
Peer-to-Peer Similarity Search over Widely Distributed
Document Collections

Christos Doulkeridis
Dept.of Informatics

AUEB
Athens, Greece

cdoulk@aueb.gr

Kjetil Nørvåg
Dept.of Computer Science

NTNU
Trondheim, Norway

Kjetil.Norvag@idi.ntnu.no

Michalis Vazirgiannis
Dept.of Informatics

AUEB
Athens, Greece

mvazirg@aueb.gr

ABSTRACT
This paper addresses the challenging problem of similarity search
over widely distributed ultra-high dimensional data. Such an appli-
cation is retrieval of the top-k most similar documents in a widely
distributed document collection, as in the case of digital libraries.
Peer-to-peer (P2P) systems emerge as a promising solution to delve
with content management in cases of highly distributed data col-
lections. We propose a self-organizing P2P approach in which an
unstructured P2P network evolves into a super-peer architecture,
with super-peers responsible for peers with similar content. Our ap-
proach is based on distributed clustering of peer contents, thus man-
aging to create high quality clusters that span the entire network.
More importantly, we show how to efficiently process similarity
queries capitalizing on the newly constructed, clustered super-peer
network. During query processing, the query is propagated only
to few carefully selected super-peers that are able to return results
of high quality. We evaluate the performance of our approach and
demonstrate its advantages through simulation experiments on two
document collections.

Categories and Subject Descriptors
H.3.3 [Information storage and retrieval]: Information search
and retrieval; H.3.1 [Information storage and retrieval]: Content
Analysis and Indexing

General Terms
Algorithms, Design, Performance

Keywords
Distributed and peer-to-peer search, semantic overlay networks

1. INTRODUCTION & MOTIVATION
This paper addresses the challenging problem of similarity search

over widely distributed ultra-high dimensional data. Such an appli-
cation is retrieval of the top-k most similar documents in a widely
distributed document collection. The massive amounts of distributed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LSDS-IR ’08, October 30, 2008, Napa Valley California, USA
Copyright 2008 ACM 978-1-60558-254-2/08/10 ...$5.00.

high-dimensional data, such as digital libraries and web accessible
text databases, motivate our work towards an infrastructure for ef-
ficient similarity search in peer-to-peer (P2P) environments. The
overall goal is for a set of cooperative computers to support ad-
vanced search mechanisms that go beyond exact matching and in-
volve ranking.

P2P systems emerge as a promising solution to delve with data
management in cases of high degree of distribution. Contrary to
centralized systems or traditional client-server architectures, nodes
participating in a large P2P network, store and share data in an au-
tonomous manner. Such nodes can be information providers, which
do not wish to expose their full data to a server or be part of a cen-
tralized index. Therefore, a grand challenge is to provide efficient
and scalable searching, in a context of highly distributed content,
without necessarily moving the actual contents away from the in-
formation providers. Then the problem of lack of global knowledge
– in the sense that each peer is aware of only a small portion of the
network topology and content – needs to be dealt with. The so-
lutions proposed in such an unstructured P2P environment usually
lead to approaches that incur high costs, and thus deter the design
of efficient searching over P2P content.

In this context, the first challenge is to organize content in an
unsupervised, decentralized and distributed way. Unstructured P2P
systems in their basic form suffer from high search costs in terms
of both consumed bandwidth and latency, so in order to be useful
for real applications, more sophisticated search mechanisms are re-
quired. An approach that has been proposed recently is the use of
Semantic Overlay Networks (SONs) [3, 6], where peers contain-
ing relevant information are grouped together in overlay networks.
Once SONs have been created, queries can be forwarded only to
the most similar SONs to the given query, thus reducing the query
cost and, at the same time, increasing the quality of results (mainly
in terms of precision). More advanced search mechanisms, that
go beyond exact matching, such as similarity search, can then be
deployed on top of the newly generated SONs.

In this paper, we propose a novel approach for constructing SONs
in an unstructured P2P network, aiming to use SONs as the un-
derlying infrastructure for efficient similarity search. A main ob-
jective of our work is the distributed and decentralized generation
of SONs. Peers with similar content eventually become part of a
logical cluster, resulting in a super-peer architecture, where each
super-peer becomes responsible for a thematically focused group
of peers, namely a SON. In this way, a similarity query can be
guided to the N most similar - to the query - overlays, thus achiev-
ing quality of results comparable to centralized search and at the
same time avoiding the excessive cost of exhaustive search.

The main contribution of this work is a scalable approach for
distributed SON creation in unstructured P2P networks, and al-

gorithms for recursively merging clusters of peer data and creat-
ing links between peer groups, in order to generate well-connected
SONs with similar content that span the entire P2P network. The
innovation of this paper relative to previous related work on or-
ganizing content in large P2P networks and P2P similarity search
lies in: 1) our approach to P2P clustering is completely unsuper-
vised (we make no assumptions of common ontology or common
knowledge among peers) and contrary to other approaches, such as
gossiping [25], random meetings [2, 18], assumptions on peer con-
tents’ probability distributions [11], it guarantees that the resulting
clusters span the entire network, and 2) while most P2P similarity
search approaches rely on moving content or detailed indexes to
remote peers usually employing a DHT infrastructure [17, 20], our
approach relies on an unstructured P2P network that evolves into
a super-peer architecture, hence the peer’s actual data do not need
to be stored at remote peers arbitrarily defined by a hash function.
The merits of our approach are evaluated on two large document
datasets (GOV2 and Reuters), thus proving the applicability of our
ideas and demonstrating both the result quality and the performance
gains experimentally. In particular, by contacting the best 3 super-
peers (SONs), we manage to achieve 85-96% of the recall1 that
would be achieved if all data were available in a central location.

The organization of the rest of this paper is as follows: In Sec-
tion 2, we give an overview of related work. In Section 3, we de-
scribe in detail the process of distributed semantic overlay network
generation and how the unstructured P2P network evolves into a
clustered super-peer network. Section 4 describes how similarity
search can be efficiently performed using the SONs. In Section 5,
we present experimental results, acquired through simulations. Fi-
nally, in Section 6, we conclude the paper and outline future re-
search directions.

2. RELATED WORK
Content organization in P2P systems has attracted a lot of atten-

tion recently. Semantic Overlay Networks (SONs) [3] have been
proposed as an approach for organizing peers in thematic groups,
so that queries can be forwarded to only those peers having con-
tent within specific topics. A different notion of SONs related to
peers that are logically interconnected through schema mappings is
presented in [1].

Liu et al. [12] propose HSPIR, a hierarchical SON based on
CAN [19] and Range Addressable Network. Support for seman-
tics is achieved by using Latent Semantic Indexing (LSI). Tang et
al. [24] propose a system for SON creation on top of structured P2P
networks using LSI. Improvements to this approach are presented
in [12, 14]. However, some of the inherent problems of LSI, like
processing cost, choosing number of dimensions etc., make it dif-
ficult to employ this technique in a large-scale dynamic document
repository. More importantly, both [12] and [24] assume a central
LSI computation, which presumes that all document representa-
tions or a sample of reasonable size must be assembled at a central
location, which is not scalable for a large P2P system. In contrast to
these approaches, we do not presume a central point that collects all
documents, and we believe that a feasible P2P approach for search
using LSI should focus on distributed LSI computation. Hence, this
is a family of LSI-based approaches that cannot be compared to our
work directly.

Although several papers describe how to use SON-like struc-
tures, little work exists on how to actually create SONs in an un-
supervised, decentralized and distributed way in unstructured P2P

1Recall is the fraction of the documents that are relevant to the
query that are successfully retrieved.

networks. Cholvi et al. [2] propose the use of acquaintances as an
extension to Gnutella-like networks to improve searching. Peers
with similar contents are linked together, so that searches for a par-
ticular topic can be routed to more relevant peers in less time. A
similar approach has been described in [18]. Other relevant ap-
proaches include gossiping algorithms [25], which have been pro-
posed as an alternative to flooding for routing queries in unstruc-
tured P2P networks. A shortcoming of these approaches is that
they are restricted to networks of limited size, as they provide no
guarantees that remote peers will get acquainted in very large P2P
networks. Recently, a self-organizing super-peer network architec-
ture is presented, named SOSPNET [8], which deals with the issue
of how clients connect to a super-peer.

In previous work [6], we have proposed the DESENT protocol
for generating hierarchical semantic overlays. In this paper, we
present novel algorithms for SON merging that do not rely on a
fixed hierarchy, rather the focus is on building SONs that eventu-
ally form a super-peer network, with a super-peer being responsible
for each SON. This results in a more robust and self-organizing ar-
chitecture that has a less hierarchical structure and is better in terms
of load-balancing and fault tolerance. Moreover we describe how
similarity search can be performed over the newly formed SONs
and perform a large-scale evaluation of the approach.

Content-based search in P2P networks [20] is usually related to
full-text search [13, 23, 26], with most approaches relying on the
use of structured P2P networks. Some research focuses on provid-
ing P2P web search functionalities, like in [15], where MINERVA∞
is presented, a P2P web search engine that aims at scalability and
efficiency. In MINERVA∞, each peer decides what fraction of the
Web it will crawl and subsequently index. Previous approaches re-
garding P2P web search have focused on building global inverted
indices, as for example Odissea [22] and PlanetP [4]. A major
shortcoming of all these approaches is that their efficiency degrades
with increasing query length and thus they are inappropriate for
similarity search. Recently, approaches have been proposed that
reduce the global indexing load by indexing carefully selected term
combinations [21].

Recently, an approach for P2P similarity search in metric spaces,
called SIMPEER has been proposed [7]. Similarly to this work,
SIMPEER employs a super-peer architecture and it is applicable
for distributed document collections, since it is designed for metric
spaces. However, SIMPEER focuses more on the performance of
query processing for an existing super-peer network. Recently a
number of papers on P2P similarity search has appeared, e.g., [9].
However, these approaches are not suitable for similarity search
in document collections because of the very high dimensionality
(which is equal to the vocabulary cardinality).

3. SON CONSTRUCTION
In this section we describe how the semantic overlays are cre-

ated. Initially, peers are connected in an unstructured P2P net-
work, hence each peer is only aware of a limited number of direct
neighbors. Peers are assumed to store documents locally, as in the
case of a distributed digital library. First we describe the local pre-
processing on each peer joining our system (Section 3.1), followed
by the SON construction process (Section 3.2). Peer dynamics and
maintenance are described in Section 3.3.

Semantic Overlay Networks (SONs) refer to groups of peers
with similar contents. At this point, it should be stressed that SONs
do not necessarily imply use of semantics in the traditional sense
(like ontologies), however this is the term first proposed in the lit-
erature [3] and we use it as such throughout the paper.

Initiator
Selection

Zone
Creation

Zone
ClusteringH

G

D

JI

E F

B
C

A

Input:
P2P Network

New Initiators

Figure 1: Illustration of overlay creation phases.

3.1 Pre-processing Phase
A pre-processing phase takes place on each peer independently

of other peers. This phase includes typical techniques used in IR,
such as document parsing, stop-word removal, tokenization, and
calculation of local TF/IDF scores based on the peer’s local con-
tents only. Obviously other IR techniques or weight computation
schemes can be employed, however in this paper we assume peers
use TF/IDF. Then each peer runs a clustering algorithm on its local
documents. Since local document clustering can be a costly pro-
cess for a peer with many documents, it is left to the individual
peers to decide how often this process should be performed, based
on the rate of content change, so it does not necessarily have to be
performed each time the global clustering process occurs.

In the end of this phase, each peer can provide to the network a
set of clusters representing its local data. Each cluster c is repre-
sented by a feature vector F of tuples Fi = (fi, wi, tfi, dfi, Di),
where each tuple contains a feature/term fi, the term’s weight wi,
the term frequency tfi and document frequency dfi, and the num-
ber of documents Di represented by this feature vector. Although
the set of terms and their respective weights are sufficient to repre-
sent the term’s importance in the cluster, we keep some extra infor-
mation in each tuple, in order to enable accurate weight computa-
tion in subsequent phases, as will be shown shortly.

3.2 Overlay Construction
SON creation is a multi-phase distributed process that runs recur-

sively on specific sets of peers. Having as a starting point the ini-
tial unstructured P2P network, some initiator peers are selected in
a pseudo-random way (initiator selection phase). Initiators create
local topological zones over their neighboring peers (zone creation
phase). Then each initiator collects the cluster descriptions of all
peers in its zone, and executes a clustering algorithm in order to cre-
ate new clusters that span the entire zone (zone clustering phase).
Since the clusters of two (or more) peers may be merged into a new
cluster, this implies that these peers become members of a SON,
and the SON’s contents are now represented by a new cluster de-
scription. In the subsequent steps, the initiators form the current
(unstructured) P2P network, thus playing the role of peers in the
initial setup. Therefore, the process described above runs on the ini-
tiators, thus new initiators are selected, that create zones and cluster
zone contents in a completely similar way as shown above. Hence,
zones and clusters are merged recursively until global clusters are
obtained. Conceptually, the overlay creation steps are shown in
Figure 1.
3.2.1 Initiator Selection

Given an unstructured P2P network of NP peers, initiator se-
lection is a pseudo-random distributed algorithm that runs on each
peer and determines whether the peer will be assigned the role of
initiator [6]. Initiators are peers with special roles, similar to super-
peers, only they do not have fixed roles, but different initiators are
selected each time the algorithm runs. This tackles the problem of
being stuck with faulty initiators and it reduces the probability of
permanent cheaters.

The global overlay network construction is assumed to start si-
multaneously at regular temporal intervals at all peers. The length
of these intervals is a parameter of the protocol and can be as low
as a few hours, thus ensuring that fresh contents are clustered and
thus made retrievable. Because the aim of the clustering process
is to achieve a global result, it is beneficial to perform the subse-
quent phases at the same time at the different peers in the network.
Achieving (or even assuming) a common global time for temporal
synchronization is not feasible in a large P2P network, and for-
tunately not necessary. Our technique to cope with this problem
is to use a partial synchronization technique, making only the as-
sumption that each peer has a clock that is accurate within a certain
amount of time ta (for example 1 minute deviation at most). In
cases where peers have clock deviating more than ta from actual
time, this is detected by the fact that they are performing opera-
tions asynchronously to the other peers, and they are considered
faulty.

3.2.2 Zone Creation
The goal of zone creation is to partition an unstructured P2P net-

work into smaller subgroups. These subgroups are called zones
and each zone is created by an initiator. Given a preferred zone
size SZ , initiator selection results in approximately one initiator –
also called zone initiators – in every SZ peers. During zone cre-
ation, the task of each initiator is to create a zone of peers by means
of a local flooding-based algorithm. Using this algorithm, an initia-
tor first captures its neighboring peers, then their neighbors, and so
forth, as long as neighboring peers have not been captured by an-
other initiator. These captured peers constitute the initiator’s zone.
Thus an initiator’s zone is restricted by the boundaries of other ini-
tiators’ zones.

Moreover, the algorithm ensures that any connected peer in the
network finally belongs to some zone. We emphasize that a zone
is a plain topological (not semantic) grouping of peers that are
"around" a zone initiator, and obviously zones contain non-
overlapping sets of peers. Both initiator selection and zone cre-
ation are completely distributed and they are performed using the
algorithm presented in [6]. The basis of the zone creation algorithm
is a probe message sent from each initiator and flooded until it is
received by a node which is also initiator or has received a probe
message from another initiator. Since a certain amount of peers are
initiators and a zone will have limited size, the amount of messages
is not very high.

Zone creation is a necessary step, in order to put an upper bound
on the burden imposed on initiators. As will be shown next in de-
tail, initiators assemble cluster descriptions of peers in their zone,
and they perform clustering to create new clusters that span the
contents of the entire zone. Thus, SZ practically defines an upper
limit on the number of peers that can belong to a zone, as well as
the number of initiators. Hence, if peers in a network do not have
high processing capabilities, SZ can be set to a low value, in order
to avoid excessive load on some initiators. Notice that in the case
of a zone of excessive size, the initiator can decide to partition its
zone, by splitting it into two or more zones.

3.2.3 Zone Clustering
After the zones have been formed, each zone initiator collects the

feature vectors from the peers in its zone and creates new clusters
based on similarity between the feature vectors. No restrictions are
imposed on the choice of similarity (distance) function, so without
loss of generality we use the cosine similarity (computed based on
fi, wi) in the rest of this paper.

Algorithm 1 Cluster merging.
1: Input: Clusters C={c1...cN }, Limit L < N , k
2: Output: Clusters C′={c′1...c′L}
3:
4: while sizeOf(C) < L do
5: getMostSimilarClusters(C, ci, cj)
6: Cluster cnew ← cj

7: for (ti ∈ ci) do
8: if (ti ∈ cj) then
9: wnew ← tfi+tfjP

ci,cj
tf
× log(

1+Di+Dj

dfi+dfj
)

10: cnew .update(ti, wnew , tfi + tfj , dfi + dfj , Di + Dj)
11: else
12: wnew ← tfiP

ci
tf
× log(

1+Di+Dj

dfi
)

13: cnew .add(ti, wnew , tfi, dfi, Di)
14: end if
15: end for
16: cnew .keepTopFeatures(k)
17: C.delete(ci)
18: C.delete(cj)
19: C.add(cnew)
20: end while
21: C′ ← C
22: return C′

Clustering feature vectors of different peers results in grouping
the corresponding peers together. This is practically a grouping
of peers based on their contents, therefore peers that are grouped
together form a SON. Note that because each peer in general con-
tributes more than one feature vector, a peer can be member of more
than one SON.

Cluster merging (see Algorithm 1) consists of iteratively deter-
mining the two most similar clusters ci,cj from a set of clusters C
(line 5) assembled at an initiator, computing the new feature vector,
creating the new merged cluster, and then adding the new cluster
to the list of clusters (line 19), until only L clusters are left. The
new cluster cnew resulting from two merged clusters ci and cj will
initially contain all terms in the feature vectors of ci and cj , with
weights calculated in the way shown in Algorithm 1. Essentially,
if a term ti exists in both feature vectors of ci and cj , then its new
weight and corresponding tuple in the merged cluster description
is:

wnew =
tfi+tfjP

ci,cj
tf
× log(

1+Di+Dj

dfi+dfj
)

Fnew =(ti, wnew , tfi + tfj , dfi + dfj , Di + Dj)
whereas if ti exists only in one cluster description, say ci, then:

wnew = tfiP
ci

tf
× log(

1+Di+Dj

dfi
)

Fnew =(ti, wnew , tfi, dfi, Di)
This is practically a progressive TF/IDF calculation, and it is fea-

sible since term frequencies (tfi), document frequencies (dfi) and
number of documents (Di) are maintained in the cluster descrip-
tions. As a final step, only the k top-weighted features of the new
cluster description are kept.

As already mentioned, each cluster is associated with a SON, i.e.
a set of peers. When two clusters ci and cj are merged, this neces-
sarily implies that the SONs (Si and Sj respectively) that they rep-
resent are linked together and form a new SON. In order to ensure
peer connectivity within the new SON after merging, a number of
d links are created between the two merged SONs. In this way, the
probability that a SON will become disconnected due to peer fail-
ure is practically eliminated. The d links between the peers of the
two SONs are formed by iteratively selecting from each SON, the

Contents
of peers:

Contents of zone
initiators at level 1:

Contents of zone
initiators at level 2:
(Merge performed
by zone initiators)

Contents of zone
initiators at level 3:

Doc
Doc
Doc
Doc

CD
CD

Doc
Doc
Doc
Doc

CD
CD

Doc
Doc
Doc
Doc

CD
CD

CD
CD
CD

merge

Doc
Doc
Doc
Doc

CD
CD

Doc
Doc
Doc
Doc

CD
CD

Doc
Doc
Doc
Doc

CD
CD

Doc
Doc
Doc
Doc

CD
CD

Doc
Doc
Doc
Doc

CD
CD

Doc
Doc
Doc
Doc

CD
CD

CD
CD
CD

merge

merge

CD
CD
CD

merge

CD
CD
CD

(Merge performed
by zone initiators)

(Merge performed
by zone initiators)

merge

CD
CD
CD

merge

CD
CD
CD

Figure 2: Recursive cluster merging.

two least connected peers, and then establishing a link that connects
them. This is done in order to maintain a low peer connectivity de-
gree. The algorithm ensures that there exists a path that connects
each peer to any other peer in the new SON.

Zone clustering at an initiator results into new intra-zone clus-
ters, which are finally represented by cluster descriptors (CDs), one
for each cluster ci. A CD consists of the cluster identifier ci, a fea-
ture vector F , and a random selection of Nr representative peers
{R} belonging to the SON, i.e., CDi = (ci, F, {R}). The set R
of representative peers is created from a subset of (representative)
peers from each of the merged SONs. The sole purpose of peers
in R is to act as representative peers of the SON, hence they main-
tain connections to peers in the SON and they can forward any
incoming message to all peers in the SON. In the special case when
Nr = 1, the representative peer acts like a super-peer for the SON.
It should be stressed that the value of Nr does not affect the quality
of the generated SONs in any way. However, there exists a tradeoff
when defining its value. High values minimize the probability of
all representative peers disappearing (due to churn) during the life-
time of the CD. Low values avoid high communication cost when
transmitting the CDs and maintenance cost when a representative
peer fails.

3.2.4 Recursive Cluster and SON Merging
At the end of the three phases outlined above, initiators have fin-

ished zone clustering and some intra-zone clusters and intra-zone
SONs have been created. Next, this process is recursively applied
to the initiators only (as shown in Figure 1), since they now consti-
tute an unstructured P2P network, with links between neighboring
initiators established due to the zone creation phase. The overall
aim is to generate SONs that span the entire network, not just a
zone. Therefore, this recursive process continues, thus resulting in
a hierarchy of initiators of different levels. Zones and clusters are
merged recursively, as shown in Figure 2. The CDs from each peer
in a zone are combined into new clusters. Illustrated as an example
on the right bottom part of the figure is the relationship between
documents and CDs in peers, and the relationship between upper-
level clusters and CDs from level below.

At each level of the hierarchy, a number of neighboring zones
are merged to one higher-level zone, where a zone initiator from
the previous level is selected to act as zone initiator for the merged
zones. When a level-(i+1) zone is created from a number of level-i
zones, CDs created at the previous level are collected by the level-
(i+1) initiator and the most similar clusters from the level-i zones
are merged. More specifically, this initiator assembles the feature
vectors (i.e. cluster descriptions) of the initiators of the zones one
level below, and the feature vectors of that level are clustered in
order to create the next level clusters and SONs. These SONs now
span all peers belonging to the level-i zones that merged into one
level-(i + 1) zone.

H

G

D
J

IE

F
B

C
A

A

D G

J
E

Super-peer Level

Peer Level

A’s Cluster
D’s Cluster G’s Cluster

J’s Cluster

Figure 3: Final peer organization.

This recursive process continues until the final level with only
one initiator/zone is reached (in practice the number of levels is
small �logSZ NP �). The result is a number of global clusters/SONs
that span the entire network.

3.2.5 Final Organization
Due to the SON generation process, each peer Pi belongs to a

set of SONs, that are sufficiently connected internally. However, in
order to support queries directed to other SONs, the resulting SONs
also need to be sufficiently interconnected. The top-level initiator
picks from the set of representative peers of each SON, one peer
that will act as super-peer for the specific SON. In practice more
than one super-peers are chosen for each SON, in order to support
load-balancing within each SON and ensure fault-tolerance. In ad-
dition, the initiator urges super-peers of the global SONs to create
connections to other super-peers. These connections are used to
ensure communication among SONs, in order to make any SON
reachable from any other SON, and at the same time avoid its po-
tential isolation from the rest of the network. In this way, the top-
level initiator can essentially define the topological parameters of
the super-peer network, such as number of super-peers per SON,
super-peer connectivity degree, etc. For instance, if the super-peer
topology is a hypercube [16], then each super-peer creates log2Nsp

links, where Nsp denotes the number of super-peers.
Then, each super-peer creates and maintains information about

its peers, in order to be able to determine which peers are relevant
to a query, without having to contact all peers. This is typically
an index of peers’ features. The final organization of the peers is
depicted in Figure 3.

Furthermore, as an extra, optional step to the SON generation
algorithm, we propose an adaptive strategy for document (and sub-
sequently peer) membership in a cluster (SON). After the global
SONs and their CDs have been determined, this information is
broadcast to all peers in an efficient way using the zone hierar-
chy. Then each peer can recompute for each of its local documents,
the most similar CD, and thus: 1) make this document become
member of the associated cluster, and 2) the peer itself joins the
respective SON. Thus the final organization of documents to global
clusters (peers to SONs) is the result of this adaptive strategy, which
can also be considered as a feedback mechanism to clustering. In
the experimental part, we will show the advantages of the adaptive
strategy, in terms of increased clustering quality.

Summarizing, we emphasize the following features of SON cre-
ation: 1) the algorithm ensures that peers within a SON remain
well-connected and that sufficient connections exist among SONs,
2) peers having the roles of zone initiators are chosen at random and
perform their tasks completely independently of each other, 3) the
whole process is performed in a distributed and decentralized man-
ner, 4) although SON creation resembles a hierarchical approach,
the hierarchy is actually made obsolete and is not used anymore,

right after SON creation, avoiding excessive load on certain peers
or single points of failure, and 5) as a final result, the peers in the
initial unstructured P2P network have formed a super-peer network
in a self-organizing manner, with super-peers responsible for peers
with relevant content.

3.3 Peer Dynamics & Maintenance
While the SON creation process can be performed at regular in-

tervals (as shown in [6] the cost of constructing the hierarchical
structure is acceptable, the burden on each peer is in general less
than the typical load from various web crawlers accessing the site),
new peers joining should also become members of SONs and thus
contribute to the results of similarity search. This is achieved by
the peer joining the SON with the highest similarity to its contents.

Note that no other changes will be performed to existing SONs
(and their CDs) when new peers join, so after a while a cluster de-
scription might become less accurate. However, SON creation is
performed at regular intervals and it creates a new peer and data
organization that reflects also the data of new nodes. In this way,
new or modified documents, which have changed the feature vec-
tors of existing peers, are also taken into account. This strategy
considerably reduces the maintenance cost in terms of communi-
cation bandwidth compared to incremental reclustering, and also
avoids the significant computational cost that could be the result of
continuous reclustering.

Churn during overlay creation is handled by k-replication, while
multiple connections between peers in a SON assure a low proba-
bility of SON partitioning.

4. SON-BASED SIMILARITY SEARCH
In this section, the process of similarity search is described in

detail, first at peer level (Section 4.1), then at super-peer level (Sec-
tion 4.2), followed by a query routing technique (Section 4.3) that
reduces the total cost.

A similarity query originates from a querying peer QP . We as-
sume that we have a super-peer network, with each super-peer re-
sponsible for peers that belong to a SON. Our focus is on process-
ing similarity queries qk for the top-k most similar documents to
the query. Such a query retrieves the k documents di (1 ≤ i ≤ k)
from the network with highest cosine values cos(qk, di). In our
context, qk represents a non-trivial multi-keyword query, such as
another document.

4.1 Peer Query Processing
During the pre-processing phase, each peer has performed fea-

ture extraction on its local documents and has performed local clus-
tering. Thus each document is represented by a feature vector,
and the same holds for local clusters of documents. A similarity
query qk is forwarded to a peer by its super-peer. Then the peer
needs to find the k most similar documents to the query. In order
to avoid computing the query similarity with each local document
(cos(qk, di)), a similarity threshold Ts is employed, so that only
those documents that belong to local clusters cj with cos(qk, cj) ≥
Ts may belong to the result list. These documents are ranked ac-
cording to their similarity to the query and only the top-k docu-
ments are returned to its super-peer.

4.2 Super-peer Query Processing
A query initiated by a peer PQ eventually reaches a super-peer

(i.e., SON). The super-peer first determines the subset of its peers
that can provide results relevant to the query. Then the query is
forwarded to these peers. Each peer will process the query locally
and if it has matching results these will be returned to the super-

peer. These results must be merged into a top-k list of documents
that will be the result of this super-peer.

In order to support this set of operations, a super-peer must per-
form two main tasks: peer selection and result merging. As al-
ready mentioned, a super-peer maintains an index over its peers’
features. Essentially the super-peer has enough information to de-
cide for each peer whether it contains relevant documents to the
query. Therefore, when the query is processed by the super-peer,
it is forwarded only to a selected set of peers that may contribute
results to the final result set. Then each peer returns a list (of max-
imum length k) of documents and their scores respectively. The
super-peer merges this information into a final top-k list of docu-
ments with highest scores with respect to the query. This top-k list
is the final result of the particular SON for the given query.

4.3 SON-based Query Routing
A similarity query originates from a querying peer QP . In an un-

structured P2P system, querying is performed by routing the query
to appropriate peers and performing the query on each of these
peers, and then returning matching results. In our context, pro-
cessing the query is performed by first determining which SONs
(or super-peers) may contain relevant data, followed by searching
one or more of these SONs, as described above.

SON-based query routing refers to query routing at SON level,
which aims to identify similar SONs to the query. In order to limit
the number of SONs that will be searched, SON-based routing is
performed in two steps.

In the first step, a search for appropriate SONs is performed. A
number of techniques can be used to find these SONs. Potential
solutions include routing indices or some gossiping approach [25]
that allow peers to become familiar with a small set of peers outside
their cluster. However, such techniques and their variants impose
a query horizon, i.e., they cannot guarantee that remote peers will
be reached in very large networks. In order to overcome such lim-
itations, we use the super-peer network to route queries. In the ab-
sence of more sophisticated mechanisms (such as hypercubes [16]),
this routing can take the form of flooding. In this way, we can guar-
antee that the query will contact all SONs (or at least one of their
super-peers), thus enabling access even to the most distant peers.
Those super-peers that are sufficiently similar to the query, return
their CD to the querying peer QP .

In the second step, QP determines the top-N most similar SONs
(based on the results of step 1), and forwards the query to these
super-peers for intra-SON query processing. The number of SONs
to search is determined by the number of results returned (as for
example for k-nearest neighbor queries), so that the number of
SONs searched can be limited. Essentially, N is used to restrict
the searching cost that would be induced by having to contact all
SONs that were returned from the first step. In the experimental
part, we demonstrate that even a small number of the most relevant
SONs to the query is enough to return results of high quality.

5. EXPERIMENTAL RESULTS
In order to demonstrate the feasibility and efficiency of our ap-

proach, we have developed a simulation environment covering all
the intermediate phases of SON generation (Section 3) and search-
ing (Section 4). The simulator is developed in Java and all experi-
ments were performed on Pentium IV commodity computers. The
cost of constructing the semantic overlay hierarchy is comparable
to DESENT construction, which was analyzed and shown to be ac-
ceptable in [6], and will due to space constraints not be discussed
further in this paper.

The initial P2P network topology used in the experiments con-

sists of NP interconnected peers. We used the GT-ITM topology
generator2 to create well-connected random graphs of peers with
a user-specified average connectivity. We used two network se-
tups, 1000 (small) and 5000 (large) peers, to study the scalability
of our approach with network size. Different topology types, such
as power-law topologies, give similar results, due to the fact that
the underlying topology only affects the zone creation phase.

As for the peers’ content, we used two document collections in
our experiments: 1) a subset of GOV23 consisting of 1,000,000
randomly selected documents, and 2) Reuters Corpus4 (810,000
articles of news stories). The conclusions that can be drawn from
experimental results from using the sets are mostly similar, so due
to space constraints we will in this paper only present results from
GOV2 except when there is a siginificant difference. Unless stated
explicitly, results discussed are from using GOV2.

The experimental methodology consists of the following steps:
1) distribution of documents to peers, 2) local feature extraction and
clustering on each peer, 3) SON creation, as outlined in Section 3.2,
4) adaptive clustering, and 5) query processing for P2P similarity
search.

Regarding document distribution to peers we performed the dis-
tribution according to document’s URL, so each peer is assigned
documents from a small number of web sites. We performed local
feature extraction using the MC toolkit, while for local clustering
Gmeans is used [5].

We generated a query workload by randomly choosing 100 doc-
uments from each collection under concern. These documents are
equivalent to queries of the form: "given document X, find the top-k
similar documents from the collection". We capitalize on the co-
sine similarity measure and we assume a similarity threshold Ts to
determine which documents are considered similar to the query.

In the absence of relevance judgments for such queries, we need
to determine the results returned by a centralized similarity search
mechanism that employs the same distance function as in our ap-
proach. Thus we first evaluate the queries in a centralized setting.
These results are considered the correct results for each query and
they are used as a baseline. Ideally, the aim for the SON-based ap-
proach is to achieve exactly the results retrieved by a centralized
mechanism.

We assess the clustering quality (in terms of clusters’ separation)
by computing the average pairwise cluster similarity, i.e. for each
pair of clusters compute the similarity and take the average of all
values. Low values indicate that clusters are well-separated. As
regards retrieval quality, we measure:

• Recall, i.e., the fraction of the documents that are relevant to
the query that are successfully retrieved.

• Recall@K. In our context, Recall@K is the fraction of the
total K most relevant documents that a user found after scan-
ning the best K retrieved documents.

• Precision@K. Precision is the fraction of the documents re-
trieved that are relevant to the user’s information need. In
our context, Precision@K is computed considering only of
the best K retrieved documents.

Obviously, searching in all SONs would give perfect recall. How-
ever, this would be very costly, so we only consider the N most
2http://www.cc.gatech.edu/projects/gtitm/
3http://ir.dcs.gla.ac.uk/test_collections/
gov2-summary.htm
4http://trec.nist.gov/data/reuters/reuters.
html

Adap.Clustering No Yes No Yes
Network Size 5000 5000 1000 1000
Top-k Features 200 200 200 200
Nr.Clusters 632 632 110 110
Avg.Cl.Similarity 0.013 3.15E-5 0.014 2.37E-4

Table 1: Statistics on clustering for GOV2.

Top-N Clusters 1 2 3 4 5
GOV2/P5000 0.68 0.78 0.87 0.89 0.89
GOV2/P1000 0.69 0.85 0.85 0.85 0.86

Table 2: Recall.

similar SONs to the query. We use the number of contacted peers
(during query processing) as a measure of the search cost. In all
results, we show the average values from the execution of all ex-
periments.

5.1 Clustering Evaluation
At first, we study the clustering results, which are important for

searching. Clustering statistics from our experiments are summa-
rized in Table 1. Each pair of columns present results without and
with adaptive clustering respectively. The first two columns are for
the GOV2 collection for 5000 peers, the last two are for 1000 peers.
The table shows for a specific network size and number of features
kept in cluster descriptions, the number of global clusters (SONs)
generated and the average pairwise similarity of clusters.

The most important message is that adaptive clustering decreases
the average pairwise similarity of global cluster descriptions, in
other words the clusters become well-separated. This is shown
in the last line of the table, for each pair of columns. Moreover,
though not shown in this table, adaptive clustering also increases
the average pairwise similarity of documents in clusters. So over-
all it manages to increase clustering quality, therefore we employ
adaptive clustering in all subsequent searching experiments.

5.2 Recall
We evaluate the quality of similarity search in terms of absolute

recall achieved. We use as similarity threshold Ts=0.2. In Table 2,
we present the recall achieved when the 1-5 most similar SONs to
the query are examined, for two different setups. It is clear that
even by searching just the most similar SON, the achieved recall is
approximately 68%, which is a very encouraging result.

Moreover, we test the scalability of the approach in terms of
number of participating peers, increasing the network size from
1000 to 5000 peers. We observe that recall is practically unaffected
by the size of the network. We also tried Ts=0.1, and obtained
similar results.

5.3 Comparison to Baseline
Furthermore, merely as a showcase, we compare the achieved

recall values of our SON-based approach against the recall that
normalized flooding achieves, using the same number of contacted
peers, for Reuters/P1000. This is clearly not comparative to our
approach, however we include it to demonstrate the problems that
a naive search mechanism encounters. Normalized flooding [10]
is an improved variation of flooding, in which each peer forwards
a query to Nn neighbors, instead of all neighbors, where Nn is
usually the minimum connectivity degree of any peer in the net-
work. The results, shown in Figure 4(a), demonstrate that in this
experiment the SON-based approach improves the recall achieved
by the naive approach by (at least) a factor of 7. Notice that we

Top-N Clusters 1 2 3 4 5
GOV2/P5000 28.11 30.07 40.80 41.33 41.57
GOV2/P1000 12.19 13.92 14.06 14.08 14.31

Table 3: Number of contacted peers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 65 70 75 80 85 90 95

R
ec

al
l

Number of contacted peers

SON-based
Norm.Flooding

(a) Normalized flooding

 0

 0.2

 0.4

 0.6

 0.8

 1

 3 2 1

R
ec

al
l

Top-N clusters/super-peers

SON-based
Super-peer

(b) Super-peer
Figure 4: Comparison of SON-based recall with two baseline
approaches for Reuters/P1000: (a) vs. normalized flooding for
the same number of contacted peers, and (b) vs. super-peer for
a super-peer topology of 25 super-peers.

tried a similar experiment for GOV2/P1000, however the recall of
the flooding variant was practically zero, demonstrating the inap-
plicability of flooding.

We use as a baseline, the recall that a super-peer network that is
not SON-based would achieve. Practically, assuming we have Np

peers uniformly assigned to Nsp super-peers, we use as baseline
the recall achieved by contacting the best N super-peers (and their
peers) for a given query. We compare this recall, with the recall that
the SON-based approach achieves by contacting the top-N SONs.
This comparison aims to illustrate the performance gains – in terms
of result quality – of our approach against a plain super-peer archi-
tecture. In Figure 4(b), we compare the SON-based approach to a
super-peer topology of Nsp=25 super-peers (equal to the number of
SONs generated for the same document collection Reuters/P1000).
The results show that our approach significantly outperforms a sim-
ilar plain super-peer architecture by a factor of 1.5-3.5. Concluding
the achieved recall values demonstrate the effectiveness of our ap-
proach.

5.4 Top-K Similarity Search Evaluation
Next, we measured recall and precision values at K returned doc-

uments. The results, depicted in Figures 5 and- 6, show that a small
number of K returned documents suffices to achieve acceptable pre-
cision values. Further, precision at 5 or 10 documents is around
70% when searching the 3 most similar SONs. Recall is much
lower, but it increases with K and with the number of SONs exam-
ined, almost reaching 35%. We emphasize that these results prove
the merit of forming SONs for increasing the precision of similarity
searching.

Finally, the associated search cost is considered. We focus on the
number of contacted peers within SONs, which practically reflects
the intra-SON search cost. This number shows the average number
of peers that need to be contacted by a query. We do not measure
the cost for super-peer communication, since this is dependent on
1) the number of generated SONs, and 2) on the topology formed

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

1 2 3 4 5

Top-N Clusters

Rec@10
Rec@20
Rec@40
Rec@60
Rec@80

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

1 2 3 4 5

Top-N Clusters

Rec@10
Rec@20
Rec@40
Rec@60
Rec@80

Figure 5: Recall@K for GOV2/P1000 (left) and GOV2/P5000
(right).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 2 3 4 5

Top-N Clusters

Pre@10
Pre@20
Pre@40
Pre@60
Pre@80

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3 4 5

Top-N Clusters

Pre@10
Pre@20
Pre@40
Pre@60
Pre@80

Figure 6: Precision@K for GOV2/P1000 (left) and
GOV2/P5000 (right).

 1

 2

 3

 4

 5

 6

 7

 80 60 40 20 10

#C
on

ta
ct

ed
 P

ee
rs

K

Top-1 Cluster
Top-2 Clusters
Top-3 Clusters
Top-4 Clusters
Top-5 Clusters

 3

 4

 5

 6

 7

 8

 9

 10

 11

 80 60 40 20 15 10

#C
on

ta
ct

ed
 P

ee
rs

K

Top-1 Cluster
Top-2 Clusters
Top-3 Clusters
Top-4 Clusters
Top-5 Clusters

Figure 7: Number of contacted peers for GOV2/P1000 (left)
and GOV2/P5000 (right).
by the super-peers (which is essentially decided by the top-level
initiator). In any case, since the number of SONs and hence super-
peers is limited, this cost can be tolerated, so it not very interesting
for our study.

In Figure 7 we see that the number of contacted peers for dif-
ferent values of K is quite low compared to the network size (1000
and 5000 peers). This is also reflected in Table 3, where the aver-
age number of contacted peers is depicted, irrespective of K. These
values correspond to the recall values of Table 2.

6. CONCLUSIONS
In this paper, we have presented a novel approach for P2P sim-

ilarity search, based on unsupervised and decentralized SON gen-
eration. We have shown how peers in an unstructured P2P network
can be self-organized in SONs in a distributed way, thus forming a
super-peer architecture. Then we introduced an efficient and high-
quality similarity search mechanism. Finally, we have presented
experimental results on two document collections justifying our
claims for efficiency and quality.

Future work includes the study of more efficient routing tech-
niques among SONs, integration of semantic similarity search into
our system using query expansion techniques, and use of other
clustering algorithms in order to improve the quality of the global
SONs.

7. REFERENCES
[1] K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and T. V. Pelt.

Gridvine: Building Internet-Scale Semantic Overlay
Networks. In Proceedings of ISWC’2004, 2004.

[2] V. Cholvi, P. Felber, and E. Biersack. Efficient search in
unstructured peer-to-peer networks. Technical report, Institut
EURECOM, 2003.

[3] A. Crespo and H. Garcia-Molina. Semantic overlay networks
for P2P systems. In Proceedings of AP2PC’04, 2004.

[4] F. Cuenca-Acuna, C. Peery, R. Martin, and T. Nguyen.
PlanetP: Using gossiping to build content addressable
peer-to-peer information sharing communities. In
Proceedings of HPDC’03, 2003.

[5] I. S. Dhillon and D. S. Modha. Concept decompositions for
large sparse text data using clustering. Machine Learning,
42(1):143–175, Jan 2001.

[6] C. Doulkeridis, K. Nørvåg, and M. Vazirgiannis. DESENT:
Decentralized and distributed semantic overlay generation in
P2P networks. IEEE Journal on Selected Areas in
Communications (J-SAC), 25(1):25–34, 2007.

[7] C. Doulkeridis, A. Vlachou, Y. Kotidis, and M. Vazirgiannis.
Peer-to-peer similarity search in metric spaces. In
Proceedings of VLDB’07, 2007.

[8] P. Garbacki, D. H. J. Epema, and M. van Steen. Optimizing
peer relationships in a super-peer network. In Proceedings of
ICDCS’07, 2007.

[9] C. Gennaro, M. Mordacchini, S. Orlando, and F. Rabitti.
Processing complex similarity queries in peer-to-peer
networks. In Proceedings of SAC ’2008, 2008.

[10] C. Gkantsidis, M. Mihail, and A. Saberi. Hybrid search
schemes for unstructured peer-to-peer networks. In
Proceedings of INFOCOM’05, 2005.

[11] A. Linari and G. Weikum. Efficient peer-to-peer semantic
overlay networks based on statistical language models. In
Proceedings of P2PIR’06, 2006.

[12] F. Liu, M. Li, and L. Huang. Distributed information
retrieval based on hierarchical semantic overlay network. In
Proceedings of GCC’04, 2004.

[13] J. Lu and J. Callan. Full-text federated search of text-based
digital libraries in peer-to-peer networks. Information
Retrieval, 9(4):477–498, 2006.

[14] J. Lv and X. Cheng. WonGoo: A pure peer-to-peer full text
information retrieval system based on semantic overlay
networks. In Proceedings of NCA’04, 2004.

[15] S. Michel, P. Triantafillou, and G. Weikum. MINERVA
Infinity: A Scalable Efficient Peer-to-Peer Search Engine. In
Proceedings of Middleware’05, 2005.

[16] W. Nejdl et al. Super-Peer-based Routing and Clustering
Strategies for RDF-based P2P Networks. In Proceedings of
WWW’03, 2003.

[17] D. Novak and P. Zezula. M-chord: A scalable distributed
similarity search structure. In Proceedings of
INFOSCALE’06, 2006.

[18] J. X. Parreira, S. Michel, and G. Weikum. p2pDating: Real
Life Inspired Semantic Overlay Networks for Web Search.
In Proceedings of SIGIR’2005 HDIR Workshop, 2005.

[19] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A Scalable Content-addressable Network. In
Proceedings of SIGCOMM’01, 2001.

[20] O. D. Sahin, F. Emekci, D. Agrawal, and A. E. Abbadi.
Content-based similarity search over peer-to-peer systems. In
Proceedings of DBISP2P’04, 2004.

[21] G. Skobeltsyn, T. Luu, I. P. Zarko, M. Rajman, and
K. Aberer. Query-driven indexing for scalable peer-to-peer
text retrieval. In Proceedings of Infoscale’2007, 2007.

[22] T. Suel et al. ODISSEA: A Peer-to-Peer Architecture for
Scalable Web Search and Information Retrieval. In
Proceedings of WebDB’2003, 2003.

[23] C. Tang and S. Dwarkadas. Hybrid global-local indexing for
efficient peer-to-peer information retrieval. In Proceedings of
NSDI’04, 2004.

[24] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-Peer Information
Retrieval Using Self-Organizing Semantic Overlay
Networks. In Proceedings of SIGCOMM’03, 2003.

[25] C. Tempich, S. Staab, and A. Wranik. REMINDIN’:
Semantic Query Routing in Peer-to-Peer Networks based on
Social Metaphors. In Proceedings of WWW’2004, 2004.

[26] J. Zhang and T. Suel. Efficient query evaluation on large
textual collections in a peer-to-peer environment. In
Proceedings of IEEE P2P’05, 2005.

