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Abstract. In applications such as market analysis, it is of great interest to prod-

uct manufacturers to have their products ranked as highly as possible for a signifi-

cant number of customers. However, customer preferences change over time, and

product manufacturers are interested in monitoring the evolution of the popularity

of their products, in order to discover those products that are consistently highly

ranked. To take into account the temporal dimension, we define the continuous

influential query and present algorithms for efficient processing and retrieval of

continuous influential data objects. Furthermore, our algorithms support incre-

mental retrieval of the next continuous influential data object in a natural way. To

evaluate the performance of our algorithms, we conduct a detailed experimental

study for various setups.

1 Introduction

In online marketplaces, top-k queries are typically used to present a limited number

of products ranked according to the user’s preferences. This is extremely helpful for

the user as it enables decision-making, without the need to inspect large amounts of

possibly uninteresting results. In addition, the user is not overwhelmed by the avail-

able information and can retrieve results that satisfy her information need. As a result,

an increasing amount of research has focused on efficient techniques for top-k query

processing lately [6].

From the perspective of the product manufacturers top-k queries are of great interest

as well, since the visibility of a product clearly depends on the number of different top-

k queries for which it belongs to the result set. The reason for this is twofold: 1) users

usually consider only a few highly ranked products and ignore the remaining ones,

and 2) products that appear in the top-k result sets are far more likely to be chosen by a

potential customer, because these products satisfy the customers’ preferences. Recently,

reverse top-k queries [14] were proposed to study the visibility of a given product. A

reverse top-k query returns the set of user preferences (i.e., customers) for which a
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given product is in the result set of the respective top-k queries. Intuitively, a product

that appears in as many as possible top-k result sets, has a higher visibility and therefore

also a higher impact on the market. This has naturally lead to the definition of the

most influential products based on the cardinality of their reverse top-k result sets [17].

Identifying the most influential products from a given set of products is important for

market analysis, since the product manufacturer can estimate the impact of her products

in the market.

However, an important aspect of a product’s influence that has not been taken into

account yet is its variance over time as the user preferences change. The customers’

criteria can differ significantly over time for various reasons. For example, in online

marketplaces, new customers pose queries and new preferences are collected. In ad-

dition, customers that have already posed queries will disconnect after some time. As

user preferences change over time, a product which appears consistently in the top-k
results of as many customers as possible, thus satisfying many customers’ criteria at

any time, has a higher impact on the market than a product that is absent from those re-

sults. Therefore, these products are the best candidate products to advertise to potential

customers, and it is important to identify such products efficiently.

In this paper, we study for the first time the problem of finding the product that be-

longs consistently to the most influential products over time, the continuous influential

products. This is an important problem for many real-life applications. For example, the

products advertised on the first page of an online marketplace should be the products

that have the greatest impact on the market, i.e., the products that are the most popular

among the customers. Since customers change all the time, the products that consis-

tently belong to the most influential products over time are more probable to attract

many potential customers at any time. It is therefore essential to identify the objects

(products) that have high impact over a period of time and despite the fluctuation of

preferences these objects remain among the most influential objects. From now on we

will use the terms product and object interchangeably.

In the following, we first define formally the problem of continuous influential prod-

ucts and provide a baseline algorithm that sequentially scans all time intervals in or-

der to retrieve the most continuous influential product. Then, we provide a bounding

scheme in order to facilitate early termination of our algorithms and avoid processing

time intervals that do not alter the result set. Summarizing, the main contributions of

this paper are:

– We study, for the first time, the problem of identifying the data object that has the

highest impact over time.

– An appropriate score of influence (called continuity score) based on the reverse

top-k query is defined to capture the product impact over a period of time.

– We derive upper and lower bounds for the continuity score of a given object that

lead to efficient algorithms for retrieving the most continuous influential product.

Two different algorithms are presented that provide early termination based on the

bounds, but follow different strategies in order to terminate as soon as possible.

– We conduct a detailed experimental study for various setups and demonstrate the

efficiency of our algorithms.



The rest of this paper is organized as follows: In Section 2 we provide the neces-

sary preliminaries, while in Section 3 we formulate the problem statement. Section 4

presents a baseline algorithm for finding the data object that belongs consistently to the

most influential products. Section 5 provides the foundation for our bounding scheme

and describes the two threshold-based algorithms. Our experimental results are pre-

sented in Section 6. Section 7 provides an overview of related work. Finally, in Section 8

we conclude the paper.

2 Preliminaries

Let D be a dataspace with n dimensions {d1, . . . , dn} and S be a set of data objects on

D. A data object is represented as a point o = {o[1], . . . , o[n]} where o[i] is the value

of the attribute di.

2.1 Time-invariant Case

Given a monotonic scoring function f : S → R, a top-k query returns the k best objects

o ∈ S ranked based on their scores f(o). The most important and commonly used case

of scoring functions is the weighted sum function, also called linear. For a given data

object o and a weighting vector w, its score fw(o) is equal to the weighted sum of the

individual values of o: fw(o) =
∑n

i=1
w[i]o[i], where w[i] ≥ 0 (1 ≤ i ≤ n). The value

of each dimension w[i] of the vector w is a weighting (preference) score on dimension

di. Without loss of generality we assume that (a) minimum values are preferable, and

(b) for each vector w it holds that
∑n

i=1
w[i] = 1. We denote the result set of top-k

query defined by a weighting vector w as TOPk(w).

Definition 1. (Top-k query): Given a positive integer k and a user-defined weighting

vector w, the result set TOPk(w) of the top-k query is a ranked set of objects such that

TOPk(w) ⊆ S, |TOPk(w)| = k and ∀o, o′ : o ∈ TOPk(w), o′ ∈ S − TOPk(w) it

holds that fw(o) ≤ fw(o′).

Given a data set S of objects, a set W of weighting vectors, an object q and an

integer k, a reverse top-k query returns all weighting vectors {w} ∈ W for which q ∈
TOPk(w). We denote the result set of weighting vectors {w}, as RTOPk(q) = {w}.

Definition 2. (Reverse top-k query [14]): Given an object q, a positive number k and

two data sets S and W , where S represents data objects and W is a data set of

weighting vectors, a weighting vector w ∈ W belongs to the reverse top-k result set

RTOPk(q) of q, if and only if ∃o ∈ TOPk(w) such that fw(q) ≤ fw(o).

We can also define the influence score of a data object by simply setting a single

value k that determines the scope of the reverse top-k queries that are taken into account

for identifying influential data objects.

Definition 3. (Influence score [17]): Given a positive integer k, a data set S, and a set

of preferences (weighting vectors) W , the influence score of a data object o is defined

as the cardinality |RTOPk(o)| of the reverse top-k query result set of object o.



Based on the definition of influence score, we define the ranked set of m most

influential data objects.

Definition 4. (Top-m most influential data objects [17]): Given a positive integer k, a

data set S, and a set of preferences (weighting vectors) W , the result set ITOPm
k of the

top-m influential query is a ranked set of objects such that ITOPm
k ⊆ S, |ITOPm

k | =
m and ∀o, o′ : o ∈ ITOPm

k , o′ ∈ S − ITOPm
k it holds that |RTOPk(o)| ≥

|RTOPk(o
′)|.

2.2 Temporal Model

We model the time domain T as an ordered set of V disjoint time intervals that cover

the complete domain, i.e., T = {T1, T2, . . . , TV } and Ti
⋂

Tj = ∅ for i 6= j. We

denote the start and end of time interval Ti with ts(Ti) and te(Ti) respectively. Then,

it also holds that te(Ti) = ts(Ti+1), and that ts(T1) and te(TV ) denote the start and

end of T respectively. Obviously, the number of time intervals V is user-specified and

application-dependent, and its exact value depends on the desired level of detail for

monitoring temporal changes.

In order to model the interval that a user is online, we associate the weighting vector

representing the user preferences with a time interval. Thus, given a weighting vector

w and by abusing notation slightly, we denote the start of this interval as ts(w) and its

end as te(w). We are now ready to define the validity of a weighting vector with respect

to a time domain T that consists of time intervals.

Definition 5. (Validity of weighting vector): Given a time domain T = {T1, T2, . . . , TV }
and a weighting vector w, the validity of w with respect to T is the interval [ts(Ti), te(Tj)),
where ts(w) ∈ Ti and te(w) ∈ Tj .

Based on Definition 5, we consider as the validity period of a weighting vector w

the interval defined by the start and end of the time intervals (Ti and Tj) that enclose

ts(w) and te(w) respectively. Henceforth, we will use ts(w) to refer to ts(Ti) and

te(w) to refer to te(Tj).

3 Problem Formulation

Given a time domain T = {T1, T2, . . . , TV }, we define a total order ≺ such that Ti ≺ Tj
if te(Ti) ≤ ts(Tj) for any Ti, Tj ∈ T . Furthermore, we use ITOPm

k (Ti) to refer to the

result set of the top-m most influential objects by taking into account only the weighting

vectors that are valid in the interval Ti.
In order to identify products that are consistently highly ranked for multiple users

as time passes, we define the continuity score of an object o ∈ S.

Definition 6. (Continuity score): Given a data set S, a set of weighting vectors W , and

a time domain T = {T1, T2, . . . , TV }, the continuity score cis(o) of an object o ∈ S is

the maximum number of consequent intervals Ti for which o belongs to the top-m most

influential data objects, i.e., o ∈ ITOPm
k (Ti).



The continuity score of an object is practically a measure of the object’s aggregated

influence over time. As we aim to discover the object with highest continuity score, we

define the most continuous influential data object in a straightforward way.

Definition 7. (Most continuous influential data object): Given a data set S, a set of

weighting vectors W , and a time domain T = {T1, T2, . . . , TV }, the most continuous

influential data object o ∈ S is the object for which it holds that ∄o′ ∈ S such that

cis(o′) > cis(o).

We are now ready to formally define the problem of discovering the most influential

object over time. Another closely related problem is the one of discovering a ranked set

of the most influential object over time.

Problem 1. (Most continuous influential object): Given a data set S, a set of weight-

ing vectors W , and a time domain T = {T1, T2, . . . , TV }, find the most continuous

influential object o ∈ S.

Problem 2. (Top-N continuous influential objects): Given a data set S, a set of weight-

ing vectors W , a time domain T = {T1, T2, . . . , TV }, and an integer N , find the ranked

set of the N most continuous influential object {o1, o2, . . . , oN} ∈ S.

In this paper, we focus our attention to Problem 1 and present our algorithms for

solving this problem. However, our algorithms can be extended in a straightforward

way to solve also Problem 2. For the sake of simplicity we omit the details here.

4 Sequential Interval Scan

A baseline algorithm for solving Problem 1 is to compute the ITOPm
k (Ti) sets for all

time intervals Ti of T and simply follow a counting approach of the appearance of any

data object o in consequent intervals. Then, the most continuous influential object is

the one that appears in the ITOPm
k (Ti) sets for the maximum number of consequent

intervals. In the following, we refer to this algorithm as Sequential Interval Scan (SIS).

Intuitively, in each iteration (lines 2–10 of Algorithm 1), SIS examines the next con-

sequent interval Ti ∈ T and computes the set of most influential objects ITOPm
k (Ti)

within Ti. For each retrieved object o ∈ ITOPm
k (Ti), we maintain its current continu-

ity score, which is derived based on the processed intervals so far. We use the concept

of alive object to refer to any object retrieved in a previous interval Tj(j ≤ i) that

is influential in all intervals between Tj and Ti and also belongs to the most recently

processed ITOPm
k (Ti) set; we also refer to objects that stopped being influential at

some intermediate interval between T1 and Ti as dead objects. To ensure correctness,

SIS needs to maintain the alive objects in a list A and only a single dead object d, which

is the one with the maximum continuity score among all other dead objects (lines 4–6).

Then, the retrieved influential objects in Ti are examined, and if an object belongs to A
(i.e., was and remains alive) then its score is increased by 1 (line 8), otherwise we add it

to A (line 9). After having examined all intervals, the algorithm terminates and reports

the object with maximum score among the alive objects and the dead object (line 10).

The main shortcoming of SIS is that it needs to evaluate the ITOPm
k query for all

|V | time intervals. In the following, we study how to derive appropriate score bounds,

in order to find the most continuous influential object without processing all queries.



Algorithm 1: Sequential Interval Scan (SIS)

Input: S:data set; k,m: the parameters of the ITOPm

k queries; T = {T1, . . . , TV }.
Output: o: the most continuous influential object.

1 A← ∅, d←null (A: alive objects, d: dead object)

2 for i = 1 . . . V do

3 I ← ITOPm

k (Ti)
4 forall the o ∈ A and o /∈ I do

5 A← A − {o} (remove dead objects)

6 d← objMaxScore({d}
⋃
{o})

7 forall the o ∈ I do

8 if o ∈ A then o.incScore() (increase score)

9 else A← A
⋃
{o} (add new objects)

10 o← objMaxScore(A
⋃
{d})

11 return o

5 Algorithms with Early Termination

SIS relies on processing multiple consequent intervals of T to produce the most con-

tinuous influential object. In fact, all our algorithms rely on the evaluation of multiple

ITOPm
k queries in different intervals Ti, in order to find the most continuous influential

object, however these intervals are not necessarily consequent. In this sense, our algo-

rithms treat the ITOPm
k computation as black-box, hence any existing techniques that

solve efficiently the problem of indentifying influential objects can be directly exploited

by our algorithms.

Let us assume that at some point during query processing, a subset of (not neces-

sarily consequent) intervals of T have been processed. We define the following sets for

any retrieved data object o.

Definition 8. Given a data object o, a set of processed intervals {Ti} and a set of

corresponding results sets {ITOPm
k (Ti)}, we define:

– T +(o) is the set of intervals {Ti}, such that Ti ∈ T +(o) if o ∈ ITOPm
k (Ti)

– T −(o) is the set of intervals {Ti}, such that Ti ∈ T −(o) if o /∈ ITOPm
k (Ti)

– LB(o) is a maximal sequence of intervals {Ti, Ti+1, ..., Tj}, such that ∀Tz ∈ LB(o) :
Tz ∈ T +(o)

– UB(o) is a maximal sequence of intervals {Ti, Ti+1, ..., Tj}, such that ∀Tz ∈ UB(o) :
Tz ∈ T − T −(o)

We emphasize that according to Definition 8, T +(o) and T −(o) are sets of inter-

vals, i.e., they may contain non-consequent intervals. Instead, the sequences LB(o) and

UB(o) contain consequent intervals, and moreover they are of maximal size, i.e., there

exists no other longer sequence of intervals with the same properties respectively.

By exploiting the above sets and sequences, we derive an upper and a lower bound

on the score of any candidate most continuous influential object.



Lemma 1 (Score bounds): The continuity score of object o is bounded by the lower

bound L(o) and the upper bound U(o), i.e., L(o) ≤ cis(o) ≤ U(o), where L(o) =
|LB(o)| and U(o) = |UB(o)| are the lengths of the sequences LB(o) and UB(o) re-

spectively.

Proof. By contradiction. Let us assume that cis(o) < L(o). Then it holds that there ex-

ists a sequence of processed intervals of length |LB(o)| such that for each time interval

Ti of LB(o) it holds that Ti ∈ T and o ∈ ITOPm
k (Ti), which leads to a contradiction

since cis(o) is defined by the sequence of maximum length (according to Definition 6).

Similarly, the assumption cis(o) > U(o) leads to a contradiction, because for each

time interval Ti of the sequence that defines cis(o), it holds that Ti /∈ T −(o) for any

set of processed intervals {Ti}. In other words, the sequence of intervals whose length

defines cis(o) is always smaller or equal to the sequence UB(o) whose length defines

U(o), hence cis(o) ≤ U(o) which is a contradiction.

The lower bound L(o) of o is equal to the continuity score of the object o, if we

take into account only the time intervals that have been processed so far. The upper

bound U(o) of o is the continuity score of the object o, if we assume that for any time

interval Ti that does not belong to T − the object o belongs to ITOPm
k (Ti) (because

optimistically for all unprocessed time intervals, o may belong to the most influential

objects).

Theorem 1 (Early termination condition) The data object o is the most continuous

influential object, if for any other data object o′ it holds that L(o) ≥ U(o′).

Proof. By contradiction. Let us assume that o is not the most continuous influential

object, even though it holds that L(o) ≥ U(o′). Thus, there must exist another object o′

which is the most continuous influential object (i.e., cis(o) < cis(o′)). Then, it holds

that L(o) ≤ cis(o) ≤ U(o) and L(o′) ≤ cis(o′) ≤ U(o′). From these inequalities, we

derive that L(o) ≤ cis(o) < cis(o′) ≤ U(o′) and finally that L(o) < U(o′), which is a

contradiction.

The intuition of the above condition for early termination is that if an object has a

continuity score based on some processed time intervals that is definitely higher than

the score of any other object, then it can be safely reported as the most continuous

influential object, because the score of any other object cannot increase sufficiently in

the remaining time intervals.

Algorithm SIS is oblivious of the derived bounds and examines all time intervals

following a brute-force approach. Hence, we propose two algorithms, termed Early

Termination Interval Scan (TIS) and Early Termination Best-First Interval (TBI), that

exploit the bounds to provide early termination. However, despite using the same con-

cept of bounding, TIS and TBI follow different strategies in order to terminate as soon

as possible. TIS aims to maximize as quickly as possible the lower bound of the current

most continuous influential object o and therefore examines time intervals sequentially.

Instead, TBI aims to reduce the upper bound of any object o by breaking the longest

unprocessed sequence of time intervals.



Algorithm 2: Early Termination Interval Scan (TIS)

Input: S:data set; k,m: the parameters of the ITOPm

k queries; T = {T1, . . . , TV }.
Output: o: the most continuous influential object.

1 A← ∅, d←null (A: alive objects, d: dead object)

2 i = 1, upperBound = 0, lowerBound = −1
3 while lowerBound < upperBound do

4 I ← ITOPm

k (Ti)
5 i = i+ 1
6 o←objMaxScore(A

⋃
{d})

7 lowerBound = o.score()

8 forall the o ∈ A and o /∈ I do

9 A← A − {o} (remove dead objects)

10 d← objMaxScore({d}
⋃
{o})

11 forall the o ∈ I do

12 if o ∈ A then o.incScore() (increase score)

13 else A← A
⋃
{o} (add new objects)

14 o′ ←objMaxScore(A−{o})
15 upperBound= max(o′.score()+(V − i), d.score())

16 return o

5.1 Early Termination Interval Scan

In this section, we describe the Early Termination Interval Scan (TIS) algorithm. Similar

to the SIS algorithm, TIS processes sequentially the time intervals of time domain T .

However, the significant advantage of TIS lies in the fact that it can terminate early and

report the most continuous influential object o without processing the ITOPm
k query

for all V time intervals Ti.
Intuitively, the main objective of TIS is to increase the lower bound of any retrieved

object, by scanning the time intervals sequentially. Notice that only consequent time

intervals may lead to a higher lower bound. TIS takes advantage of the fact that the time

intervals are processed sequentially and computes the L(o) and U(o) without maintain-

ing the sets T −(o) and T +(o). The lower bound is defined as the continuity score of

the current most continuous influential object, which can be computed by maintaining

only the alive and dead objects similar to SIS. For TIS, the upper bound is defined as the

maximum value of the score of the dead object or the second highest score of the alive

objects plus the number of remaining time intervals.

Although these bound definitions of TIS are simpler than the ones of lower and

upper bound in Lemma 1, it can be shown that they are equivalent. The reason for

their simplicity is that TIS examines intervals sequentially, which is a special case of

interval selection and the computation of the bounds can be simplified. Instead, the

bound definitions of Lemma 1 and Definition 8 apply in the general case of selecting

any interval for processing next (not necessarily in a sequential manner).

Algorithm 2 contains the pseudocode of TIS. In each iteration, the next interval of

the time domain T is examined and the result set ITOPm
k (Ti) is computed. For each

retrieved object a score is maintained which is the maximum number of consequent



intervals for which this object belongs to the respective ITOPm
k sets. The retrieved

data objects that belong to the most recent ITOPm
k set are considered to be alive,

while we also keep track of the dead object with the highest score.

In more detail, as long as the termination condition does not hold (lines 3-15), the

ITOPm
k set for the next time interval is computed and the alive and dead objects are

updated (lines 8-10, 12, 13), similarly to the case of the SIS algorithm. Furthermore,

in each iteration, the current most continuous influential object o is found (line 6). The

current score of o defines the lower bound (line 7), as any other point must have a

higher score to become the most continuous influential. Also, the alive object o′ with

the second highest score is found (line 14)4. The maximum possible score of any object

(regardless of whether it has been retrieved or not) is equal to maximum value between

the score of the dead object and the score of o′ plus the number of remaining unpro-

cessed intervals. This is because any object that is still alive in the best case scenario

may be in the ITOPm
k set for all remaining time intervals. Also, the score of the dead

object cannot be increased further. Notice that if the same object appears in the ITOPm
k

set, it is considered to be a new alive object. Any new alive object can appear only in the

V − i remaining time intervals. Thus, if the termination condition holds, no object can

exceed the score of the currently most continuous influential object and the algorithm

safely reports this object as the result.

It should be noted that TIS reports the most continuous influential object over a

time domain, however it does not report its score accurately. One can draw parallels

with Fagin’s NRA algorithm [4], which produces the top-k objects from ranked lists

but without guaranteeing accuracy of scores. In order to calculate the exact continuity

score of the most continuous influential object, we need to proceed until we find an

interval where the object does not belong to the ITOPm
k set.

5.2 Early Termination Best-first Interval

In the following, we describe the Early Termination Best-first Interval (TBI) algorithm.

The most important difference to TIS is that TBI follows a different strategy with respect

to interval selection, namely TBI does not process intervals sequentially.

For each retrieved object o, TBI maintains the two sets T +(o) and T −(o) that cor-

respond to the processed time intervals for which o belongs to or not to the most influ-

ential data objects respectively. This information is sufficient to derive the lower bound

L(o) and upper bound U(o) of o. The algorithm first computes the influential objects

ITOPm
k (T1) and ITOPm

k (TV ). The following example demonstrates the information

maintained by TBI at this point.

Example 1 Let us assume that V = 6, m = 2, and that ITOPm
k (T1) = {o1, o2} and

ITOPm
k (T6) = {o2, o3}. Then, TBI maintains the following sets: T +(o1) = {T1},

T −(o1) = {T6}, T +(o2) = {T1, T6}, T −(o2) = ∅, T +(o3) = {T6}, T −(o3) = {T1}.

In addition, the derived bounds are: L(o1) = 1, U(o1) = 5, L(o2) = 1, U(o2) = 6,

L(o3) = 1, U(o3) = 5.

4 In the extreme case where A−{o} = ∅ we assume that o′.score = 0.



TBI iteratively selects a time interval that has not been processed yet and computes

the influential objects in the selected time interval. Then, the bounds of retrieved objects

can be updated as indicated in the following.

Example 2 Continuing the previous example, assume that the next interval that is

processed is T3 and ITOPm
k (T3) = {o2, o4}. Then, the following sets are main-

tained: T +(o1) = {T1}, T −(o1) = {T3, T6}, T +(o2) = {T1, T3, T6}, T −(o2) = ∅,

T +(o3) = {T6}, T −(o3) = {T1, T3}, T +(o4) = {T3}, T −(o4) = {T1, T6}. In addi-

tion, the bounds are updated as follows: L(o1) = 1, U(o1) = 2, L(o2) = 1, U(o2) = 6,

L(o3) = 1, U(o3) = 3, L(o4) = 1, U(o4) = 4.

The remaining challenge is how to select the most beneficial time interval for the

next influential query to be processed, i.e., the time interval that will lead the algorithm

to terminate as quickly as possible. TBI follows a best-first approach by selecting the

time interval that will split the longest UB(o) sequence for any o in the queue. Intu-

itively, this ”breaks” long sequences of unknown time intervals, in an attempt to reduce

the upper bound of any data object.

In more detail, the next interval to be processed is selected in the following way.

Given a candidate data object o and the corresponding UB(o) = {Ti, ..., Tj}, the mid-

dle time interval Tz is computed such that z = i+
⌈

j−i

2

⌉

. If Tz /∈ T +(o) then Tz is the

next interval. Otherwise it means that Tz has been already processed and in this case

the sequence {Ti, ..., Tz} is tried to be split by finding the middle interval Tz′ of it. If

also Tz′ ∈ T +(o), then the middle interval of {Tz, ..., Tj} is examined if it qualifies

for being the next interval. This is done recursively by examining always the longest

sequence until an interval is found that does not belong to T +(o). Note that it is guar-

anteed that such an interval exists, because otherwise L(o) = U(o) and the algorithm

terminates. Intuitively, computing ITOPm
k (Tz) may break the longest sequence UB(o)

in two smaller sequences if o /∈ ITOPm
k (Tz), thus reducing the upper bound, which

will allow the algorithm to terminate faster.

During query processing, TBI keeps the retrieved data objects in a priority queue.

The queue is sorted in descending order based on the upper bound U(o) of each object

o, so that immediate access to the object with the highest upper bound is provided.

Algorithm 3 presents the pseudocode of TBI. First, the intervals T1 and TV are processed

and the retrieved objects are inserted in the queue (lines 1–4). The lower and upper

bounds are initiated based on the object located at the head of the queue (lines 5, 6). In

each iteration, we remove from the queue the object o (candidate object) with maximum

upper bound U(o) (line 8). Note that the candidate object is not necessary the object

with the highest continuity score based on the processed partitions (which is the lower

bound), and there may exist another object o′ that has a higher score (lower bound)

currently. But it is guaranteed that the algorithm cannot terminate at this iteration even

if o′ was processed next, because it holds that L(o′) ≤ U(o′) and U(o′) ≤ U(o) so that

the termination condition cannot hold. Thus, TBI does not process unnecessary time

intervals.

After selecting the candidate o with the highest upper bound, TBI recursively se-

lects the middle interval to be processed (line 9) and processes the query (line 10). Af-

terwards, the queue is updated (line 11), which means that every object in ITOPm
k (Ti)



Algorithm 3: Early Termination Best-first Interval (TBI)

Input: S:data set; k,m: the parameters of the ITOPm

k queries; T = {T1, . . . , TV }.
Output: o: the most continuous influential object.

1 I ← ITOPm

k (T1)
2 queue.update(I)

3 I ← ITOPm

k (TV )
4 queue.update(I)

5 upperBound = U(queue.peek())
6 lowerBound = L(queue.peek())
7 while lowerBound<upperBound do

8 o← queue.dequeue()
9 i = nextInterval(UB(o)) (find next interval)

10 I ← ITOPm

k (Ti)
11 queue.update(I)

12 upperBound = U(queue.peek())
13 lowerBound = L(o)
14 queue.enqueue(o) (add o back to queue)

15 return o

is either added to the queue (if it is the first time that it was retrieved) or the existing

object is updated by changing the corresponding T + set. Moreover, for every object in

the queue that does not belong in ITOPm
k (Ti), the set T − is updated.

The algorithm terminates when it holds that the candidate object o has L(o) ≥
U(o′), ∀o′ ∈ queue. This is the termination condition (line 7), which means that o has

a higher lower bound than the upper bound of the current head object o′ in the queue.

In principle, we can also free part of the memory during the processing of the al-

gorithm, by evicting candidate points that will never become the most continuous in-

fluential object. The condition for eviction is if a candidate object o has U(o) ≤ L(o′),
where o′ is another candidate object.

6 Experimental Evaluation

In this section, we present the results of the experimental evaluation. All algorithms are

disk-based and implemented in Java, and the experiments run on 2x Intel Xeon X5650

Processors (2.66GHz), 128GB. The index structure used was an R-tree with a buffer

size of 100 blocks and the block size is 4KB.

6.1 Experimental Setup

Data sets. For the data set S we employ both real and synthetic data collections, namely

uniform (UN), correlated (CO) and anticorrelated (AC). For the uniform data set, the

data object values for all n dimensions are generated independently using a uniform dis-

tribution. The correlated and anticorrelated data sets are generated as described in [3].

In addition, we use two real data sets. NBA consists of 17265 5-dimensional tu-

ples, representing a player’s performance per year. The attributes are average values



of: number of points scored, rebounds, assists, steals and blocks. HOUSE (Household)

consists of 127930 6-dimensional tuples, representing the percentage of an American

family’s annual income spent on 6 types of expenditure: gas, electricity, water, heating,

insurance, and property tax.

For the data set W of the weighting vectors, two different data distributions are

examined, namely uniform (UN) and clustered (CL). The clustered data set W is gen-

erated as described in [14] and models the case that many users share similar prefer-

ences. In more detail, first CW cluster centroids that belong to the (n-1)-dimensional

hyperplane defined by
∑

w[i] = 1 are selected randomly. Then, each coordinate is

generated on the (n-1)-dimensional hyperplane by following a normal distribution on

each axis with variance σ2
W , and a mean equal to the corresponding coordinate of the

centroid. We consider V = 100 time intervals and assign a vector w to a time interval

Ti (i ∈ [1, 100]) uniformly at random.

We conduct a thorough sensitivity analysis varying the dimensionality (2-5d), the

cardinality (10K-100K) of S, the cardinality (100K-500K) of W the value of k (5-

15), the value of m (5-15), and the number of intervals V (50-150). Unless explicitly

mentioned, we use the default setup of: |S| = 50K, |W | = 300K, d=3, k=10, m=10,

V =100, and uniform distribution for S and W . For the clustered data set W we use

CW = 5 and σW = 0.1, and try different values of σW .

Algorithms. We evaluate: a) sequential interval scan (SIS), b) early termination in-

terval scan (TIS), and c) early termination best-first interval (TBI). All algorithms use

the computation of the top-m most influential data objects as a black-box. In particu-

lar, the branch-and-bound algorithm proposed in [17] is employed for the underlying

computation of influential objects.

Metrics. Our metrics include: a) the total execution time, b) the number of I/Os,

and c) the number of processed time intervals by each algorithm. Notice that we do not

measure the I/Os that occur by reading W , since this is the same for every algorithm

and does not affect their comparative performance. For our experiments on synthetic

data, we report the average of each metric over 10 different instances of the data set.

We generate the different instances by keeping the parameters fixed and changing the

seeds of the random number generator. We adopt this approach in order to factor out

the effects of randomization.

6.2 Performance of Query Processing

Effect of data set size |S|. Fig. 1 illustrates the performance of all algorithms when

we vary the data set cardinality. For all metrics, TBI outperforms both TIS and SIS. In

terms of time (Fig. 1(a)), TBI is significantly faster than the other algorithms, and more

importantly its gain increases as the data set size increases. This is strong evidence that

TBI scales gracefully with |S|. Similar observations can be made for the I/O metric

depicted in Fig. 1(b). Fig. 1(c) depicts the number of processed intervals by each algo-

rithm, which is a factor that affects all other metrics. SIS always processes the complete

set of V intervals. TIS improves the performance of SIS, by exploiting the bounds and

allowing for early termination. It should be clarified that TIS cannot process fewer than

V/2 intervals to produce the correct result. Thus, in this setup (V = 100), TIS would in
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Fig. 1. Effect of varying data cardinality |S|.
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Fig. 2. Effect of varying cardinality of weighting vectors |W |.

best case process 50 intervals. Still, TBI outperforms all other algorithms, which indi-

cates that its best-first strategy for selecting the next interval performs more efficiently.

The advantage in the performance of TIS against SIS lies on the fact that TIS ter-

minates when it is certain that the object with the highest continuity score cannot be

surpassed. The advantage of TBI over TIS lies on the fact that TIS alters the upper and

lower bounds each time by 1 interval while TBI splits the largest unseen interval in

half. In the best case, every 2λ+1 − 1 steps the upper bound will have been reduced to

|V |/(2λ + 1), while for TIS the upper bound in the best case will have been reduced to

|V |− (2λ+1−1). Obviously in the early steps of TBI the upper bound and lower bound

converge faster than in TIS.

Effect of varying cardinality of weighting vectors |W |. In Fig. 2, we study the

effect of increasing the size of |W |. First, with respect to time (depicted in Fig. 2(a)),

we observe that time increases linearly with |W | for all algorithms. This is expected,

since the size of W determines the number of user preferences, which is the number of

potential top-k queries that may be evaluated. When the induced I/Os are considered, we

see in Fig. 2(b) that all algorithms show a stable performance irrespective of |W |. Recall

that we only measure the I/O induced on data set S, and this metric does not depend on

W . Hence, this explains the stability of the measured I/O values. Fig. 2(c) shows the

processed intervals by each algorithm. Also in this setup, TBI performs better than its

competitors. It can be also observed that the size of W does not affect the number of

processed intervals. The observations made for varying the data cardinality hold also

here. The increased computation cost with respect to time is due to the fact that the

complexity of the ITOPm
k queries increases when the weight cardinality rises.
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Fig. 3. Effect of varying m.
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Fig. 4. Effect of varying k.

Effect of varying m. Fig. 3 shows the effect of increasing the number of retrieved

influential objects. TBI has a significant performance advantage over SIS and TIS when

the value of m is relatively small. When m increases, we observe that all algorithms

demonstrate similar performance. The reason for this behavior is that for larger values of

m we observe that there exist data objects that have maximum continuity score equal to

V . In other words, some data objects are influential in all V intervals. In this degenerate

case, no algorithm can perform better than SIS, since all intervals must be processed in

order to safely report the most continuous influential object.

Effect of varying k. As k increases, all algorithms need more time to produce the

results set as depicted in Fig. 4(a). For smaller values of k, all algorithms perform

similarly because again there exist objects with maximum continuity score, which can

only be reported when all intervals have been processed. For higher values of k, TBI

performs better than all other algorithms.

Effect of varying V . Based on Fig. 5(a), we observe that TIS has a bigger advantage

over SIS for small number of intervals, while TBI benefits more from large number of

intervals. The reason is that the more the time intervals the smaller the possibility for an

object to be influential in all of them. This fact is exploited by TBI which manages to

reduce the upper bound fast in the first loops of its execution, and thus the lower bound

and the upper bound converge fast and allow TBI to finish earlier that SIS and TIS. Con-

trary to the upper bound, the lower bound is expected to increase slowly when the time

domain is partitioned with high granularity since many objects (including the one with

the highest continuity score) are likely to disappear and re-appear from the ITOPm
k

influential sets, and consequently the convergence between the bounds is delayed.
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Fig. 6. Effect of varying the data distribution of S.

Effect of different data distributions of S. Fig. 6 compares the performance of the

three algorithms when the set of data objects S follow different distributions, namely

uniform (UN), correlated (CO) and anti-correlated (AC). Notice that we use log-scale

in Fig. 6(b). Clearly, the cost of all algorithms (in terms of time and I/O) increases

for AC. This is due to the more expensive processing of the underlying computation

for influential data objects in the case of AC. However, as depicted in Fig. 6(c), the

difference between the algorithms is significant in terms of processed intervals. Also,

notice that TBI is not significantly affected by the challenging AC data distribution and

processes comparable number of intervals, irrespective of the data distribution of S.

Effect of clustered data set W . Fig. 7 shows the results of using a clustered data set

W for different values of σW . Smaller values of σW correspond to more clustered data

sets, or in other words the weighting vectors are more compact with respect to the clus-

ter centroids. For smaller values of σW , TBI performs better than the other algorithms.

However, an interesting observation is that when σW increases, the performance of TIS

tends to be similar to TBI.

Table 1. Experimental results of real data sets NBA and HOUSE.

NBA data set HOUSE data set

Algorithm Time(sec) I/O Proc. Intervals Time(sec) I/O Proc. Intervals

SIS 822.77 8119 100.0 903.00 9476 100.0

TIS 712.74 6988 85.9 867.33 9189 95.2

TBI 454.60 4508 55.6 865.58 9235 97.1
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Fig. 7. Effect of varying the standard deviation for clustered data set W .
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Fig. 8. Effect of varying dimensionality n.

Effect of increasing dimensionality. Fig. 8 illustrates the results for varying the

number of dimensions. With respect to time (Fig. 8(a)) and I/O (Fig. 8(b)), the perfor-

mance of all algorithms degrades with increased dimensionality. However, notice that

TBI is less affected by the increased dimensionality, compared to the other algorithms.

With respect to the number of processed intervals (Fig. 8(c)), we observe that this met-

ric increases with dimensionality in the case of TIS. When TBI is considered, the metric

drops for increased values of n. This means that TBI manages to process fewer inter-

vals as n grows, however each top-k processing costs on average more for increased n,

which explains why both time and I/O increase for TBI too.

Experiments with real data sets. Table 1 shows the results obtained for the two real

data sets employed in our study (NBA and HOUSE). In both cases, the observed values

follow the results and conclusions drawn from synthetic data.TBI outperforms the other

two algorithms for the NBA data set. TBI needs almost half the time of SIS to identify

the most influential object. In the case of HOUSE data set the difference between TIS

and TBI is marginal but both outperform SIS. The higher the dimensionality of the

problem the smaller is the probability that the most influential object will be influential

for a long time interval. This fact reduces the advantage of TBI over TIS and the two

algorithms have similar performance.

7 Related Work

Top-k queries have been well-studied in the last years to enable ranked retrieval of ob-

jects based on user preferences (for a thorough overview we refer to [6]). Recently,

reverse top-k queries [14, 15] have been proposed to retrieve the set of users that have



a given object in their top-k list. An improved branch-and-bound algorithm for reverse

top-k queries was proposed in [18], while [5] presents an approach that is beneficial

when a large number of reverse top-k queries need to be processed. Another approach

based on preprocessing all top-k queries for answering reverse top-k queries is pre-

sented in [21]. Moreover, in [16] the authors define the distance-based reverse top-k
query and monitor its result set for mobile devices, when the values of one dimension

(distance) change dynamically as devices move. Reverse queries are also studied in [2]

following a unified approach. The authors examine the Inverse ǫ-Range, Inverse k−NN

and Inverse Dynamic Skyline queries using a three-filter approach. The first two filters

use only the query points whose number is usually small and the third query accesses

the data points in ascending order of maximum distance from the query points.

Lately, several research initiatives have been proposed to study the influence of data

objects. In this paper, we adopt the definition of influence that was first introduced by

Vlachou et al. [17], where the influential objects are those that appear in the top-k
lists of many users, i.e., have the larger reverse top-k results. A different definition of

influence is used in [1], where the authors try to discover attractive products to users

using the principle of skyline sets [3]. Other approaches try to identify the attributes

of products that maximize its visibility [11] or the region in the space defined by the

products’ attributes where a product can be promoted [19, 20].

Jestes et al. [7] study the problem of performing top-k queries on a time window.

They assume that the values of the objects change over time and instead of performing

instant top-k queries they retrieve the top-k objects by ranking them after aggregating

their scores in a query interval. Lee et al. [9] discuss the idea of objects that appear

continuously in top-k queries over data streams. They focus on discovering objects that

appear continuously on a moving window of time. In [13] the authors study techniques

for durable top-k search in document archives, where the aim is to identify documents

that are consistently in the top-k results of a given query. Kontaki et al. [8] study the

problem of discovering the objects that remain the most dominant over a data stream.

Our main difference towards these approaches is that they consider the ranking func-

tions to be static while the values of the objects are changing while we consider the exact

opposite. Other work related to top-k and time includes processing of top-k queries on

temporal data where the aim is finding the top-k objects at a particular time [10], as

well as monitoring top-k queries over sliding windows [12].

8 Conclusions

In this paper, we studied for the first time the problem of finding the most continuous

influential products that belong consistently to the most influential products over time.

To this end, we defined the continuous influential query, where the influence score is

defined based on reverse top-k queries and it changes as user preferences change over

a long time period. In order to be able to efficiently discover the continuous influential

products, we studied the properties of the proposed continuity score and derived appro-

priate upper and lower bounds. In turn, this lead to the design of efficient algorithms

with the salient property of early termination. To evaluate our approach, we conducted

a thorough experimental study that demonstrates the efficiency of our algorithms.
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