
Discovering Representative Skyline Points over
Distributed Data

Akrivi Vlachou1⋆, Christos Doulkeridis1,2⋆⋆, and Maria Halkidi2

1 Norwegian University of Science and Technology (NTNU), Norway
2 University of Piraeus, Greece

vlachou@idi.ntnu.no,{cdoulk,mhalk}@unipi.gr

Abstract. Skyline queries help users make intelligent decisions over
complex data. The main shortcoming of skyline queries is that the car-
dinality of the result set is not known a-priori. To overcome this limita-
tion, the representative skyline query has been proposed, which retrieves
a fixed set of k skyline points that best describe all skyline points. Even
though the representative skyline has been studied before in centralized
environments, this is the first paper that addresses efficient computa-
tion of the representative skyline in distributed systems. The distributed
nature of the environment makes the task of discovering truly repre-
sentative skyline points even more challenging. In this paper, we pro-
pose a novel framework for discovering the representative skyline over
distributed data sources. Our experimental study demonstrates the effi-
ciency and effectiveness of our framework.

1 Introduction

Skyline queries [1] constitute a powerful tool for multi-objective optimization,
especially in the case of multiple and conflicting criteria. An important short-
coming of skyline queries is that the size of the result set is not fixed, but largely
depends on various factors such as the data distribution or the dimensionality
of the data space. Thus, in contrast to other popular query types, such as top-k
queries [3, 5] that return results of expected size, the cardinality of skyline set is
unrestricted and can sometimes be comparable to the size of the complete data
set. To alleviate this shortcoming, centralized approaches that select a restricted
set of representative skylines have been proposed [7, 11].

As data management becomes inherently distributed due to massive content
generation at disparate locations, the importance of distributed query processing
is even more evident. Lately, this is also intensified by the advent of large-scale
distributed data centers and cloud computing infrastructures. In such setups,
servers store portions of the data set and the objective is to support efficient
and effective techniques for query processing and advanced data analysis.

In this paper, we address for the first time the problem of discovering a set of
k skyline representatives over distributed data, which is even more challenging

⋆ A. Vlachou was partially supported by the Greek State Scholarship Foundation.
⋆⋆ C. Doulkeridis was supported under the Marie-Curie IEF grant number 274063.

2 Akrivi Vlachou, Christos Doulkeridis, and Maria Halkidi

than the centralized representative skyline query due to the lack of global knowl-
edge. As skyline points are equivalent by definition, any representative skyline
query uses an error metric that captures the loss in the expressiveness of the
skyline set due to the absence of the non-representative skyline points. Thus,
the representative skyline query defines an optimization problem that aims to
retrieve the k skyline points that minimize the error metric. Different error met-
rics have been proposed for representative skyline queries, such as dominance [7]
and distance-based [11] error metric. Assuming a generic distributed setup where
a set of N servers store portions of the entire data set autonomously, we intro-
duce a novel framework for distributed skyline representative algorithms which
supports any error metric and retrieves a representative skyline set of low rep-
resentation error by only considering a fraction of the distributed data.

More precisely, our framework encompasses a baseline approach as well as
two alternative efficient algorithms. The distributed skyline algorithm is used as
a baseline and incorporates representative skyline computation in a distributed
skyline query by transferring all local skyline points to the coordinating server.
In case of error metrics that are not influenced by dominated points, such as [11],
the distributed skyline algorithm returns exactly the same representative points
as if the query was executed on all data by a centralized algorithm. Furthermore,
we prove that any algorithm that transfers fewer local data than the distributed
skyline query may report non-skyline points as representative skyline points, if
only a single communication phase is employed.

Motivated by this observation, we propose the distributed skyline represen-
tative algorithm that relies on two communication phases in order to reduce
the transferred data. In the first phase, each individual server discovers its k
local representative skyline points. The local representatives are transmitted to
the coordinating server, which extracts an initial set of k global skyline rep-
resentatives. At the second communication phase, the currently defined global
representatives are forwarded back to servers, to be tested for dominance by
other local skyline points. The identified set of dominating points is then sent
to the coordinating server, which then re-applies the representative skyline al-
gorithm to extract the final set of k representative skyline points. Finally, we
introduce the distributed error-based representative algorithm that processes the
query in the same spirit as the distributed skyline representative algorithm, but
also exploits the information about the value of error metric at local level to
reduce further the induced error of the representative skyline set.

2 Related Work

Restricting the skyline cardinality is motivated by the fact that the skyline cardi-
nality increases with the data set dimensionality. To deal with this dimensionality
curse, one possibility is to restrict the cardinality of the result set, by choosing
k skyline points out of the entire set. Towards this goal, the authors in [2] pro-
pose the k-dominant skyline query. The authors relax the idea of dominance
to k-dominance, in order to increase the probability of one point dominating

Discovering Representative Skyline Points over Distributed Data 3

another point, thereby restricting the skyline cardinality. Skyline ordering [8] is
an approach that produces arbitrary size constrained skyline sets by employing
skyline-based partitioning on the data set.

Selecting representative skyline points in centralized domains has recently
attracted significant attention for retrieving exactly k points from the skyline
set. In [7], the authors study the problem of selecting k skyline points, so that
the number of points dominated by at least one of these k skyline points is max-
imized. In [11], an approach is presented for retrieving k representative skyline
points, which are defined as the set of k points that minimize the maximum
distance between a non-representative skyline point and its nearest representa-
tive. In [10], representative skylines are studied under the assumption that user
preferences are expressed as thresholds. The thresholds indicate the worst value
on each attribute that is acceptable from each user. The proposed approach
relies on the probability distribution of the user’s thresholds. Preference-based
representative skyline queries are out of the scope of this paper.

This is the first paper that studies representative skyline queries in dis-
tributed systems. However, several approaches have been proposed for efficient
skyline processing in distributed environments; a detailed survey of distributed
skyline processing can be found in [6]. For example, subspace skyline computa-
tion over peer-to-peer network has been studied in [12, 13]. Cui et al. [4] proposed
the PaDSkyline algorithm for skyline query processing in a generic distributed
environment. In [14], a feedback-based distributed skyline (FDS) algorithm is
proposed, which aims to minimize the bandwidth consumption. However, the
aforementioned papers focus on the efficient computation of the skyline query,
not the representative skyline query.

3 Preliminaries and Problem Statement

Preliminaries. In our system model, a set of N servers Si participate in the
distributed skyline computation, while a coordinator server SC is responsible for
communication with the servers in order to produce the desired representative
skyline set. Data is distributed in the sense of horizontal partitioning, thus each
server Si stores locally a set of points Pi. The entire data set P is the union of
all sets of points Pi stored locally at any server Si (P =

⋃

Pi, Pi

⋂

Pj = ∅). A
representative skyline query is initiated by the coordinator. In the following, we
provide the necessary definitions and preliminaries.

Given a data set P on a data space defined by a set of d dimensions {d1, . . . , dd},
a point p ∈ P is represented as p={p[1], . . . , p[d]} where p[i] is the value on di-
mension di. Without loss of generality, we assume that ∀di : p[i] ≥ 0, and that
smaller values are preferable.

Definition 1. (Skyline set) A point p ∈ P dominates another point q ∈ P ,
denoted as p ≺ q, if (1) on every dimension di, p[i] ≤ q[i]; and (2) on at least
one dimension dj, p[j] < q[j]. The skyline S(P) is a set of points that are not
dominated by any other point in P .

4 Akrivi Vlachou, Christos Doulkeridis, and Maria Halkidi

Consider the example in Fig. 1, where each point represents a hotel and the
y-dimension represents the price of a room, while the x-dimension captures the
distance of the hotel to the beach. A hotel dominates another hotel because it
is cheaper and closer to the beach. Thus, the skyline points (a, i, m and k) are
the best possible trade-offs between price and distance from the beach.
Problem statement. Unfortunately, as the dimensionality of the data set
grows, the skyline operator loses its discriminating power and returns a large
fraction of the data. The huge size of the result set hinders decision-making and
motivates the ranking of skyline points. Therefore, users prefer to retrieve k rep-
resentative points instead of the whole skyline set. The representative skyline
points are chosen to best describe the tradeoffs among different dimensions of-
fered by the full skyline. As skyline points are equivalent by definition, an error
metric is defined to capture the representativeness of a set of k skyline points.

Definition 2. (Representative skyline set) Given an integer k, the representa-
tive skyline of a data set P is a set K of k skyline points of S(P) that minimizes
the error metric Er(K).

As we will elaborate in the following, different definitions of the error metric
for the representative skyline have been proposed: dominance-based error met-
ric [7] and distance-based error metric [11]. Both error metrics are supported by
our distributed framework. Definition 2 leads to the following problem statement
of this paper.

Definition 3. (Distributed representative skyline set) Given a distributed data
set P =

⋃

Pi, compute its representative skyline set K of size k.

Dominance-based representative skyline. In [7], the representative skyline
set is defined based on the dominated points. More precisely, the authors quan-
tify the concept of representativeness by the total number of (distinct) data
points dominated by one of the k representative skyline points. In other words,
the k most representative skyline points are the ones that minimize the number
of the data points that are not dominated by any representative point. Thus,
the error metric is defined as:

Er(K) = {|{p}| : p ∈ P, p /∈ K, 6 ∃p′ ∈ K : p′ ≺ p} .
For example, Fig. 2(a) depicts a data set P of hotels, along with its skyline

points S(P). This data set contains 6 skyline points depicted with circles on
a line. In addition, the representative skyline points that are derived from the
dominance-based algorithm for k=3 are depicted with squares.

The problem is shown to be NP-hard when the dimensionality is 3 or more
and it can be approximately solved by a polynomial time greedy algorithm.
The proposed greedy algorithm starts by computing the skyline set and the
representative error of each skyline point, i.e., the number of data points that are
dominated by each skyline point. The algorithm picks as the first representative
skyline point the skyline point that has the highest number of dominated points.
After removing the data points that are dominated by the first representative
skyline point, the representative error of each skyline point is re-computed and

Discovering Representative Skyline Points over Distributed Data 5

a c

1

1

2 3 4 5 6 7 8 910

2
3
4
5
6
7
8
9

10
b

i

m k

h

g

d

e

f

n

l

distance

price

Fig. 1. Skyline example.

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

p
ri
c
e

distance

(a) Dominance-based.

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

p
ri
c
e

distance

(b) Distance-based.

Fig. 2. Example of representative skyline.

again the skyline point with the maximum value is picked. This is repeated
until k skyline points are selected. To overcome the high memory requirements
of the greedy algorithm, a probabilistic counting technique can be applied for
estimating the number of distinctly dominated data points. This leads to an
index-based randomized algorithm for finding the representative skyline points.

Distance-based representative skyline. The error metric Er(K) for the
distance-based representative skyline [11] is defined as:

Er(K) = max∀p∈S(P)−K(min∀p′∈K d(p, p′)),

where d(p, p′) is the Euclidean distance between points p and p′. Intuitively, a
distance-based representative skyline set is good, if for every non-representative
skyline point, there exists a representative skyline point nearby.

Fig. 2(b) depicts an example of the distance-based representative points K for
illustrative purposes. The k=3 representative points are depicted with squares,
while the skyline points depicted with circles on a line.

For dimensionality at least 3 the problem is NP-hard, thus the authors pro-
pose a greedy algorithm [11], namely I-greedy, to compute the distance-based
representative. I-greedy assumes a multidimensional index on the data set and
uses the concept of max-rep-dist for computing the representatives. Given a
subtree in the R-tree, its max-rep-dist is a value that upper-bounds the repre-
sentative distance of any potential skyline point p in this subtree. Initially, it
takes as input an initial set K containing an arbitrary skyline point, which is
used as a representative point. For example, this point can be the point with the
smallest x-coordinate. I-greedy maintains the entries of the R-tree in a sorted
list. In each iteration, I-greedy processes the entry E with the largest max-rep-
dist. If the next entry is dominated by at least one point retrieved so far, the
entry is discarded. Otherwise, I-greedy searches for the entry with the smallest
L1 distance to the origin among all entries in the sorted list whose min-corners
dominate E. If such an entry exists, it must be an intermediate entry, so the
entries of its child node are inserted, if they are not dominated by any point
retrieved so far. If such an entry does not exist, then E is processed. If E is a
point, it is inserted to K as the next representative skyline point. Otherwise, the
entries of its child node are inserted in the list, if they are not dominated by any
point retrieved so far.

6 Akrivi Vlachou, Christos Doulkeridis, and Maria Halkidi

Algorithm 1 Distributed skyline algorithm DSA

1: INPUT: k, Coordinator SC , Servers Si

2: OUTPUT: Representative skyline K
3: for (∀Si : i ∈ [1, N]) do

4: S(Pi)← Si.skyline()
5: end for

6: K ← SC .representative(
⋃

S(Pi))
7: return K

4 Distributed Representative Skyline Algorithms

In this section, we present our framework that encompasses two algorithms for
discovering the representative skyline points over distributed data. Our generic
framework is parameterized by a centralized skyline representative algorithm
that is executed locally at the participating servers. Any such algorithm for
local skyline representative computation can be plugged in our framework. Cur-
rently, we have incorporated in our framework the error metrics of two existing
skyline representative algorithms studied in the related work: distance-based
representative [11] and dominance-based representative [7].

4.1 Distributed skyline algorithm (DSA)

In a generic distributed system, processing the representative skyline query can
be performed by integrating the representative skyline computation in a dis-
tributed skyline algorithm. Algorithm 1, termed DSA, serves as a baseline and
adheres to this strategy to produce a representative skyline set.

DSA is processed at SC by first sending a skyline query to all servers Si, which
in turn process the query locally over their data Pi (line 4). Then, each server
Si reports its local skyline set S(Pi) to SC . Similar to the case of distributed
skyline query processing, a centralized algorithm for finding the representative
skyline set, such as [7, 11], is processed at the coordinator server SC , in order to
obtain the representative skyline set K (line 6).

An important property of the skyline operator is that the skyline set of
a distributed data set P is a subset of the union of the local skyline sets of
all partitions S(P) ⊆ ⋃S(Pi). This property of the skyline set leads to an
interesting observation about the DSA algorithm. As long as the error metric
used for defining the representative skyline is not influenced by non-skyline points
of the data set, the retrieved representative skyline set of DSA is equivalent to
the representative skyline set of the entire data set P =

⋃

Pi. Moreover, this
is accomplished without requiring the transfer of all local data points Pi, but
only the local skyline points S(Pi). Notice that the distance-based error metric
satisfies the afore-described observation, therefore DSA produces the identical
result of the centralized distance-based representative algorithm.

However, DSA has an important drawback; it needs to transfer the complete
local skyline sets to the coordinator. Under certain circumstances, depending on

Discovering Representative Skyline Points over Distributed Data 7

1

1

2 3 4 5 6 7 8 9 10

2
3
4
5
6
7
8
9
10

p
1

p
2

p
4

p
3

p
5

Y

id X Y

p
1
9.0 1.5

p
2
4.0 2.5

p
3
3.0 3.5

p
4
1.5 4.0

p
5
0.5 9.0

X

q
1

q
2

q
3

q
4

q
5

id X Y

q
1
6.0 1.0

q
2
2.5 2.5

q
3
2.0 4.5

q
4
1.5 5.5

q
5
1.0 9.5

Skyline set of server S
1

Skyline set of server S
2

Fig. 3. Example of Lemma 1.

the dimensionality or data distribution, the local skyline sets S(Pi) are compa-
rable in size to the local data sets Pi. Obviously, this leads to increased network
traffic, which is undesirable especially in the case of bandwidth-constrained net-
works. Motivated by this shortcoming, we introduce an algorithm that produces
the representative skyline set K by transferring only a limited number of points,
which is independent of the actual cardinality of local skyline sets.

4.2 Distributed skyline representative algorithm (DSR)

In the following, we first show that any distributed approach that transfers fewer
data points than the local skyline points requires two communication phases, in
order to ensure that the representative skyline set is valid, i.e., all representative
skyline points belong to the global skyline set. Then, we describe in detail the
proposed algorithm, termed DSR.
Two communication phases. The design of the DSR algorithm is guided by
the observation that we do not wish to transfer local skyline sets to the coordina-
tor, as this would result in unrestricted size of transferred points. Consequently,
our premise is to transfer to the coordinator only a fraction of the local skyline
points S(Pi), namely only the local representative skyline points Ki. However,
the following lemma shows that this method does not guarantee that the pro-
duced representative points K are actually global skyline points S.

Lemma 1. A distributed skyline representative algorithm that produces a rep-
resentative skyline set K over the union of local representative skyline sets

⋃Ki

may result in non-skyline points p, i.e., p ∈ K∧

p /∈ S.

Proof. It suffices to construct an example where the algorithm will falsely report
a dominated point as representative skyline point. We use the distance-based
error metric, but a similar example can be constructed for the dominance error
metric. Consider the example of Fig. 3, where the skyline sets of two servers S1

and S2 are depicted. Assume that the representative skyline set is requested for
k=3. Applying the distance-based representative algorithm on S(P1) and S(P2)
produces the sets K1={p1, p3, p5} and K2={q1, q3, q5} respectively. It is easy to

8 Akrivi Vlachou, Christos Doulkeridis, and Maria Halkidi

Algorithm 2 Distributed Skyline Representative DSR

1: INPUT: k, Coordinator SC , Servers Si

2: OUTPUT: Representative skyline K
3: for (∀Si : i ∈ [1, N]) do

4: Ki ← Si.representative(Pi)
5: end for

6: K′ ← SC .representative(
⋃

Ki)
7: for (∀Si : i ∈ [1, N]) do

8: Di ← Si.dominate(K′)
9: end for

10: K ← SC .representative((
⋃

Di)
⋃

K′)
11: return K

see that q1 dominates p1, and p5 dominates q5, thus SC will take as input the set
{p3, p5, q1, q3} to produce K. Obviously, since k=3 at least one of p3, q3 belongs
to K. However, q2 dominates p3 and p4 dominates q3, therefore the algorithm
falsely reports a dominated point as representative skyline point.

Lemma 1 practically means that no algorithm that is based solely on transfer
of local representative skyline points to the coordinator can guarantee that the
representative points K belong to the global skyline set S, i.e., K ⊂ S. Conse-
quently, we propose the DSR algorithm that employs two communication phases
in order to guarantee that the representative skyline set consists of skyline points.
In the first phase, the coordinator requests from each server the representative
skyline set based on the locally stored data. Then, a centralized algorithm for
representative skyline computation is applied on the union of local representa-
tive skyline sets to produce a set of representative skyline points. In the second
phase, the produced representative skyline points are sent to all servers, and
each server sends back a set of points Di that consists of the local skyline points
that dominate at least one representative skyline point. Finally, the coordinator
applies again the skyline representative algorithm to produce the final set of
representative skyline points K. DSR improves the efficiency of DSA in terms of
communication by requesting only the local representative skyline points.
Algorithmic description and correctness. DSR is described in Algorithm 2.
First, each server Si (i ∈ [1, N]) executes a skyline representative query3 on the
locally stored data (Pi) to produce a set Ki of k local representative skyline
points (line 4). The coordinator assembles the sets Ki (i ∈ [1, N]) and produces
a new set of k representative skyline points (line 6), denoted as K′, by applying
the centralized skyline representative algorithm. Then, the coordinator sends the
set K′ to all servers Si. Each server Si computes all local skyline points Di that
dominate at least one of the points in K′ (line 8). The coordinator merges its
set K′ together with the union of sets of local points Di that dominate points
of K′, and applies the representative skyline algorithm (line 10) to produce the
final set K, which is reported to the user (line 11).

3 This query is performed by using any of the algorithms proposed in [7, 11].

Discovering Representative Skyline Points over Distributed Data 9

One issue that needs further elaboration is the computation of the set Di at a
server Si (line 8 of DSR algorithm). To support efficient processing, the data set
Pi is indexed by a multidimensional index structure, such as an R-tree. Then, the
sets Di can be computed efficiently by applying a branch-and-bound algorithm
on the R-tree similar to a constrained skyline query [9]. For each intermediate
representative point pi ∈ K′, the constraint is defined by point pi and the origin
of the data space and entries of the R-tree that do not overlap with the constraint
are discarded. The set Di contains the union of the results for all intermediate
representative points pi ∈ K′. We emphasize that the use of the R-tree is simply
to increase the efficiency, and it is by no means a strict prerequisite of DSR.
Other non-indexed techniques for computing the sets Di can be used instead.

Finally, Lemma 2 ensures the correctness of DSR by providing guarantees
that Algorithm 2 always returns representative skyline points that belong to the
skyline set, i.e., the set of representative skyline points is valid.

Lemma 2. (Correctness) Any point p of the representative skyline set K pro-
duced by DSR belongs to the skyline set, i.e., if p ∈ K then p ∈ S.

Proof. Let us assume that p ∈ K and p /∈ S. Then, there exists a point p′ ∈ S
such that p′ dominates p. We also conclude that p′ /∈ ⋃

(Ki

⋃Di) because other-
wise p /∈ K. Let us denote as Sj the server that stores p′ locally. We distinguish
two cases: (a) p ∈ ⋃

Ki, then p′ ∈ Dj which leads to a contradiction, or (b)
p /∈ ⋃

Ki, then p ∈ ⋃

Di, which means that there exists a point q ∈ ⋃Ki such
that p dominates q. Due to the properties of dominations we conclude that p′

dominates q, which in turn leads to p′ ∈ Dj which is a contradiction.

4.3 Distributed error-based representative algorithm (DER)

As DSA and DSR transfer only a fraction of data points to the coordinator, the
representation error of the produced skyline representative points may be higher
than in the case of the centralized skyline representative algorithm applied on
the union of the local data points (P =

⋃

Pi). Even though DSA manages to
return the same representative skyline set as the centralized algorithm on P ,
when the error metric does not depend on dominated data points, this does not
hold for all error metrics such as for example the dominance error metric. The
main reason of the higher representation error is that DSA and DSR use only
restricted knowledge about the underlying data due to its distribution. Thus,
our premise is to additionally use the information about the error metric at each
server locally (resulting from the local representative skyline query) in order to
improve the representation quality of the skyline representative set K.

In the following, we describe a generic algorithm that produces represen-
tative skyline points for any error metric by taking into account scores of the
candidate representative points derived from the local query processing. Then,
we demonstrate the applicability of our algorithm for both the dominance and
the distance-based error metric.
Algorithmic description The distributed error-based skyline representative
algorithm (DER) processes the representative skyline query similarly to DSR. It

10 Akrivi Vlachou, Christos Doulkeridis, and Maria Halkidi

Algorithm 3 Error-based Representative Selection

1: INPUT: k, Local representative skyline
⋃

Ki

2: OUTPUT: Representative skyline K
3: p← argmax∀p∈(

⋃

(Ki))(score(p))
4: K = {p}
5: while (|K| < k) do

6: p← argmax∀p∈(
⋃

(Ki)−K)(score(p,K))
7: K = K

⋃

{p}
8: end while

9: return K

consists of two phases that guarantee that the resulting set is valid. Moreover,
DER produces candidate representative points by applying a skyline represen-
tative algorithm at local servers. The main difference to the previous algorithms
is that each local representative skyline point p ∈ Ki is associated with a score
of representativeness sp. Then, the coordinator does not process a plain rep-
resentative skyline query on

⋃Ki, but instead takes into account the score of
representativeness of each point in order to minimize the error metric. In this
way, an optimization problem is defined that aims to identify the k represen-
tative skyline points that minimize the error metric, given a set of candidate
representative points

⋃Ki each of them annotated by a score. As the represen-
tative skyline query has been shown to be NP-hard [7, 11], we propose a greedy
algorithm to solve our optimization problem.

The DER algorithm assumes that each local representative point p ∈ Ki is
augmented with a numeric value (score of representativeness) that indicates its
goodness. Clearly, the definition of the score depends on the selection of the
representative skyline algorithm, which is applied at the local servers. After the
representative points Ki are collected at the coordinator, Algorithm 3 is assigned
with the task of selecting k representative points, i.e., by solving the optimiza-
tion problem. For this purpose, the algorithm uses the score() function that
estimates the goodness of each candidate representative point. After selecting
the first representative point (line 3), in each iteration the algorithm picks as
a next representative point the one that maximizes the estimated score (line
6). After the selection of k representative points K′, the points are sent to all
servers for the verification step. Local skyline points Di that dominate a point
in K′ are sent to the coordinator. Finally, the coordinator produces the final k
representative skyline points, by solving again the same optimization problem
over the union of points in sets K′ and Di. Thus, Algorithm 3 is invoked taking
as input (

⋃Di)
⋃K′.

The DER algorithm is generic and allows any error metric, i.e., any central-
ized representative skyline algorithm, to be plugged in our framework. DER is
parameterized by a function score() that computes the error metric. For any er-
ror metric that is plugged in (or equivalently for any centralized representative
skyline algorithm that should be supported), we need to define an appropriate
score of each representative skyline point and the implementation of the ab-

Discovering Representative Skyline Points over Distributed Data 11

p

p'

s
p
=5

s
p'
=3

q s
q
=4

(a) Dominance.

p'

p

r
p'

r
p

d(p,p')+r
p

(b) Distance-based.

Fig. 4. Example of score() function.

stract function score(). In the sequel, we demonstrate how the dominance and
the distance-based error metric are easily integrated and supported by DER.
Dominance error metric At a local level, the score sp of a local representative
skyline point p ∈ Pi is defined as the number of points q that it dominates from
the local data set Pi:

sp = |{q ∈ Pi : p ≺ q}|
Notice that this definition makes the score of a representative skyline point
dependent on the data points. Furthermore, we can accurately compute the
aggregated score of a set of representative skyline points when all belong to
different servers, as they dominate different data points.

As already mentioned, a set of representative skyline points
⋃Ki is collected

at the coordinator, each accompanied by its score. To use the DER algorithm
to solve the optimization problem, we need to define the function score(). We
use two versions of this function. The first, score(p), computes the goodness for
a representative skyline point p individually. This is useful in order to select the
first representative skyline point. For this purpose, the most promising point is
selected, therefore the function is defined as:

score(p) = sp +
∑

∀q∈
⋃

Ki:p≺q sq

Intuitively, we select the point p that dominates points in Ki with maximum
number of dominated points in total.

The second, score(p,K), computes the error when p is selected for inclusion
in the set K. As in each step we wish to add the next most promising point to
the result set, we pick the point that maximizes the following function:

score(p,K) = sp +
∑

∀q∈
⋃

Ki:p≺q∧6∃p′∈K:p′≺q sq

Intuitively, we compute as score an upper bound of the gain in the attained
representation quality, when p is added to K. This value is an upper bound
because data points dominated by two representative skyline points are double-
counted, since computing the distinctly dominated points is not feasible in prac-
tice. In the example of Fig. 4(a), only the scores sp and sp′ are known and not
the exact values of the dominated points, thus the exact number of local data
points dominated by q is not known. The score(q) is estimated as sq+s′p+sp=12,
which is an upper bound of the actual number of dominated points by q.
Distance-based error metric The score of a local representative skyline point
p ∈ Ki is defined as the maximum distance of p to any non-representative skyline

12 Akrivi Vlachou, Christos Doulkeridis, and Maria Halkidi

point q for which there is no other representative p′ closer to q than p. Formally,
the score is defined as:

sp = max∀q∈S(Pi){d(p, q) :6 ∃p′ ∈ Ki, d(q, p′) < d(q, p)}
To select the first representative skyline point, we follow the same strategy

as iGreedy [11], and define the value of the first coordinate: score(p) = −p[1].
Finally, the score is defined as:

score(p,K) =

{

0, if ∃p′ ∈ K : d(p, p′) + sp < sp′

min∀p′∈K{d(p, p′) + sp}, otherwise

}

The function score sp essentially defines a covering radius rp = sp for a hy-
persphere centered at p, as depicted in Fig. 4(b). This hypersphere represents
the region of the space with the following property: any non-representative sky-
line point in this region is closer to p than to any other representative skyline p′.
The score function calculates the new radius of a hypersphere centered at p that
covers all skyline points that are closer to p or p′ than all other representative
points. The estimation of the error is an upper bound of the actual error. In
worst case, the distance between a candidate point p and its closer representa-
tive point p′ is d(p, p′) + sp. If this is smaller than sp′ , then the representation
quality does not decrease by not selecting the candidate as representative, thus
the estimated error is set to zero.

The algorithm proceeds as above; it first picks one representative skyline
point. Then, in each iteration, the error is estimated that will be introduced if
the candidate representative skyline is not selected. The point with the highest
error is selected as the next representative skyline, because otherwise the error
metric will become equal to the highest error.

5 Experimental Evaluation

In this section, we provide an extensive study of our framework. We developed all
algorithms (the baseline DSA, as well as our two proposed algorithms DSR and
DER) in Java and simulated the distributed aspects of our framework. We im-
plemented the distance-based representative algorithm (I-greedy algorithm [11]),
as well as the greedy algorithm proposed in [7].

We employed synthetic data sets to examine different distributions, namely
uniform (UN), clustered (CL) and anti-correlated (AC). For the clustered data
set (CL), each server picks 10 cluster centroids randomly and the points follow
a Gaussian distribution on each axis with variance 0.05, and a mean equal to
the corresponding coordinate of the centroid. The anti-correlated (AC) data set
was generated as described in [1]. For our experiments on synthetic data, we
report the average results over 10 different instances of the data set. In addition,
we employ another synthetic data set, called Island (IS), which is 2-dimensional
and contains 63383 points. This data set is used in [11] to demonstrate the
effectiveness of distance-based representative. We also use a real data set (NBA),
which consists of 17265 5-dimensional tuples representing a player’s performance
per year. Since our setup is distributed, we distribute IS and NBA to the N
servers by choosing a server per point uniformly at random. Again, we perform
this process 10 times and report average values.

Discovering Representative Skyline Points over Distributed Data 13

To evaluate the performance of our framework, we vary N from 5 to 15, d
from 2 to 5, the cardinality n from 250K to 3M (which is evenly distributed to
the N servers in advance), k from 10 to 50, the network speed from 1KB/sec to
100KB/sec, and we test different data distributions (UN,AC,CL,IS,NBA). We
observed that the use of larger data sets increases the total time due to increased
processing time, while the networking time is not significantly affected, since the
number of transferred data remains relatively stable. Unless explicitly mentioned,
the default setup is N=10, d=3, |ni|=100K, k=10, network speed 50KB/sec,
and we employ the UN data set. We note that when k < S(Pi), then k is set
to S(Pi). The experimental evaluation focuses on two axes; the performance of
our approach and the achieved quality of results. Our main performance metrics
include: (i) the amount of transferred data and (ii) the total time, which is the
time until the final result is produced at SC (including network transfer time).

To evaluate the quality of our algorithms, we employ the normalized error
metric. In the case of distance-based representative, the normalized error met-
ric is Er(K)/MAX DIST, where MAX DIST represents the maximum distance
of the space. Assuming a d-dimensional set of points where the value of each
dimension belongs to [0, U], then MAX DIST=U

√
d. In the case of dominance

representative, the normalized error metric is Er(K)/n. In all cases the normal-
ized error takes values that belong to the range [0, 1].

5.1 Experiments with distance-based representative

Evaluation for UN. In Fig. 5, we measure the amount of transferred data
for various setups. In Fig. 5(a), we study the effect of increasing the cardinality
of the data set from 50K to 200K points per server. DSA needs to transfer all
local skyline points, thus resulting in much more traffic than DSR or DER. In
Fig. 5(b), the number of transferred data points increases rapidly for DSA, due
to the increase of each server’s skyline cardinality as the dimensionality grows.
Instead, DSR and DER show a much more stable performance, demonstrating
the merits of the approaches that transfer only representative skyline points,
rather than local skyline sets. In Fig. 5(c), we gradually increase the number
of servers N in the system. The traffic induced by DSA (Fig. 5(c)) increases
linearly with the number of servers. In contrast, DSR and DER scale gracefully.

Then, Fig. 6 shows the normalized error metric for different setups. Recall
that in the case of distance-based representative, the error of DSA is equal
to the error of the centralized distance-based representative algorithm and is
greater than 0, unless all skyline points are reported as representative skyline
points. Fig. 6(a) shows that the savings in network communication (depicted
in Fig. 5(a)) cause DSR and DER to have higher error than DSA. It is also
noteworthy that the increased cardinality does not affect the performance of the
algorithms significantly. The reason is that the important factor is the skyline
cardinality and not the data cardinality. In Fig. 6(b), the induced normalized
error is reported for all algorithms, which increases with dimensionality. No-
tice that the difference between the algorithms remains practically the same. In
Fig. 6(c), the error remains relatively stable for all algorithms regardless of N .

14 Akrivi Vlachou, Christos Doulkeridis, and Maria Halkidi

 0

 200

 400

 600

 800

 1000

 1200

 50000 100000 150000 200000

T
ra

n
s
fe

rr
e
d
 p

o
in

ts

Cardinality

DSR
DSA
DER

(a) Cardinality ni.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 2 3 4 5

T
ra

n
s
fe

rr
e
d
 p

o
in

ts

Dimensionality

DSR
DSA
DER

(b) Dimensionality d.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5 10 15

T
ra

n
s
fe

rr
e
d
 p

o
in

ts

Number of servers

DSR
DSA
DER

(c) Number of servers N .

Fig. 5. Transferred data vs. cardinality, dimensionality and number of servers (UN).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 50000 100000 150000 200000

E
rr

o
r

Cardinality

DSR
DSA
DER

(a) Cardinality ni.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 3 4 5

E
rr

o
r

Dimensionality

DSR
DSA
DER

(b) Dimensionality d.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 5 10 15

E
rr

o
r

Number of servers

DSR
DSA
DER

(c) Number of servers N .

Fig. 6. Error vs. cardinality, dimensionality and number of servers (UN).

These experimental results indicate that DER does not improve the per-
formance of DSR. This behavior is expected because the induced error of the
distance-based representative skyline algorithm depends only on the skyline
points. Consequently, DSR achieves results of high quality even with limited
knowledge. Therefore, in the remaining experimental study of the distance-based
representative, we omit DER from the charts.

Evaluation for CL. In Fig. 7(a), the amount of transferred data is depicted
for our algorithms for CL data. We emphasize that each server picks cluster
centroids randomly, therefore different servers have different clusters of data.
Notice that DSR is practically unaffected by the increased dimensionality, thus
demonstrating its merits when the data set is clustered. In contrast, the traffic
induced by DSA increases with dimensionality. Then, in Fig. 7(b), we depict the
normalized error metric. As in the case of UN, DSR exhibits higher error values
than DSA, however here the difference is smaller than for UN. Also, the absolute
error values are smaller than in the case of UN.

In addition, we measure the total time in Fig.7(c), which increases with di-
mensionality for both algorithms. This is expected, as the performance of any
skyline or representative skyline algorithm deteriorates with increased dimen-
sionality. Both algorithms have similar performance in terms of total time. In
our experiments, we noticed that the processing time dominates the total ex-
ecution time. This happens because the time required for transferring data is
quite low, due to the assumed network speed of 50KB/sec. For more network-
constrained networks, the transfer time is significant and affects the total time.

Discovering Representative Skyline Points over Distributed Data 15

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 2 3 4

T
ra

n
s
fe

rr
e
d
 p

o
in

ts

Dimensionality

DSR
DSA

(a) Transferred data (CL).

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4

E
rr

o
r

Dimensionality

DSR
DSA

(b) Error (CL).

 0

 10000

 20000

 30000

 40000

 50000

 60000

 2 3 4

T
o
ta

l
ti
m

e
 (

m
s
e
c
)

Dimensionality

DSR
DSA

(c) Total time (CL).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 30 50

T
ra

n
s
fe

rr
e
d
 p

o
in

ts

Number of representatives

DSR
DSA

(d) Transferred data (AC).

 0

 0.05

 0.1

 0.15

 0.2

 10 30 50

E
rr

o
r

Number of representatives

DSR
DSA

(e) Error (AC).

Fig. 7. Experimental results for CL and AC data sets.

Evaluation for AC. In Figs. 7(d) and 7(e), we evaluate both algorithms for the
2-dimensional anti-correlated data distribution. We note that this distribution
is the most challenging for skyline computation, since it results in high skyline
cardinality, even for small dimensionality values. The aim of this experiment is
to explore the behavior of our algorithms, when the local skyline sets at servers
Si are of high cardinality. First, in Fig. 7(d), DSA is unaffected by k, as it always
transfers all local skyline sets regardless of k. Obviously, DSR needs to transfer
more data as k increases. The important finding is that DSR requires to transfer
one order of magnitude fewer data, thus demonstrating its appropriateness when
the local skyline size is significant and network resources are limited. In Fig. 7(e),
the normalized error is depicted. Notice that DSR shows marginally equal error
with DSA, which is another strong argument in favor of DSR. Both algorithms
exhibit a decreasing tendency with increased values of k. This is expected be-
cause as more representative skyline points are reported, the representative set
describes more closely the real skyline set, thereby decreasing the error.

Evaluation for IS. For the IS data set, DSR is again much more communication-
efficient than DSA as shown in Fig. 8(a), especially when the requested value
k is small. Fig. 8(b) shows that the error is practically the same for both algo-
rithms and drops for increased values of k. In Fig. 8, we also depict the data
set and the representative skyline points discovered by the two algorithms. The
two plots share 8 common points out of the total 10. The error is identical for
both algorithms. When compared to the plot of Fig. 8(c), it is clear that both
algorithms produce representative points that capture the shape of the skyline.

Evaluation for NBA. Then, in Fig. 9, we see that the conclusions drawn from
the synthetic data sets are validated also in the case of the real data set. DSR
always incurs significantly less network traffic (Fig. 9(a)), while the induced error
is practically the same for both algorithms (Fig. 9(b)).

16 Akrivi Vlachou, Christos Doulkeridis, and Maria Halkidi

 0

 500

 1000

 1500

 2000

 2500

 10 30 50

T
ra

n
s
fe

rr
e
d
 p

o
in

ts

Number of representatives

DSR
DSA

(a) Transferred data vs. k.

 0

 0.05

 0.1

 0.15

 0.2

 10 30 50

E
rr

o
r

Number of representatives

DSR
DSA

(b) Error vs. k.

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

(c) The Island data set.

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

(d) DSA representatives.

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

(e) DSR representatives.

Fig. 8. Experimental results for IS data set.

 0

 500

 1000

 1500

 2000

 5 10 15

T
ra

n
s
fe

rr
e
d
 p

o
in

ts

Number of servers

DSR
DSA

(a) Transferred data

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 5 10 15

E
rr

o
r

Number of servers

DSR
DSA

(b) Error vs. N .

Fig. 9. Experimental results for NBA data set.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 10 50 100

T
o

ta
l
ti
m

e
 (

m
s
e

c
)

Network speed (KB/sec)

d=2
d=3
d=4

Fig. 10. Varying network
speed.

Varying network speed. In Fig. 10, we vary the network speed for the DSR
algorithm. The total length of each bar corresponds to the total time, while
the colored part corresponds to processing time. Larger values of network speed
(≥50KB/sec) do not affect performance, because the total time is dominated by
the processing time, while the network transfer time is very small. In the case
of smaller values of bandwidth (1KB/sec), we see that network transfer time
increases and affects the total time.

5.2 Experiments with dominance representative

Evaluation for UN. Figs. 11(a) and 11(b) show the results of dominance rep-
resentative for varying dimensionality. Both DSR and DER transfer significantly
fewer data points, and the gain increases with d. An important finding is that
DER improves the performance of DSR in terms of the error metric (Fig. 11(b)).
Evaluation for AC. In the next experiment, we test the performance of all
algorithms in a hard setup (AC data distribution). As expected, when the di-
mensionality increases, the size of the local skyline sets increases rapidly, and

Discovering Representative Skyline Points over Distributed Data 17

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 2 3 4 5

T
ra

n
s
fe

rr
e
d
 p

o
in

ts

Dimensionality

DSR
DSA
DER

(a) Transferred data (UN).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 2 3 4 5

E
rr

o
r

Dimensionality

DSR
DSA
DER

(b) Error (UN).

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 2 3 4

T
ra

n
s
fe

rr
e
d
 p

o
in

ts

Dimensionality

DSR
DSA
DER

(c) Transferred data vs. d.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4

E
rr

o
r

Dimensionality

DSR
DSA
DER

(d) Error vs. d.

Fig. 11. Experimental results for UN and AC data sets.

 0

 500

 1000

 1500

 2000

 5 10 15

T
ra

n
s
fe

rr
e
d
 p

o
in

ts

Number of servers

DSR
DSA
DER

(a) Transferred data.

 0

 0.05

 0.1

 0.15

 0.2

 5 10 15

E
rr

o
r

Number of servers

DSR
DSA
DER

(b) Error vs. N .

Fig. 12. Experimental results for NBA data set.

 0.01

 0.1

 1

 10

 100

 2 5 10

T
o
ta

l
ti
m

e
 (

s
e
c
)

Number of servers

d=2
d=3
d=4

Fig. 13. Speed-up for
DSR algorithm.

DSA needs to transfer too many data points, thus becoming impractical. In con-
trast, both DSR and DER scale gracefully in terms of transferred data. When
the error is considered (Fig. 11(d)), all algorithms induce significant error val-
ues, but DER is better than DSR. DSA exhibits lower error values because it
transfers a significant part of the local data sets to the coordinator, thus easing
the task of selecting representative points.

Evaluation for NBA. Then, in Fig. 12, we test the performance of all algo-
rithms for the NBA data set. We vary the number of servers, in order to study
their behavior for increased network sizes. Fig. 12(a) shows that the increase
in the number transferred points as the number of servers grows is smaller for
DSR and DER than DSA. Fig. 12(b) depicts the induced error as N increases.
The error of all algorithms remains practically unaffected, which shows that our
framework is not significantly affected when more servers are employed.

Speed-up. Finally, in Fig. 13, we perform an experiment using a data set of 1M
data points and distribute it to 2, 5, and 10 servers respectively. We test the DSR
algorithm for the dominance representative. Clearly, when a higher number of

18 Akrivi Vlachou, Christos Doulkeridis, and Maria Halkidi

servers is used, the data set is distributed to smaller fragments, thus each server

processes a smaller amount of data. In consequence, the processing cost of local

computation on each server is reduced. This demonstrates that in the case of

DSR runtime can be reduced by employing more servers.

6 Conclusions

In this paper, we addressed the challenging problem of discovering representative

skyline points over distributed data, which naturally arises in various application

domains, and it is mainly motivated by the unrestricted size of skyline cardi-

nality. To address the problem effectively, we introduce a novel framework for

processing the distributed skyline representative query. Our framework supports

all metrics proposed for representative skyline queries in centralized settings.

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. of ICDE
(2001)

2. Chan, C.Y., Jagadish, H.V., Tan, K.L., Tung, A.K.H., Zhang, Z.: Finding k-
dominant skylines in high dimensional space. In: Proc. of SIGMOD (2006)

3. Chaudhuri, S., Gravano, L.: Evaluating top-k selection queries. In: Proc. of VLDB
(1999)

4. Cui, B., Lu, H., Xu, Q., Chen, L., Dai, Y., Zhou, Y.: Parallel distributed processing
of constrained skyline queries by filtering. In: Proc. of ICDE (2008)

5. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
In: Proc. of PODS (2001)

6. Hose, K., Vlachou, A.: A survey of skyline processing in highly distributed envi-
ronments. VLDBJ, to appear (2011)

7. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: the k most representative
skyline operator. In: Proc. of ICDE (2007)

8. Lu, H., Jensen, C.S., Zhang, Z.: Flexible and efficient resolution of skyline query
size constraints. IEEE TKDE 23(7), 991–1005 (2011)

9. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in
database systems. ACM TODS 30(1), 41–82 (2005)

10. Sarma, A.D., Lall, A., Nanongkai, D., Lipton, R.J., Xu, J.J.: Representative sky-
lines using threshold-based preference distributions. In: Proc. of ICDE (2011)

11. Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-based representative skyline. In: Proc.
of ICDE (2009)

12. Vlachou, A., Doulkeridis, C., Kotidis, Y., Vazirgiannis, M.: SKYPEER: Efficient
subspace skyline computation over distributed data. In: Proc. of ICDE (2007)

13. Vlachou, A., Doulkeridis, C., Kotidis, Y., Vazirgiannis, M.: Efficient routing of
subspace skyline queries over highly distributed data. IEEE TKDE 22(12), 1694–
1708 (2010)

14. Zhu, L., Tao, Y., Zhou, S.: Distributed skyline retrieval with low bandwidth con-
sumption. IEEE TKDE 21(3), 384–400 (2009)

