer, W.-T. Balke, and W. Kießling. Optimizing
multi-feature queries for image databases. In Proc. of Int.

Conf. on Very Large Data Bases (VLDB), pages 419–428,
2000.

[10] V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER:
a system for the efficient execution of multi-parametric
ranked queries. In Proc. of Int. Conference on Management

of Data (SIGMOD), pages 259–270, 2001.
[11] F. Korn and S. Muthukrishnan. Influence sets based on

reverse nearest neighbor queries. In Proc. of Int. Conference

on Management of Data (SIGMOD), pages 201–212, 2000.
[12] C. Li, B. C. Ooi, A. K. H. Tung, and S. Wang. DADA: a data

cube for dominant relationship analysis. In Proc. of Int.

Conference on Management of Data (SIGMOD), pages
659–670, 2006.

[13] X. Lian and L. Chen. Monochromatic and bichromatic
reverse skyline search over uncertain databases. In Proc. of

Int. Conference on Management of Data (SIGMOD), pages
213–226, 2008.

[14] A. Marian, N. Bruno, and L. Gravano. Evaluating top-k
queries over web-accessible databases. ACM Transactions on

Database Systems, 29(2):319–362, 2004.
[15] M. Miah, G. Das, V. Hristidis, and H. Mannila. Standing out

in a crowd: Selecting attributes for maximum visibility. In
Proc. of Int. Conf. on Data Engineering (ICDE), pages
356–365, 2008.

[16] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP
operations in spatial data warehouses. In Proc. of Int.

Symposium on Spatial and Temporal Databases (SSTD),
pages 443–459, 2001.

[17] Y. Tao, V. Hristidis, D. Papadias, and Y. Papakonstantinou.
Branch-and-bound processing of ranked queries. Information

Systems, 32(3):424–445, 2007.
[18] Y. Tao, X. Xiao, and J. Pei. SUBSKY: efficient computation

of skylines in subspaces. In Proc. of Int. Conf. on Data

Engineering (ICDE), page 65, 2006.
[19] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg.

Reverse top-k queries. In Proc. of Int. Conf. on Data

Engineering (ICDE), 2010.
[20] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg.

Monochromatic and bichromatic reverse top-k queries. IEEE

Transactions on Knowledge and Data Engineering,
23(8):1215–1229, 2011.

[21] A. Vlachou, C. Doulkeridis, and K. Nørvåg. Monitoring
reverse top-k queries over mobile devices. In Proc. of Int.

Workshop on Data Engineering for Wireless and Mobile

Access (MobiDE), 2011.
[22] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis.

Identifying the most influential data objects with reverse
top-k queries. PVLDB, 3(1-2):364–372, 2010.

[23] Q. Wan, R. C.-W. Wong, I. F. Ilyas, M. T. Özsu, and Y. Peng.
Creating competitive products. PVLDB, 2(1):898–909, 2009.

[24] D. Xin, C. Chen, and J. Han. Towards robust indexing for
ranked queries. In Proc. of Int. Conf. on Very Large Data

Bases (VLDB), pages 235–246, 2006.
[25] B. Yao, F. Li, and P. Kumar. Reverse furthest neighbors in

spatial databases. In Proc. of Int. Conf. on Data Engineering

(ICDE), 2009.
[26] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen. Efficient

maintenance of materialized top-k views. In Proc. of Int.

Conf. on Data Engineering (ICDE), pages 189–200, 2003.
[27] A. Yu, P. K. Agarwal, and J. Yang. Processing a large

number of continuous preference top-k queries. In Proc. of

Int. Conference on Management of Data (SIGMOD), pages
397–408, 2012.

