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Abstract. Recent research works on unsupervised word sense disambiguation
report an increase in performance, which reduces their handicap from the respec-
tive supervised approaches for the same task. Among the latest state ofthe art
methods, those that use semantic graphs reported the best results. Such methods
create a graph comprising the words to be disambiguated and their corresponding
candidate senses. The graph is expanded by adding semantic edges and nodes
from a thesaurus. The selection of the most appropriate sense per word occur-
rence is then made through the use of graph processing algorithms that offer
a degree of importance among the graph vertices. In this paper we experimen-
tally investigate the performance of such methods. We additionally evaluate a
new method, which is based on a recently introduced algorithm for computing
similarity between graph vertices, P-Rank. We evaluate the performanceof all
alternatives in two benchmark data sets, Senseval 2 and 3, using WordNet. The
current study shows the differences in the performance of each method, when
applied on the same semantic graph representation, and analyzes the pros and
cons of each method for each part of speech separately. Furthermore, it analyzes
the levels of inter-agreement in the sense selection level, giving further insight
on how these methods could be employed in an unsupervised ensemble for word
sense disambiguation.

1 Introduction

Word Sense Disambiguation (WSD) addresses the problem of selecting the most ap-
propriate sense for a word, among several offered from a dictionary or a thesaurus, with
respect to its context. WSD algorithms are used in several natural language processing
tasks, such as machine translation, and speech processing,and the performance of the
disambiguation procedure is critical to their success [6].WSD has also been reported
to boost performance of text retrieval, document classification, and document cluster-
ing tasks [13, 20]. All these findings, strengthen the need for fast and accurate WSD
algorithms.

The various solutions found in the WSD bibliography face the tradeoff between
unsupervised and supervised methods. The former usually offer fast execution time but
low accuracy, while the latter suffer from theknowledge acquisition bottleneckproblem
because they require extensive training in a large amount ofmanually annotated data.



Unsupervised graph-based WSD techniques [2, 24, 35, 26, 38] have been attracting a
wider focus lately, mainly because they have managed to truncate the accuracy gap from
the supervised methods. The key to these methods’ achievement is the rich semantic
model that they employ. More specifically, they map the wordsto be disambiguated
and their respective candidate senses to graphs, which are enhanced with nodes and
semantic edges from word thesauri (e.g., WordNet). On top ofthis representation, they
use a node ranking or node activation algorithm, which afterseveral iterations concludes
to the best candidate sense for each word, which is usually the highest ranked sense node
after the convergence of the vertices’ values.

In this paper, we compare the performance of several unsupervised graph-based
WSD methods. We also apply for the first time a new vertices similarity measure, capi-
talizing on the structural similarity of the graph vertices. In the experimental evaluation
we use the English WordNet [10] as our lexical database, and the data from the Senseval
2 [31] and 3 [36]English all wordstask as a benchmark. We present the comparative
results of several vertex ranking algorithms [4, 8, 17], andvertex similarity algorithms
[42]. The contributions of this work can be summarized in thefollowing: (a) thorough
experimental evaluation and analysis of the performance ofseven state of the art un-
supervised graph-based WSD methods, (b) application -for the first time- of the node
similarity algorithm P-Rank [42], in the word sense disambiguation task, (c) general-
ized comparison and analysis against state of the art WSD approaches, both supervised
and unsupervised, offering an experimental survey of the current top methods in word
sense disambiguation, and (d) analysis of the methods inter-agreement in the sense se-
lection level, that can give further insight into a possibleinclusion of those methods in
an ensemble of approaches.

The rest of the paper is organized as follows: Section 2 discusses the related work,
and gives a short overview of the state of the art in word sensedisambiguation. Section
3 presents in detail the graph construction and graph processing algorithms and their
application in WSD, and also discusses the space and time complexity of the examined
methods. Section 4 experimentally evaluates the compared approaches and illustrates
the advantages of each method per part of speech (POS). Furthermore, it generalizes
the comparison against top performing WSD methods in the Senseval 2 and 3 data sets.
Finally, Section 5 concludes and provides pointers to future work.

2 Related Work

2.1 Supervised Word Sense Disambiguation

The field of WSD is a well studied research area [15, 28], mainlybecause the applica-
tion of WSD may improve the performance of several tasks, likemachine translation
and text classification. A crucial component in such critical applications is the achieved
accuracy of the underlying WSD system. In general, supervised WSD methods out-
perform their unsupervised rivals but they require extensive training in large data sets.
Recent research results [28] show that the accuracy of stateof the art supervised WSD
methods is above60% with an upper bound reaching70% for all words, fine-grained
WSD, while the accuracy of unsupervised methods is usually between45 − 60%.



Supervised WSD approaches that report interesting performance results comprise
the works of Pedersen [33], Florian et al. [11], and Carpuat et al. [40]. Pedersen uses an
ensemble of9 classifiers selected from a set of81 Naive Bayes classifiers and requires
at least one training instance for each different sense of the target word that exists in the
lexicon. Similarly, Florian et al. use an ensemble of6 different classifiers (Naive Bayes,
Transformation-base learning, etc.) and report similar requirements for training sam-
ples. Carpuat et al. use a method that exploits a nonlinear kernel principal component
analysis (KPCA) technique [40]. The KPCA-based model acts as the voting mechanism
over a set of classifiers that learn to predict the correct sense and decides on which of
the suggested senses should be selected.

State of the art results in supervised WSD have been reported by the SenseLearner
system of Mihalcea and Csomai [23], the Simil-Prime system introduced by Kohom-
ban and Lee [18], and the system developed by Hoste et al. [14]. In [23] the authors
suggest the construction of seven semantic models, which are trained using the Timbl
memory based learning algorithm. The Simil-Prime method [18] is trained to disam-
biguate words into generic semantic classes, and consequently casts the generic seman-
tic classes back to finer grained senses, using heuristical mapping. The major drawback
of this method is the use of heuristics, which cannot guarantee that finer senses will not
be missed. Another drawback is the fact that it uses a decision-tree based implementa-
tion of the k-nn classifier, which raises the execution cost (mainly the space complexity)
since many training examples need to be reexamined for each target word. The memory-
based learning approach proposed by Hoste et al. uses votingamong word-experts to
decide on the correct sense. The method stores all instancesin memory during training
and testing, which results in both high space and time complexity.

Finally, we should mention the winners of the Senseval 2 and 3All English Words
Taskwhich were the supervised WSD systemsSMUaw[21] andGAMBL [9] respec-
tively. SMUawwas based on pattern learning from sense-tagged corpora andinstance-
based learning with automatic feature selection. In the cases where the existing patterns
failed to disambiguate a word and no more training data existed, the method selected the
most frequent sense for the word, which resulted in high recall levels, but affected pre-
cision. InGAMBLword experts are trained using memory-based classifiers, that learn
to predict the correct sense of each word, thus requiring extensive training.

2.2 Unsupervised Word Sense Disambiguation - The Graph-based Methods

The list of unsupervised WSD methods is long and comprises corpus-based [41],
knowledge-based, such as Lesk-like [19] and graph-based [2, 24, 35, 26, 38] methods,
as well as ensembles [5] that combine several methods. From all types of unsuper-
vised WSD methods, we focus on the graph-based ones, which demonstrate high per-
formance and seem to be a promising solution for unsupervised WSD. The first step of
graph-based WSD methods relies in the construction of semantic graphs from text. The
graphs are consequently processed in order to select the most appropriate meaning3 of
each examined word, in its given context.

3 In the remaining of the paper, the wordsconcept, sense, andsynsetmay be used interchangeably to describe the meaning
of a word, among the several offered by a dictionary or a word thesaurus.



One of the most influential WSD works in this direction is the disambiguation algo-
rithm of Sussna [37], which uses the WordNet graph as a basis and examines all nouns
in a window of context and assigns a sense to each noun in a way that minimizes a se-
mantic distance function among all selected senses. In [1],Agirre and Rigau introduced
and applied a similarity measure based on conceptual density between noun senses. The
measure was based on WordNet’s is-a hierarchy and measured the similarity between a
target noun sense and the nouns in the surrounding context. More recently, Banerjee and
Pedersen [3] suggested an adaptation of the original Lesk algorithm for the WordNet
graph. In [24] and [38] authors use WordNet as a graph, defining the vertices as synsets
and the edges as the semantic relations connecting synsets.Both methods construct
synset graphs from text in the first step. Then, the former method applies the PageRank
algorithm to rank the synset vertices whereas the latter employs a spreading activation
technique to process the network (SAN) and selects the most active sense nodes after the
spreading of the activation as the senses disambiguating the respective words. In [27]
Navigli introduced a different graph construction method,the Structural Semantic Inter-
connections (SSI-HITS), in which all candidate senses are connected and consequently
ranked using the HITS algorithm. SSI-HITS is based on a measure that maximizes the
degree of mutual interconnection among a set of senses. Finally, in [2] Agirre and Soroa
use the PageRank algorithm, instead of HITS, and a wider knowledge-base (WordNet
and Extended WordNet [25] relations).

Examining unsupervised graph-based WSD from another perspective, Sinha and
Mihalcea [35] propose an unsupervised graph-based method for WSD, based on an
algorithm that computes graph centrality of nodes in the constructed semantic graph.
To measure the centrality of the nodes, they use the indegree, the closeness, and the
betweenness of the vertices in the graph, as well as PageRank. They also employ five
known measures of semantic similarity or relatedness to compute the similarity of the
nodes in the semantic graph, based on an idea initially presented by Patwardhan et
al. [32]. Similarly, in [29], Navigli and Lapata explore several measures for analyz-
ing the connectivity of semantic graph structures inlocal (i.e., per individual node) or
global (i.e. for the whole graph) level. They evaluate in-degree and eigenvector central-
ity, maximum flow, compactness, graph entropy and edge density. They conclude that
local measures perform better than global measures for the WSD task.

The examination of related literature revealed a wide variety of options in unsuper-
vised graph-based WSD techniques. In the following of this study, we examine more
closely the empirical evaluations of these methods, and analyze the reasons behind a
boost in performance, which can be either the levied semantic representation or the
graph processing technique itself. Furthermore, we examine the interagreement of these
methods in the selection of senses when the same graph representation is employed. For
this reason we implement four graph processing techniques (PageRank, SAN, HITS and
P-Rank) and evaluate their performance in the same semanticrepresentation.

3 Assigning Senses to Words in Semantic Graphs

This section presents the four graph processing methods that were selected for evalua-
tion: SAN [8], PageRank [4], HITS [17] and P-Rank [42]. Though three of those meth-
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Fig. 1. Semantic Network Construction for Spreading of Activation.

ods have been applied before in WSD (SAN-based WSD [38, 39], PageRank-based
WSD [2, 35], and HITS-based WSD [29]), they have never been evaluated in tandem
using the same semantic representation of text. Thus, in order to provide a compara-
tive evaluation, we used the same semantic representation (i.e., the same graph) for all
methods. More specifically, we adopt the semantic network construction method that
was introduced in [38]. The method utilizes all of the available semantic relations in
WordNet 2.0. Furthermore, it employs a novel weighting scheme for the edges connect-
ing the sense nodes.

3.1 Semantic Graph Construction

The semantic network construction method of Tsatsaronis etal [38] creates a semantic
network for each sentence, that contains only the words thathave entries in WordNet
and assumes that these words have been tagged with their parts of speech (POS). The
method, as depicted in Figure 1, initially adds the word nodes and their senses to the
network (initial phase). Consequently, it adds all the thesaurus senses which are seman-
tically related to the existing senses of the network (expansion round 1for the senses
S.i.2andS.j.1 respectively). Expansion continues iteratively until there is a path be-
tween every pair of the initial word nodes. In this step, the network ceases growing
and is considered asconnected. If there are no more senses to be expanded and the re-
spective network is not connected, the words of that sentence cannot be disambiguated,
which means a loss in coverage. Once the network is ready to beprocessed, the weights
of each edge are added (expansion round 2). The weights are based on the frequency of
occurrence of each edge type in the constructed network [38]. During the construction
of the networks, it might be the case that two words share the same senses. This case is
depicted inexpansion example 2of Figure 1. In this case, a single sense node is added
to the network (i.e., the sense nodes in the network represent WordNet synsets).



Apart from the specific method that we employ for constructing semantic graph,
several other alternatives exist in the literature. In [39]the authors utilize the gloss
words of the WordNet entries to construct semantic graphs. The network constructed in
[24] is very similar, since it is based on some of the WordNet relations between senses,
but differs in that it defines additional composite semanticrelations (calledxlinks). In
[2], the authors use additional relations from the ExtendedWordNet and manual dis-
ambiguations of its glosses for the different entries. Finally, in [29], the network con-
struction approach has an allowed upper bound on the length of the semantic paths.
The main reason behind our selection is that the selected method incorporates all of
the explicit semantic relations in WordNet and adopts an edge weighting scheme that
takes into account the importance of each edge type. The selected method has been first
evaluated in [38] against the approaches of [39] and [24] in graph construction and is
evaluated again in this study against more recent techniques. Results show that the se-
lected method performs better or equally well than other graph construction methods,
for the same graph processing method. For example, in [38], it was compared against
the representation of Veronis and Ide [39] and an accuracy improvement was reported.

3.2 Spreading of Activation (SAN) Method

The method introduced by Tsatsaronis et al. in [38], relies on spreading of activation
in semantic networks (SAN) for WSD and it was based on an initial approach by Vero-
nis and Ide [39] for constructing SAN for WSD. The constructedgraph is processed
with an iterative spreading activation strategy incorporating the fan-out and the dis-
tance constraints, as described by Crestani [8]. More specifically, the nodes initially
have an activation level of0, except for the input word nodes, whose activation is1. In
each iteration, every node propagates its activation to itsneighbors, as a function of its
current activation value and the weights of the edges that connect it with its neighbors.
At each iterationp every network nodej has an activation levelAj(p) and an output
Oj(p), which is a function of its activation level, as shown in equation 1.

Oj(p) = f(Aj(p)) (1)

The output of each node affects the next-iteration activation level of any nodek towards
which nodej has a directed edge. Thus, the activation level of each network nodek at it-
erationp is a function of the output, at iterationp−1, of every neighboring nodej having
a directed edgeejk, as well as a function of the edge weightWjk, as shown in equation
2. Although this process is similar to the activation spreading of feed-forward neural
networks, the reader should keep in mind that the edges of SANs are bi-directional (for
each edge, there exists a reciprocal edge). A further difference is that no training is
involved in the case of SANs.

Ak(p) =
∑

j

Oj(p − 1) · Wjk (2)

Unless a function for the outputO is chosen carefully, after a number of iterations the
activation floods the network nodes. We use the function of equation 3, which incorpo-
rates fan-out and distance factors to constrain the activation spreading;τ is a threshold



value.

Oj(p) =

{

0 , if Aj(p) < τ
Fj

p+1 · Aj(p) , otherwise
(3)

Equation 3 prohibits the nodes with low activation levels from influencing their neigh-
boring nodes. The factor1

p+1 diminishes the influence of a node to its neighbors as
the iterations progress (intuitively, as “pulses” travel further). FunctionFj is a fan-out
factor, defined in equation 4. It reduces the influence of nodes that connect to many
neighbors.

Fj = (1 −
Cj

CT

) (4)

CT is the total number of nodes, andCj is the number of nodes directly connected toj
via directed edges fromj.

3.3 PageRank (PR) Method

In this work we also investigate on the potential of applyingPageRank in the semantic
networks shown in Figure 1. Thus, we designed another WSD algorithm (PR) that pro-
cesses the constructed networks with PageRank. The PageRank formula that we used
is a simple variation of the original PageRank equation, which takes into account edge
weights as well. This variation was first introduced by Mihalcea et al. in [24]. Equation
5 shows the original PageRank formula and Equation 6 shows its weighted variation
that we use to process the networks.S(Vi) (andWS(Vi) respectively) is the PageRank
value of vertexVi, d is the damping factor,Out(Vj) is the number of outgoing links
from vertexVi andwij is the weight of the edge connecting verticesVi andVj .

S(Vi) = (1 − d) + d
∑

j∈In(Vi)

S(Vi)

|Out(Vj)|
(5)

WS(Vi) = (1 − d) + d
∑

Vj∈In(Vi)

wij
∑

Vk∈Out(Vj)
wjk

WS(Vj) (6)

TheSANmethod can then be easily modified to process the constructednetworks
with equation 6, instead of spreading of activation. As a damping factor (d) we set0.85,
as in the original formula by Brin and Page [4], and we did not optimize this parameter.
After the PageRank values stabilize, the sense nodes with the highest PagerRank scores
for each target word are selected to disambiguate each word occurrence. The difference
between this new PageRank-based WSD method and the method of Mihalcea et al.
[24] is the semantic representation of the sentences used. In Section 4 we show that
this difference in the semantic representation is important and yields an increase of
almost5% in the disambiguation accuracy. Furthermore, regarding the difference with
the PageRank-based WSD algorithm introduced by Agirre and Soroa [2], this relies
not only in the semantic representation of text, but also in the used PageRank formula.
More specifically, Agirre and Soroa bias the PageRank execution to concentrate the
initial probability mass uniformly over the word nodes thatconstitute the context of the
word to be disambiguated.



3.4 HITS Method

In the same adopted semantic network representation we alsoutilize the HITS algorithm
as a means of ranking the sense nodes and disambiguating text. Initially the algorithm
was introduced by Kleinberg [17], and its idea is based on identifying the authorities
(the most important pointed nodes in a graph) and the hubs (the nodes that point to
authorities). The algorithm preceded PageRank, and it has several disadvantages, like
the fact that is prone to clique-attack (i.e., densely connected neighborhoods of the
graph can aggregate large scores). Its application in WSD is thus interesting, so as to
investigate on how this affects the results of the task.

In HITS, each graph node has a pair of values (its hub and its authority score).
Initially these values are set to1. Then the algorithm runs in steps iteratively, to update
the hub and the authority scores for each node, following theauthority and the hub
update rules respectively, shown in Equations 10 and 9.

authority(p)=
∑

q∈In(p)

hub(q) (7)

hub(p)=
∑

r∈Out(p)

authority(r) (8)

whereauthority(i) of a nodei is its authority value, andhub(i) is its hub value,In(i) is
the set of nodes that link toi, andOut(i) the set of nodes thati links to. Since our graph
has edges on weights, we are using a modification of Equations9 and 10, that take into
account the edge weights. The equations are modified as follows:

authority(p)=
∑

q∈In(p)

wq,p · hub(q) (9)

hub(p)=
∑

r∈Out(p)

wp,r · authority(r) (10)

wherewi,j is the edge weight of the edge leaving fromi and linking toj. Eventually,
after a large number of iterations, the authority and the hubvalues may converge if a
normalization is used, which divides at each step each authority value by the sum of
the authority values and each hub value by the sun of the hub values. In practice, we
are using a small threshold (i.e.,10−4) which acts as a criterion of change from step
to step during the iterations, and when the changes affecting the authority and the hub
values do not surpass it for any node in the graph, we assume that the values have
converged. Eventually, the sense node with the highest authority value is selected as the
most appropriate sense for each word.

3.5 P-Rank Method

The P-Rank measure [42] (Penetrating Rank) is a very recently introduced measure of
structural similarity for nodes in an information network.It enriches a former success-
ful measure of node similarity in information networks, SimRank [16]. In their paper,
the authors prove that P-Rank is a unified structural similarity network, under which



all state of the art similarity measures, including CoCitation, Coupling, Amsler and
SimRank, are just its special cases. In this work, it is for the first time that P-Rank is
applied for WSD. The basic idea behind P-Rank is that two vertices in an information
network are similar, if they are referenced by similar vertices, and they also reference
similar vertices. P-Rank is recursive, and it executes overall pairs of vertices in a given
graph. Let a graphG and two verticesa, b. Also let Rk(a, b) = Rk(b, a) denote the
P-Rank similarity value for the pair of vertices(a, b), at iterationk. Then, P-Rank can
be formalized as shown in Equation 11:

Rk+1(a, b) = λ ·
C

|I(a)||I(b)|

|I(a)|
∑

i=1

|I(b)|
∑

j=1

Rk(Ii(a), Ij(b))

+ (1 − λ) ·
C

|O(a)||O(b)|

|O(a)|
∑

i=1

|O(b)|
∑

j=1

Rk(Oi(a), Oj(b)) (11)

whereI(n) of a vertexn is the set of its incoming neighbors,Ii(n) is theith element
of this set, and the respective holds for theO(n) notation. The parameterλ ∈ [0, 1]
balances the relative weight of in- and out-link directions, and is usually set to0.5.
C ∈ [0, 1] is a damping factor for in- and out-link directions, usuallytaking the value
of 0.8, according to the authors. Finally, the number of iterations needed, for the vertex
pairs similarity values to converge, is reported to be empirically at ln(n), wheren

is the number of vertices in the graph. Since our semantic networks have weights on
their edges, we are using a modification of Equation 11 to accommodate our weighting
scheme. Thus, we modify the definition of|I(a)|, and|O(a)| of a vertexa, as follows:

|I(a)| =
∑

i∈Incoming(a)

wi,a (12)

|O(a)| =
∑

j∈Outgoing(a)

wa,j (13)

whereIncoming(a)andOutgoing(a)are the lists of the incoming and outgoing neigh-
bors ofa. Then, the sums in equation 11 are of course modified to run over the respective
|Incoming(a)| and|Outgoing(a)|. After the convergence of the similarity values between
all pairs of vertices, the correct sense for each word is the sense node having the highest
similarity with the respective word node in our networks.

3.6 WSD Methods Complexity

With regards to the complexity of the four methods, in [38] itwas shown that the con-
struction time of the semantic networks isO(n · kl+1) wheren is the number of words
we disambiguate,k is the maximum branching factor of the used thesaurus nodes and l

is the maximum semantic path length in the thesaurus. The time complexity ofSANis
O(n2 ·k2l+3). The time complexity ofPRis O(n2 ·k

3

2
l+3) in the worst case, where the

network hasn ·k
l
2
+1 nodes andn ·kl+2 edges, and similar is the time complexity of the



Senseval 2 Senseval 3
N V Adj. Adv. All N V Adj. Adv. All

Mono. 260 33 80 91 464 193 39 72 13 317

Poly. 813 502 352 172 1839 699 686 276 1 1662

Av. Poly. 4.21 9.9 3.94 3.23 5.37 5.07 11.49 4.13 1.07 7.23

Av. Poly. (P. only) 5.24 10.48 4.61 4.41 6.48 6.19 12.08 4.95 2.0 8.41

Table 1. Occurrences of polysemous and monosemous noun (N), verb (V),adjective (Adj.), ad-
verb (Adv.) and total (All) words of WordNet 2 in Senseval 2, and 3.

HITSand the method. The time complexity of P-Rank in the worst case is even larger;
O(n4) [42], since it runs over all pair combinations of vertices. Its space complexity
though, is the same with the rest of the algorithms. The spacecomplexity at the worst
case is equal to the complexity required in memory to construct the semantic networks,
and for the disambiguation ofn words is equal toO(n2 · k2l+3).

4 Experimental Evaluation

In this section we proceed with an empirical evaluation of the performance of the four
methods, which examines two criteria: (1) the accuracy of the methods in two bench-
mark data sets, and (2) the inter-agreement rate of the methods in the sense selection
level, in the same data sets. In order to evaluate the examined methods we use the Sen-
seval 2 [31] and 3 [36]All English Words Taskdata sets for testing. These data sets were
manually annotated with the correct senses by human annotators, before the respective
competitions were conducted.4 In Table 1 we present the statistics of those data sets,
including average polysemy of words, both with (Av. Poly.) and without (Av. Poly. (P.
only)) taking into account monosemous words. Senseval 2 is easier to disambiguate
than Senseval 3, as the average polysemy is larger in the latter. Adverbs are very easy
to disambiguate and are usually excluded from the evaluation (e.g., Senseval 3 has only
13 adverb occurrences with average polysemy close to1). The verb POS is the most
difficult to disambiguate, since a typical verb has more than8 different senses from
WordNet.

Regarding the lower and upper bounds of WSD methods in those data sets, a straight-
forward lower bound is to select randomly a sense for each word occurrence. This dis-
ambiguation method would produce an accuracy of around20% for Senseval 2 and
SemCor, and14% for Senseval 3. A reasonable upper bound, as stated in [28], would
be the interannotator agreement or intertagger agreement (ITA), that is, the percentage
of words tagged with the same sense by two or more human annotators. The interan-
notator agreement on coarse-grained (lexicons with few andclearly distinct senses for
each lemma are used), possibly binary (two senses per lemma), sense inventories is
calculated around 90% [12, 29], whereas on fine-grained, WordNet-style sense invento-
ries, where there are many senses per lemma and which are often hard to distinguish,
the inter-annotator agreement is estimated between67% and80% [7, 30, 36].

4 http://www.senseval.org/



Method
Senseval 2 Senseval 3

N V Adj. All N V Adj. All
SAN 53.9 31.7 59.0 49.5 50.8 36.5 58.0 46.8

PR 69.5 37.2 59.0 58.8 61.8 47.3 60.6 56.7

HITS 69.1 36.6 59.1 58.3 69.2 40.4 66.7 57.4

P-Rank 51.3 27.31 57.4 45.6 60.6 29.9 67.8 52.1

Mih05 57.5 36.5 56.7 52.0 n/a n/a n/a 51.8

Agi09 70.4 38.9 58.3 59.5 64.1 46.9 62.6 57.4

Nav07 n/a n/a n/a n/a 61.9 36.1 62.8 52.5

FS 74.0 42.4 63.1 63.7 70.9 50.7 59.7 61.3

Table 2. Overall and per POS accuracies (%) of WSD methods in Senseval 2, and 3 (All English
Words Taskdata sets) for all POS, excluding adverbs.

4.1 Empirical Evaluation of Unsupervised Graph-based WSD methods

Table 2 shows the accuracy of the four methods for all POS in the two data sets. We have
also added in the comparison, results from related methods with regards to unsupervised
graph-based WSD. These are: the method of Mihalcea et al. [22](Mih05), the method
of Agirre and Soroa [2] (Agi09), and the results from the workof Navigli and Lapata
[29] (Nav07). For this latter work, because the authors testand compare several graph
connectivity measures, the table contains the numbers of their KPPmeasure, which was
shown by their analysis to be the best performing graph-based measure overall. Note
also, that adverbs are omitted in the comparison, since theyare very few in number
in the Senseval competitions, compared to the rest POS. Whenever results were not
available, because they were not reported in the literature, an entryn/a exists in the
respective cell. Finally, we have also added in the comparison a simple heuristic method
(FS) that always selects the first sense of the target word from WordNet (i.e., the most
frequent) to conduct the disambiguation. Though this method is usually reported as a
baseline for the supervised systems (the unsupervised systems’ baseline is the random
assignment of senses), we have added it into the comparison,so that practitioners of
WSD have a clear idea of the performance the unsupervised WSD systems can offer
against the supervised ones.

As Table 2 shows theSANmethod has stable performance, obtaining an accuracy
very near50%, overall for all POS. ThePRmethod shows impressive increase in accu-
racy over the method of Mihalcea et al., which is due to the different semantic repre-
sentation used through the constructed semantic networks,since the PageRank formula
remaind the same in both cases. TheHITS method performs overall better thanSAN
and its performance is very close to thePR method. In fact,HITS seems to be per-
forming equally (Senseval 2) or better (Senseval 3) for the noun POS thanPR, and the
same holds for the adjective POS. For the verb POS,PR performs overall better than
HITS. TheP-Rankmethod does not seem to perform very well against the rest unsu-
pervised graph-based techniques, but this is in accordancewith the results reported by
Navigli and Lapata [29], who reported lower results than other graph-based methods for
the betweennessand theindgreemeasures of structural similarity in semantic graphs.
The method of Agirre and Soroa also performs very well, and isin fact the best unsu-
pervised graph-based method in Senseval 2, and has the same performance withHITS



Pair
Senseval 2 Senseval 3

N V Adj. All N V Adj. All
SAN - PR 51.51 35.74 54.16 47.86 53.17 49.48 49.83 51.21

SAN - HITS 52.42 23.89 57.55 39.51 50.6 40.38 50.16 46.68

SAN - P-Rank 50.84 27.16 63.46 46.77 66.52 32.94 69.04 55.37

PR - HITS 62.56 34.93 64.32 55.54 60.36 44.64 66.88 55.57

PR - P-Rank 50.55 30.95 67.3 48.1 68.2 30.58 71.42 55.78

HITS - P-Rank 53.88 23.8 59.61 46.83 67.78 31.76 69.04 54.17

Table 3. SAN, PR, HITS, andP-Rankmethods’ pairwise inter-agreement (%) in Senseval 2 and
3 (All English Words Taskdata sets) for all POS, excluding adverbs.

in the Senseval 3 data set. The performance difference between these two methods is
not statistically significant at the0.95 confidence level, if one examines their overall
accuracy in the respective data sets. TheKPP measure of Navigli and Lapata cannot
match the accuracy ofPR, HITSand the method of Agirre and Soroa. Regarding theFS
method, though simple, outperforms every other compared method. It obtains very high
accuracies, always above60% for all POS. Its performance in nouns and adjectives is
impressive, but in the verbs, due to their large average polysemy, the performance drops
dramatically, compared to the rest POS. In another interesting unsupervised approach,
Pedersen and Kolhatkar [34] perform disambiguation in Senseval 2 and 3, using mea-
sures of semantic relatedness. Their best reported resultsin F-Measure were59% for
Senseval 2 and54% for Senseval 3, performance which is almost the same with PR and
HITS in Senseval 2, but slightly worse in Senseval-3.

One additional comparison we would like to make regarding the four studied meth-
ods (SAN, PR, HITS, andP-Rank) is to examine the percentage of times the four meth-
ods agree in the sense selection level. Previous studies have shown that the ensemble
of methods can lead to increased WSD accuracy [5]. A prerequisite is that the methods
do not agree very often, so that there is a potential benefit from the ensemble. In this
direction, we have measured their pair-wise inter-agreement rate (i.e., the percentage
of the same sense assignment to the total sense assignments performed). Table 3 shows
the inter-agreement rate for all pairwise combinations of the four methods, separately
for each POS, and for each of the two examined data sets. The aim of this analysis
is to investigate whether a potential combination of any subset of the four methods in
an ensemble of unsupervised methods (e.g., [5]), would be expected to yield interest-
ing results. The performance of the ensemble is strongly related to the pluralism of
suggestions of the underlying WSD methods. As the table shows, the pairwise inter-
agreement rate of the four methods is always lower or very close to70% in all cases.
The lowest inter-agreement rates are reported for the verb POS, which is an expected
outcome, since the verbs are more polysemous than the rest POS. The lowest inter-
agreement rates are reported for theSAN-PRandSAN-HITSpairs. This means that in
a possible ensemble, the combination ofSANwith PRor HITScould boost the overall
performance. In parallel, we can observe from the table thatall the methods seem to
agree more in a pairwise manner in Senseval 3 than in Senseval2. This is an interesting
finding, because Senseval 3 is more polysemous than Senseval2, and maybe the reverse
was expected. A possible interpretation is that in the case of Senseval 3 the networks are
larger, and thus more densely connected, and so the applied measures recognize more



Dataset SenseLearner Simil-Prime SSI WE FS PR HITS Agi09
Senseval2 64.82 65.00 n/a 63.2 63.758.8 58.3 59.5
Senseval3 63.01 65.85 60.4 n/a 61.356.7 57.4 57.4

Table 4. Accuracies (%) on Senseval 2 and 3All English Words Taskdata sets, excluding adverbs.

easily the most important vertices. Overall, these findingsshow that the combination of
these four graph-based measures has great potential due to their relatively low level of
inter-agreement.

4.2 Comparison with State of the Art WSD Methods

In this section we generalize the comparison of the unsupervised graph-based WSD
methods with the state of the art results reported in the WSD literature, independently
of the type of methods used. In this direction, we compare thetop 3 methods from Ta-
ble 2, namelyPR, HITS and the method of Agirre and Soroa, with the highest results
reported i the WSD literature for Senseval 2 and 3. Thus, we compare with the methods
of Mihalcea and Csomai [23] (SenseLearner), Kohomban and Lee [18] (Simil-Prime),
Navigli [26] (SSI), and Hoste et al. [14] (WE), in the Senseval2 and 3 data sets. Table
4.2 shows the respective accuracies, where available. We can also refer to the unsu-
pervised enseble method of Brody et al. [5] only in the noun POS of Senseval 3 data
set, since their method’s evaluation is limited to that. Brody et al. report an accuracy of
63.9% in Senseval 3 nouns (Senseval 2 is N/A) with an upper bound of their ensemble
close to70%. From the results of Table 4.2 we can observe that the top performing
method appears to be theSimil-Prime, with very high overall accuracy, equal or above
to 65%. We have to note though, that the latter cannot disambiguateadjectives and
adverbs, residing in the FS method to perform the task for these two POS. It is also ob-
vious from the results table, that though the unsupervised graph-based WSD techniques
cannot match the accuracy of the rest of the methods, they have clearly closed the gap
very much towards a possible match in the near future.

5 Conclusions and Future Work

In this work we presented an experimental study of unsupervised graph-based WSD
techniques. The aim was to analyze the performance of known techniques for process-
ing semantic graphs, keeping the same semantic representation, so that the comparison
is compatible. In our comparison we included a spreading of activation method, the
PageRank and HITS algorithms, as well as, for the first time, the P-Rank structural sim-
ilarity measure for vertices in information networks. A thorough experimental evalua-
tion was conducted in two benchmark WSD data sets. We also compared against other
known unsupervised graph-based WSD techniques, that do not use the same semantic
representation, as well as against the top reported resultsin the two data sets. Further-
more, we analyzed the pairwise inter-agreement rate between the examined methods,
and we showed that it is low for most pairs, leading to the conclusion that several of
these methods can form up an ensemble. Our study also showed that the gap in accu-
racy between supervised methods and unsupervised graph-based techniques, has been



truncated over the last years, constituting a solid evidence that there is still room for im-
provement, given also the fact that thesauri, like WordNet,will keep developing. In the
future we plan to design unsupervised ensembles of graph-based methods, taking ad-
vantage of the relatively low inter-agreement rate and aiming at a high accuracy learner
for the task.
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