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Abstract. Recent research works on unsupervised word sense disambiguation
report an increase in performance, which reduces their handioaytfre respec-

tive supervised approaches for the same task. Among the latest stat art
methods, those that use semantic graphs reported the best resuitsn&tods
create a graph comprising the words to be disambiguated and theirpmrdasg
candidate senses. The graph is expanded by adding semantic edgesdas

from a thesaurus. The selection of the most appropriate sense peoaaur-
rence is then made through the use of graph processing algorithmsffdrat o

a degree of importance among the graph vertices. In this paper weragpe

tally investigate the performance of such methods. We additionally evaluate a
new method, which is based on a recently introduced algorithm for congputin
similarity between graph vertices, P-Rank. We evaluate the perfornaradé
alternatives in two benchmark data sets, Senseval 2 and 3, using o
current study shows the differences in the performance of eachothetthen
applied on the same semantic graph representation, and analyzes shemgro
cons of each method for each part of speech separately. Furtteeritrenalyzes

the levels of inter-agreement in the sense selection level, giving furthigrhin

on how these methods could be employed in an unsupervised ensemisterdo
sense disambiguation.

1 Introduction

Word Sense Disambiguation (WSD) addresses the problem edtsej the most ap-

propriate sense for a word, among several offered from &di&ty or a thesaurus, with
respect to its context. WSD algorithms are used in severataldanguage processing
tasks, such as machine translation, and speech proceasththe performance of the
disambiguation procedure is critical to their success\(6&D has also been reported
to boost performance of text retrieval, document classiiobaand document cluster-
ing tasks [13, 20]. All these findings, strengthen the needdst and accurate WSD
algorithms.

The various solutions found in the WSD bibliography face ttael¢off between
unsupervised and supervised methods. The former usuédiyfast execution time but
low accuracy, while the latter suffer from tkmowledge acquisition bottlenepkoblem
because they require extensive training in a large amoumtasfually annotated data.



Unsupervised graph-based WSD techniques [2, 24, 35, 26,88&] been attracting a
wider focus lately, mainly because they have managed toaterthe accuracy gap from
the supervised methods. The key to these methods’ achiexasthe rich semantic
model that they employ. More specifically, they map the wdadbe disambiguated
and their respective candidate senses to graphs, whichnaemeed with nodes and
semantic edges from word thesauri (e.g., WordNet). On tdhisfrepresentation, they
use a node ranking or node activation algorithm, which afeeral iterations concludes
to the best candidate sense for each word, which is usuallyigihest ranked sense node
after the convergence of the vertices’ values.

In this paper, we compare the performance of several ungigpdrgraph-based
WSD methods. We also apply for the first time a new verticeslaiity measure, capi-
talizing on the structural similarity of the graph verticksthe experimental evaluation
we use the English WordNet [10] as our lexical database,landdta from the Senseval
2 [31] and 3 [36]English all wordstask as a benchmark. We present the comparative
results of several vertex ranking algorithms [4, 8, 17], seadex similarity algorithms
[42]. The contributions of this work can be summarized inftiilowing: (a) thorough
experimental evaluation and analysis of the performanceeweén state of the art un-
supervised graph-based WSD methods, (b) application -&ofitst time- of the node
similarity algorithm P-Rank [42], in the word sense disaguiition task, (c) general-
ized comparison and analysis against state of the art WSagipes, both supervised
and unsupervised, offering an experimental survey of tmeeatitop methods in word
sense disambiguation, and (d) analysis of the methodsagreement in the sense se-
lection level, that can give further insight into a possiblelusion of those methods in
an ensemble of approaches.

The rest of the paper is organized as follows: Section 2 disgsithe related work,
and gives a short overview of the state of the art in word sdissanbiguation. Section
3 presents in detail the graph construction and graph psowesalgorithms and their
application in WSD, and also discusses the space and timelexityof the examined
methods. Section 4 experimentally evaluates the compameaches and illustrates
the advantages of each method per part of speech (POS)eFRudte, it generalizes
the comparison against top performing WSD methods in theesah2 and 3 data sets.
Finally, Section 5 concludes and provides pointers to &iwork.

2 Related Work

2.1 Supervised Word Sense Disambiguation

The field of WSD is a well studied research area [15, 28], mdielgause the applica-
tion of WSD may improve the performance of several tasks, fileehine translation

and text classification. A crucial component in such critiggplications is the achieved
accuracy of the underlying WSD system. In general, supadW¥&D methods out-

perform their unsupervised rivals but they require extensgiaining in large data sets.
Recent research results [28] show that the accuracy ofaft#éte art supervised WSD
methods is above0% with an upper bound reachin®% for all words, fine-grained

WSD, while the accuracy of unsupervised methods is usuatlyden45 — 60%.



Supervised WSD approaches that report interesting perfureneesults comprise
the works of Pedersen [33], Florian et al. [11], and Carpuat.¢40]. Pedersen uses an
ensemble of) classifiers selected from a set&if Naive Bayes classifiers and requires
at least one training instance for each different sensesaffyet word that exists in the
lexicon. Similarly, Florian et al. use an ensembl& dlifferent classifiers (Naive Bayes,
Transformation-base learning, etc.) and report similguirements for training sam-
ples. Carpuat et al. use a method that exploits a nonlingaekprincipal component
analysis (KPCA) technique [40]. The KPCA-based model asthavoting mechanism
over a set of classifiers that learn to predict the correcdesand decides on which of
the suggested senses should be selected.

State of the art results in supervised WSD have been repoytttelSenselLearner
system of Mihalcea and Csomai [23], the Simil-Prime systetroduced by Kohom-
ban and Lee [18], and the system developed by Hoste et al. [[1423] the authors
suggest the construction of seven semantic models, wheh@ned using the Timbl
memory based learning algorithm. The Simil-Prime methd] [4& trained to disam-
biguate words into generic semantic classes, and conseyjuasts the generic seman-
tic classes back to finer grained senses, using heuristegabimg. The major drawback
of this method is the use of heuristics, which cannot guagtitat finer senses will not
be missed. Another drawback is the fact that it uses a deetsé® based implementa-
tion of the k-nn classifier, which raises the execution costi(ily the space complexity)
since many training examples need to be reexamined for asgdt tvord. The memory-
based learning approach proposed by Hoste et al. uses \atingg word-experts to
decide on the correct sense. The method stores all instamoesmory during training
and testing, which results in both high space and time coxitple

Finally, we should mention the winners of the Senseval 2 aAd Bnglish Words
Taskwhich were the supervised WSD systeBigUaw[21] and GAMBL [9] respec-
tively. SMUawwas based on pattern learning from sense-tagged corporastadce-
based learning with automatic feature selection. In thesadere the existing patterns
failed to disambiguate a word and no more training dataectjshe method selected the
most frequent sense for the word, which resulted in highlreseels, but affected pre-
cision. InGAMBL word experts are trained using memory-based classifieas|garn
to predict the correct sense of each word, thus requiringnsste training.

2.2 Unsupervised Word Sense Disambiguation - The Graph-based M ethods

The list of unsupervised WSD methods is long and comprisepusdbased [41],
knowledge-based, such as Lesk-like [19] and graph-baset#[35, 26, 38] methods,
as well as ensembles [5] that combine several methods. Flotypas of unsuper-
vised WSD methods, we focus on the graph-based ones, whicbrdgrate high per-
formance and seem to be a promising solution for unsuperWssD. The first step of
graph-based WSD methods relies in the construction of sécrgnaiphs from text. The
graphs are consequently processed in order to select theapm®priate meanirigpf
each examined word, in its given context.

3 Inthe remaining of the paper, the wordisnceptsenseandsynseimay be used interchangeably to describe the meaning
of a word, among the several offered by a dictionary or a word thesaurus.



One of the most influential WSD works in this direction is thsagthbiguation algo-
rithm of Sussna [37], which uses the WordNet graph as a badigxamines all nouns
in a window of context and assigns a sense to each noun in ahaayninimizes a se-
mantic distance function among all selected senses. IAffifre and Rigau introduced
and applied a similarity measure based on conceptual gdetitveen noun senses. The
measure was based on WordNet's is-a hierarchy and measw@rsihtilarity between a
target noun sense and the nouns in the surrounding contexé Mdcently, Banerjee and
Pedersen [3] suggested an adaptation of the original Legki#im for the WordNet
graph. In [24] and [38] authors use WordNet as a graph, defithie vertices as synsets
and the edges as the semantic relations connecting syBs#ts methods construct
synset graphs from text in the first step. Then, the formehotkapplies the PageRank
algorithm to rank the synset vertices whereas the lattel@ma@ spreading activation
technique to process the netwoB&N) and selects the most active sense nodes after the
spreading of the activation as the senses disambiguatengeipective words. In [27]
Navigli introduced a different graph construction methibe, Structural Semantic Inter-
connections (SSI-HITS), in which all candidate senses anaected and consequently
ranked using the HITS algorithm. SSI-HITS is based on a nreabiat maximizes the
degree of mutual interconnection among a set of sensedlyk-ing2] Agirre and Soroa
use the PageRank algorithm, instead of HITS, and a wider lkatme-base (WordNet
and Extended WordNet [25] relations).

Examining unsupervised graph-based WSD from another peigpeSinha and
Mihalcea [35] propose an unsupervised graph-based method/8D, based on an
algorithm that computes graph centrality of nodes in thestrooted semantic graph.
To measure the centrality of the nodes, they use the indetireeloseness, and the
betweenness of the vertices in the graph, as well as PageRhek also employ five
known measures of semantic similarity or relatedness tgpeenthe similarity of the
nodes in the semantic graph, based on an idea initially ptedeby Patwardhan et
al. [32]. Similarly, in [29], Navigli and Lapata explore sal measures for analyz-
ing the connectivity of semantic graph structuresoical (i.e., per individual node) or
global(i.e. for the whole graph) level. They evaluate in-degreg@genvector central-
ity, maximum flow, compactness, graph entropy and edge gefi$iey conclude that
local measures perform better than global measures for tHe 1ak.

The examination of related literature revealed a wide tan€options in unsuper-
vised graph-based WSD techniques. In the following of thislgtwe examine more
closely the empirical evaluations of these methods, antyamahe reasons behind a
boost in performance, which can be either the levied semaagtiresentation or the
graph processing technique itself. Furthermore, we exathi@interagreement of these
methods in the selection of senses when the same graphesfatisn is employed. For
this reason we implement four graph processing technidRegggRank, SAN, HITS and
P-Rank) and evaluate their performance in the same sentaptiesentation.

3 Assigning Sensesto Wordsin Semantic Graphs

This section presents the four graph processing methotisvéra selected for evalua-
tion: SAN [8], PageRank [4], HITS [17] and P-Rank [42]. Thouhree of those meth-
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ods have been applied before in WSD (SAN-based WSD [38, 39 FRatk-based

WSD [2, 35], and HITS-based WSD [29]), they have never beeruated in tandem

using the same semantic representation of text. Thus, ier aodprovide a compara-
tive evaluation, we used the same semantic representatortiie same graph) for all
methods. More specifically, we adopt the semantic networlsizaction method that
was introduced in [38]. The method utilizes all of the avaléasemantic relations in
WordNet 2.0. Furthermore, it employs a novel weighting soaéor the edges connect-
ing the sense nodes.

3.1 Semantic Graph Construction

The semantic network construction method of Tsatsaroras[88] creates a semantic
network for each sentence, that contains only the wordshiieg entries in WordNet
and assumes that these words have been tagged with thaigpapgeech (POS). The
method, as depicted in Figure 1, initially adds the word soaled their senses to the
network {nitial phasg. Consequently, it adds all the thesaurus senses whiclearars
tically related to the existing senses of the netwakp@nsion round for the senses
S.i.2and S.j.1respectively). Expansion continues iteratively untilrthés a path be-
tween every pair of the initial word nodes. In this step, tleéwork ceases growing
and is considered aonnectedIf there are no more senses to be expanded and the re-
spective network is not connected, the words of that seateacnot be disambiguated,
which means a loss in coverage. Once the network is readypgoosessed, the weights

of each edge are addeglkpansion round 2 The weights are based on the frequency of
occurrence of each edge type in the constructed network [B8Jng the construction

of the networks, it might be the case that two words shareahesenses. This case is
depicted inexpansion example & Figure 1. In this case, a single sense node is added
to the network (i.e., the sense nodes in the network repr&¥erdNet synsets).



Apart from the specific method that we employ for constrigciemantic graph,
several other alternatives exist in the literature. In [88) authors utilize the gloss
words of the WordNet entries to construct semantic graphs.network constructed in
[24] is very similar, since it is based on some of the WordNétions between senses,
but differs in that it defines additional composite semarglations (calledlinks). In
[2], the authors use additional relations from the ExtendénddNet and manual dis-
ambiguations of its glosses for the different entries. lman [29], the network con-
struction approach has an allowed upper bound on the lerfgtiecsemantic paths.
The main reason behind our selection is that the selectedomh@tcorporates all of
the explicit semantic relations in WordNet and adopts areesigighting scheme that
takes into account the importance of each edge type. Thetedlmethod has been first
evaluated in [38] against the approaches of [39] and [24faply construction and is
evaluated again in this study against more recent techsidresults show that the se-
lected method performs better or equally well than otheplgreonstruction methods,
for the same graph processing method. For example, in [B&as$ compared against
the representation of Veronis and Ide [39] and an accurapydwement was reported.

3.2 Spreading of Activation (SAN) Method

The method introduced by Tsatsaronis et al. in [38], reliesjpreading of activation
in semantic networksSAN) for WSD and it was based on an initial approach by Vero-
nis and Ide [39] for constructing SAN for WSD. The constructgdph is processed
with an iterative spreading activation strategy incorfiogathe fan-out and the dis-
tance constraints, as described by Crestani [8]. More Bpalty, the nodes initially
have an activation level df, except for the input word nodes, whose activationh. ik
each iteration, every node propagates its activation todtghbors, as a function of its
current activation value and the weights of the edges thatedt it with its neighbors.
At each iteratiorp every network nod¢ has an activation leveli;(p) and an output
O;(p), which is a function of its activation level, as shown in etipma 1.

0;(p) = f(4;(p)) 1)

The output of each node affects the next-iteration activdtvel of any nod& towards
which nodg has a directed edge. Thus, the activation level of each mktwamlek at it-
erationpis a function of the output, at iteratign-1, of every neighboring nodehaving
adirected edge;;, as well as a function of the edge weidhi;;, as shown in equation
2. Although this process is similar to the activation spiegaf feed-forward neural
networks, the reader should keep in mind that the edges ofsS#é\lbi-directional (for
each edge, there exists a reciprocal edge). A further diffeg is that no training is
involved in the case of SANSs.

Ax(p) = ZOj(p— 1) Wi (2)

Unless a function for the outp@ is chosen carefully, after a number of iterations the
activation floods the network nodes. We use the function o&ggn 3, which incorpo-
rates fan-out and distance factors to constrain the aictivapreadingy is a threshold



value.

0 it A;(p) <7
O ¥ = . ) ¥l 3
o {% -Aj;(p) , otherwise 3)

Equation 3 prohibits the nodes with low activation levetmirinfluencing their neigh-
boring nodes. The facto% diminishes the influence of a node to its neighbors as
the iterations progress (intuitively, as “pulses” trauatthier). Functiont; is a fan-out
factor, defined in equation 4. It reduces the influence of adHat connect to many

neighbors.
F= (- 9 (4)
J CT
C'r is the total number of nodes, adg is the number of nodes directly connected to
via directed edges from

3.3 PageRank (PR) Method

In this work we also investigate on the potential of applyifegeRank in the semantic
networks shown in Figure 1. Thus, we designed another WSDitigo(PR) that pro-
cesses the constructed networks with PageRank. The PagéfRarula that we used
is a simple variation of the original PageRank equationcihakes into account edge
weights as well. This variation was first introduced by Midea et al. in [24]. Equation
5 shows the original PageRank formula and Equation 6 sh@wsetghted variation
that we use to process the networksV;) (andW S(V;) respectively) is the PageRank
value of vertexV;, d is the damping factoQut(V;) is the number of outgoing links
from vertexV; andw;; is the weight of the edge connecting vertidgsindV/;.

S(Vi)

SW=(-d+d 3 5l

JEINn(V;)

(5)

Wi 5

WS(V) = (1-d) +d WS(V;) (6)

v,Emive) 2vkeout(v;) Wik

The SANmethod can then be easily modified to process the constroetebrks
with equation 6, instead of spreading of activation. As apiagfactor () we set).85,
as in the original formula by Brin and Page [4], and we did rgitroize this parameter.
After the PageRank values stabilize, the sense nodes wthighest PagerRank scores
for each target word are selected to disambiguate each veordrence. The difference
between this new PageRank-based WSD method and the methochalcéh et al.
[24] is the semantic representation of the sentences usesiedtion 4 we show that
this difference in the semantic representation is impéréen yields an increase of
almost5% in the disambiguation accuracy. Furthermore, regardieglifierence with
the PageRank-based WSD algorithm introduced by Agirre amdaSi2], this relies
not only in the semantic representation of text, but alstvénused PageRank formula.
More specifically, Agirre and Soroa bias the PageRank ei@tiid concentrate the
initial probability mass uniformly over the word nodes thanstitute the context of the
word to be disambiguated.



34 HITSMethod

In the same adopted semantic network representation watilige the HITS algorithm
as a means of ranking the sense nodes and disambiguatinignigatly the algorithm
was introduced by Kleinberg [17], and its idea is based ontifiéng the authorities
(the most important pointed nodes in a graph) and the hulesn@des that point to
authorities). The algorithm preceded PageRank, and it éveral disadvantages, like
the fact that is prone to clique-attack (i.e., densely cotet neighborhoods of the
graph can aggregate large scores). Its application in WSBus interesting, so as to
investigate on how this affects the results of the task.

In HITS, each graph node has a pair of values (its hub and ttsoety score).
Initially these values are set 10 Then the algorithm runs in steps iteratively, to update
the hub and the authority scores for each node, followingathtdority and the hub
update rules respectively, shown in Equations 10 and 9.

authority(p)= > hub(q) (7)
q€In(p)
hub(p)= > authority(r) (8)
reOut(p)

whereauthority(i) of a nodei is its authority value, antdub(i) is its hub valueln(i) is
the set of nodes that link ig andOut(i) the set of nodes thatinks to. Since our graph
has edges on weights, we are using a modification of Equaliamsl 10, that take into
account the edge weights. The equations are modified asviollo

authority(p) = Z w,., - hub(q) 9
q€In(p)
hub(p)= > w,, - authority(r) (10)
reOout(p)

wherew; ; is the edge weight of the edge leaving frérand linking to;. Eventually,
after a large number of iterations, the authority and the Valbes may converge if a
normalization is used, which divides at each step each dtythalue by the sum of
the authority values and each hub value by the sun of the hiules/an practice, we
are using a small threshold (i.6)~*) which acts as a criterion of change from step
to step during the iterations, and when the changes aftgthim authority and the hub
values do not surpass it for any node in the graph, we assuatdhih values have
converged. Eventually, the sense node with the highesbédtytivalue is selected as the
most appropriate sense for each word.

3.5 P-Rank Method

The P-Rank measure [42] (Penetrating Rank) is a very rgcemtbduced measure of
structural similarity for nodes in an information netwotkenriches a former success-
ful measure of node similarity in information networks, &ank [16]. In their paper,
the authors prove that P-Rank is a unified structural siityjlaretwork, under which



all state of the art similarity measures, including CoG@itat Coupling, Amsler and
SimRank, are just its special cases. In this work, it is fer filst time that P-Rank is
applied for WSD. The basic idea behind P-Rank is that two eestin an information
network are similar, if they are referenced by similar \a@$, and they also reference
similar vertices. P-Rank is recursive, and it executes allgrairs of vertices in a given
graph. Let a grapld? and two vertices:, b. Also let Ry (a,b) = Ry(b,a) denote the
P-Rank similarity value for the pair of verticés, b), at iterationk. Then, P-Rank can
be formalized as shown in Equation 11:

[L(a)| [Z(b)]

Rk+1(a,b) =\ W ; ; Rk(Ii(a)vjj(b))
C |O(a)[ [O(b)]
0N oo & X BO@oe) ey

whereI(n) of a vertexn is the set of its incoming neighborg,(n) is theiy, element
of this set, and the respective holds for thén) notation. The parameter € [0, 1]
balances the relative weight of in- and out-link directioand is usually set t0.5.
C € [0,1] is a damping factor for in- and out-link directions, usuahking the value
of 0.8, according to the authors. Finally, the number of iteratinaeded, for the vertex
pairs similarity values to converge, is reported to be eiwglly at [n(n), wheren
is the number of vertices in the graph. Since our semantiwvarks have weights on
their edges, we are using a modification of Equation 11 toracoodate our weighting
scheme. Thus, we modify the definition|dfa)|, and|O(a)| of a vertexa, as follows:

@)= Y wia (12)
i€Incoming(a)
O@)]= > wa, (13)

j€0utgoing(a)

wherelncoming(a)and Outgoing(a)are the lists of the incoming and outgoing neigh-
bors ofa. Then, the sums in equation 11 are of course modified to rurtbgeespective
[Incoming(a) and|Outgoing(a). After the convergence of the similarity values between
all pairs of vertices, the correct sense for each word is¢hsesnode having the highest
similarity with the respective word node in our networks.

3.6 WSD Methods Complexity

With regards to the complexity of the four methods, in [38)és shown that the con-
struction time of the semantic networks(§n - k1) wheren is the number of words
we disambiguate is the maximum branching factor of the used thesaurus nodgs a
is the maximum semantic path length in the thesaurus. The domplexity ofSANis
O(n? - k2+3). The time complexity oPRis O(n? - k2'+3) in the worst case, where the
network has:- k2! nodes and - k2 edges, and similar is the time complexity of the



Senseval 2 Senseval 3
N V Adj.Adv. All || N V Adj. Adv. All
Mono. 260 33 80 91 464|193 39 72 13 317
Poly. 813 502 352 172 1839|/699 686 276 1 1662
Av. Poly. 4.21 99 3.94 3.23 5.37|[5.07 11.49 4.13 1.07 7.23
Av. Poly. (P. only)|5.24 10.48 4.61 4.41 6.48(/6.19 12.08 4.95 2.0 8.41
Table 1. Occurrences of polysemous and monosemous noun (N), verlagdjéctive (Adj.), ad-
verb (Adv.) and total (All) words of WordNet 2 in Senseval 2, and 3.

HITSand the method. The time complexity of P-Rank in the worsé éagven larger;

O(n*) [42], since it runs over all pair combinations of verticets. $pace complexity
though, is the same with the rest of the algorithms. The span®lexity at the worst

case is equal to the complexity required in memory to consthe semantic networks,
and for the disambiguation efwords is equal t@(n? - k2/+3).

4 Experimental Evaluation

In this section we proceed with an empirical evaluation efplerformance of the four
methods, which examines two criteria: (1) the accuracy efrtiethods in two bench-
mark data sets, and (2) the inter-agreement rate of the eihahe sense selection
level, in the same data sets. In order to evaluate the examue¢hods we use the Sen-
seval 2 [31] and 3 [36All English Words TasHata sets for testing. These data sets were
manually annotated with the correct senses by human aonataefore the respective
competitions were conductédn Table 1 we present the statistics of those data sets,
including average polysemy of words, both with (Av. Polyndavithout (Av. Poly. (P.
only)) taking into account monosemous words. Senseval 23g&eeto disambiguate
than Senseval 3, as the average polysemy is larger in tiee. lattverbs are very easy
to disambiguate and are usually excluded from the evalugi@., Senseval 3 has only
13 adverb occurrences with average polysemy closg.tdhe verb POS is the most
difficult to disambiguate, since a typical verb has more tRatifferent senses from
WordNet.

Regarding the lower and upper bounds of WSD methods in thdaedts, a straight-
forward lower bound is to select randomly a sense for eacld wocurrence. This dis-
ambiguation method would produce an accuracy of ardx¥d for Senseval 2 and
SemcCor, and4% for Senseval 3. A reasonable upper bound, as stated in [28ildw
be the interannotator agreement or intertagger agreen@)t that is, the percentage
of words tagged with the same sense by two or more human darstdhe interan-
notator agreement on coarse-grained (lexicons with fewcteatly distinct senses for
each lemma are used), possibly binary (two senses per lenser@de inventories is
calculated around 90% [12, 29], whereas on fine-graineddWet-style sense invento-
ries, where there are many senses per lemma and which anehaiite to distinguish,
the inter-annotator agreement is estimated betw&éhand80% [7, 30, 36].

4 http://www.senseval.org/



Senseval 2 Senseval 3
Method —— =G AT NV Ad]. Al
SAN 53.0 31.7 59.0 49.5|50.8 36.5 58.0 46.8
PR 69.5 37.2 59.0 58.8|/61.8 47.3 60.6 56.7
HITS 69.1 36.6 59.1 58.3(/69.2 40.4 66.7 57.4
P-Rank 51.3 27.31 57.4 45.6(/60.6 29.9 67.8 52.1

Mih05 57.5 36.5 56.7 52.0{| nfa n/a n/a51.8
Agi09 70.4 38.9 58.3 59.5||64.1 46.9 62.6 57.4
NavO07 n/a n/a nla n/g|61.9 36.1 62.8 52.5
FS 74.0 42.4 63.1 63.7|/70.9 50.7 59.7 61.3
Table 2. Overall and per POS accuracies (%) of WSD methods in Sensevad 3, @il English
Words Tasldata sets) for all POS, excluding adverbs.

4.1 Empirical Evaluation of Unsupervised Graph-based WSD methods

Table 2 shows the accuracy of the four methods for all POSeitvib data sets. We have
also added in the comparison, results from related methabdsegards to unsupervised
graph-based WSD. These are: the method of Mihalcea et al(N88P5), the method
of Agirre and Soroa [2] (Agi09), and the results from the woflNavigli and Lapata
[29] (NavO7). For this latter work, because the authorsdastcompare several graph
connectivity measures, the table contains the numbergwoMPP measure, which was
shown by their analysis to be the best performing graphébaseasure overall. Note
also, that adverbs are omitted in the comparison, since dhewery few in number
in the Senseval competitions, compared to the rest POS. Waenesults were not
available, because they were not reported in the literaamesntryn/a exists in the
respective cell. Finally, we have also added in the compaissimple heuristic method
(FS) that always selects the first sense of the target word fromdWet (i.e., the most
frequent) to conduct the disambiguation. Though this netibausually reported as a
baseline for the supervised systems (the unsupervisegeinsg'sbaseline is the random
assignment of senses), we have added it into the compasedhat practitioners of
WSD have a clear idea of the performance the unsupervised WSBnsy can offer
against the supervised ones.

As Table 2 shows th€ ANmethod has stable performance, obtaining an accuracy
very near50%, overall for all POS. Th&Rmethod shows impressive increase in accu-
racy over the method of Mihalcea et al., which is due to théerbht semantic repre-
sentation used through the constructed semantic netwsirice the PageRank formula
remaind the same in both cases. 'S method performs overall better th&AN
and its performance is very close to tR& method. In factHITS seems to be per-
forming equally (Senseval 2) or better (Senseval 3) for henrPOS tha®R and the
same holds for the adjective POS. For the verb PRISperforms overall better than
HITS The P-Rankmethod does not seem to perform very well against the rest-uns
pervised graph-based techniques, but this is in accordaiticghe results reported by
Navigli and Lapata [29], who reported lower results thareotiraph-based methods for
the betweennesand theindgreemeasures of structural similarity in semantic graphs.
The method of Agirre and Soroa also performs very well, arid fact the best unsu-
pervised graph-based method in Senseval 2, and has the safoerance wittHITS



Senseval 2 Senseval 3
N vV Adj. All N vV Adj. All
SAN-PR 51.51 35.74 54.16 47.86(|53.17 49.48 49.83 51.21
SAN-HITS 52.42 23.89 57.55 39.51|| 50.6 40.38 50.16 46.68
SAN - P-Rank 50.84 27.16 63.46 46.77(/66.52 32.94 69.04 55.37
PR-HITS 62.56 34.93 64.32 55.54(/60.36 44.64 66.88 55.57
PR -P-Rank 50.55 30.95 67.3 48.1 |/ 68.2 30.58 71.42 55.78
HITS- P-Rank 53.88 23.8 59.61 46.83|(67.78 31.76 69.04 54.17
Table 3. SAN PR, HITS andP-Rankmethods’ pairwise inter-agreemefit)in Senseval 2 and
3 (All English Words Taskata sets) for all POS, excluding adverbs.

Pair

in the Senseval 3 data set. The performance difference batthese two methods is
not statistically significant at the.95 confidence level, if one examines their overall
accuracy in the respective data sets. KiRP measure of Navigli and Lapata cannot
match the accuracy #fR, HITSand the method of Agirre and Soroa. RegardingrRBe
method, though simple, outperforms every other compardHadelt obtains very high
accuracies, always abo%8% for all POS. Its performance in nouns and adjectives is
impressive, but in the verbs, due to their large averagespoty, the performance drops
dramatically, compared to the rest POS. In another inegesinsupervised approach,
Pedersen and Kolhatkar [34] perform disambiguation in 8eal< and 3, using mea-
sures of semantic relatedness. Their best reported resHtdMeasure weré9% for
Senseval 2 andd% for Senseval 3, performance which is almost the same withrfeR a
HITS in Senseval 2, but slightly worse in Senseval-3.

One additional comparison we would like to make regardimgftlur studied meth-
ods SAN PR HITS, andP-RanR is to examine the percentage of times the four meth-
ods agree in the sense selection level. Previous studiesdtmwn that the ensemble
of methods can lead to increased WSD accuracy [5]. A preriégisshat the methods
do not agree very often, so that there is a potential benefit the ensemble. In this
direction, we have measured their pair-wise inter-agre¢mse (i.e., the percentage
of the same sense assignment to the total sense assignredotsngd). Table 3 shows
the inter-agreement rate for all pairwise combinationsheffour methods, separately
for each POS, and for each of the two examined data sets. Tihefathis analysis
is to investigate whether a potential combination of anysstibf the four methods in
an ensemble of unsupervised methods (e.qg., [5]), would peat&d to yield interest-
ing results. The performance of the ensemble is strongbtadito the pluralism of
suggestions of the underlying WSD methods. As the table shihespairwise inter-
agreement rate of the four methods is always lower or vergecto70% in all cases.
The lowest inter-agreement rates are reported for the v&®, Which is an expected
outcome, since the verbs are more polysemous than the ré&st @ lowest inter-
agreement rates are reported for 8%N-PRand SAN-HIT Spairs. This means that in
a possible ensemble, the combinatiorSéfNwith PRor HITS could boost the overall
performance. In parallel, we can observe from the tabledidahe methods seem to
agree more in a pairwise manner in Senseval 3 than in Ser&éMais is an interesting
finding, because Senseval 3 is more polysemous than Se@saval maybe the reverse
was expected. A possible interpretation is that in the chSeseval 3 the networks are
larger, and thus more densely connected, and so the appéiaedures recognize more



Dataset Sensel earner Simil-Prime SSI WE FS || PR HITS Agi09
Senseval 2 64.82 65.00 n/a 63.2 63{38.8 58.3 59.5
Senseval3 63.01 65.85 60.4 n/a 61|36.7 57.4 57.4
Table4. Accuracies (%) on Senseval 2 andBEnglish Words TasKata sets, excluding adverbs.

easily the most important vertices. Overall, these findsigswy that the combination of
these four graph-based measures has great potential dusirtoeiatively low level of
inter-agreement.

4.2 Comparison with State of the Art WSD Methods

In this section we generalize the comparison of the unsigeshgraph-based WSD
methods with the state of the art results reported in the Weealure, independently
of the type of methods used. In this direction, we comparedp8 methods from Ta-
ble 2, namelyPR HITS and the method of Agirre and Soroa, with the highest results
reported i the WSD literature for Senseval 2 and 3. Thus, wepeoewith the methods
of Mihalcea and Csomai [23] (SenselLearner), Kohomban aed1&] (Simil-Prime),
Navigli [26] (SSI), and Hoste et al. [14] (WE), in the Sense¥@nd 3 data sets. Table
4.2 shows the respective accuracies, where available. Walsa refer to the unsu-
pervised enseble method of Brody et al. [5] only in the noursR®Senseval 3 data
set, since their method’s evaluation is limited to that.d3ret al. report an accuracy of
63.9% in Senseval 3 nouns (Senseval 2 is N/A) with an upper bounledf énsemble
close t070%. From the results of Table 4.2 we can observe that the topmeitfig
method appears to be tismil-Prime with very high overall accuracy, equal or above
to 65%. We have to note though, that the latter cannot disambigajectives and
adverbs, residing in the FS method to perform the task faeieo POS. It is also ob-
vious from the results table, that though the unsupervisapghgbased WSD techniques
cannot match the accuracy of the rest of the methods, they dlasrly closed the gap
very much towards a possible match in the near future.

5 Conclusionsand Future Work

In this work we presented an experimental study of unsupedvgraph-based WSD
techniques. The aim was to analyze the performance of kneeimtques for process-
ing semantic graphs, keeping the same semantic reprasentad that the comparison
is compatible. In our comparison we included a spreadingctifation method, the
PageRank and HITS algorithms, as well as, for the first timeP-Rank structural sim-
ilarity measure for vertices in information networks. A tbogh experimental evalua-
tion was conducted in two benchmark WSD data sets. We alsoa@ui@gainst other
known unsupervised graph-based WSD techniques, that dossadha same semantic
representation, as well as against the top reported rasutie two data sets. Further-
more, we analyzed the pairwise inter-agreement rate bettveeexamined methods,
and we showed that it is low for most pairs, leading to the keion that several of
these methods can form up an ensemble. Our study also shbafeithé gap in accu-
racy between supervised methods and unsupervised graghk-techniques, has been



truncated over the last years, constituting a solid evidehat there is still room for im-
provement, given also the fact that thesauri, like WordM#t keep developing. In the
future we plan to design unsupervised ensembles of grapbdomethods, taking ad-
vantage of the relatively low inter-agreement rate andrgnait a high accuracy learner
for the task.
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