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Abstract. Bibliographic databases are a prosperous field for data min-
ing research and social network analysis. The representation and visual-
ization of bibliographic databases as graphs and the application of data
mining techniques can help us uncover interesting knowledge regarding
how the publication records of authors evolve over time. In this paper
we propose a novel methodology to model bibliographical databases as
Power Graphs, and mine them in an unsupervised manner, in order to
learn basic author types and their properties through clustering. The
methodology takes into account the evolution of the co-authorship infor-
mation, the volume of published papers over time, as well as the impact
factors of the venues hosting the respective publications. As a proof of
concept of the applicability and scalability of our approach, we present
experimental results in the DBLP data.
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1 Introduction

Currently, vast amounts of scientific publications are stored in online databases,
such as DBLP or PubMed. These databases store rich information such as the
publications titles, author(s), year, and venue. Less often they provide the ab-
stract, or the full publications’ content and references. The exploitation of ad-
ditional features, such as co-authorship information, may help us create novel
services for bibliographic databases.

In this direction, new online services that process metadata have appeared,
such as ArnetMiner [9] or Microsoft Academic Search1. Services that visualize
co-authorship information are also available, such as the ”Instant graph search”2,
which presents the existent co-authorship paths connecting two authors, or the
”Social graph”2, which presents all the co-authors of a single author in a star
topology. However, to the best of our knowledge, there is currently no method-
ology available that models the evolution of the authors’ publication profile and
1 http://academic.research.microsoft.com/
2 Co-author Path and Graph in Microsoft Academic Search.
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Fig. 1. Motivation: Four basic author ”evolution motifs“ over time.

detects different types of authors in a bibliographical database, based on their
evolution and standing over time.

Figure 1 presents, in a simplified manner, four intuitive author evolution mo-
tifs over time. We first distinguish between authors with an ascending behavior
(rising stars), who show high increase in the amount and impact of their pub-
lished work, as well as on the amount of collaborations with other researchers,
and authors with a descending behavior (declining authors), who have a declin-
ing rate and impact of publications. Furthermore, in case the evolution is more
static, we distinguish between authors that produce constantly a large amount
of work over that time frame (well established) and authors that produce fewer
publications, in a lower but stable rate (stable publication rate).

Motivated by the aforementioned motifs, this work addresses the author mod-
eling problem using unsupervised learning, since supervised learning is not ap-
plicable due to the absence of manually annotated data for this task. First, we
define four basic features that capture the authors’ publication profile. Secondly,
we monitor the evolution of these features over time and generate respective evo-
lution indices per author. Finally, we use these indices to cluster authors with
similar evolution profile into respective groups. The exact properties of each
author evolution motif are deduced from the analysis of the final clusters.

Our methodology introduces two novel ideas. The first is the application of
Power Graph Analysis [5] to the co-authorship graphs constructed from biblio-
graphical data, which is performed for the first time, to the best of our knowledge,
in bibliographical analysis. The use of Power Graphs allows fast and large-scale
clustering experiments since they can compress by even up to 40% the informa-
tion of the original co-authorship graph, as we show in our experiments, in a
lossless information manner. Also, they can visualize more efficiently than the
original graphs the co-authorship information by identifying several motifs, e.g.,
cliques and bi-cliques. The second is the introduction of a set of features for
each author, which is based on the Power Graphs structure, the number, and
the impact of her publications. Through the features’ monitoring over time, the
respective evolution indices are computed, based on which the authors’ cluster-
ing is conducted. Finally, the indices are employed in the analysis of the resulting
clusters as descriptors of the authors’ dynamics. The contributions of this work



(a) Huge biological ”fur ball“
network.

(b) After the application of
Power Graphs.

(c) Basic motifs recog-
nized by Power Graph
Analysis.

Fig. 2. Figure2(a) shows an example of a huge biological network. Figure 2(b) shows
the corresponding Power Graph. The three basic motifs recognized by Power Graphs
are shown in Figure 2(c): Star, Clique and Biclique. Power Nodes are sets of nodes and
Power Edges connect Power Nodes. A Power Edge between two Power Nodes signifies
that all nodes of the first set are connected to all nodes of the second set.

can, thus, be summarized into the following: (a) a novel methodology for mod-
eling the dynamics of authors’ publication profiles, and clustering them into
groups, (b) transfer of the Power Graph Analysis methodology from the field
of bioinformatics, to the field of bibliographical databases analysis, in order to
visualize and process co-authorship graphs, and, and, (c) empirical analysis and
demonstration of the applicability of our approach in a large bibliographical data
set (DBLP). The rest of the paper is organized as follows: Section 2 presents
some preliminary concepts and discusses related work. Section 3 introduces our
methodology and in Section 4 we present our experimental findings. Section 5
concludes and provides pointers to future work.

2 Preliminaries and Related Work

2.1 Visualizing Graphs with Power Graphs

In the bioinformatics field, networks play a crucial role, but their efficient visu-
alization is difficult. Biological networks usually result in ”fur balls”, from which
little insight can be gathered. In the direction of providing an efficient method-
ology for visualizing large and complex networks, such as protein interaction
networks, the authors in [5] introduce Power Graph Analysis, a methodology for
analyzing and representing efficiently complex networks, without losing informa-
tion from the original networks. The analysis is based on identifying re-occurring
network motifs using several abstractions. The three basic motifs recognized by
Power Graphs are shown in Figure 2. These are the Star, the Clique and the



Biclique, and constitute the basic abstractions when transforming the original
graph into a Power Graph with Power Nodes, i.e., sets of nodes, connected by
Power Edges. Power Graphs offer up to 90% compression of the original network
structure [5], allowing for efficient visualization. Figure 2 shows an example of a
”fur ball” network, and its transformation after the application of Power Graph
Analysis.

Power Graphs have been successfully applied in bioinformatics, as the net-
works are rich in the aforementioned motifs[5]. Co-author networks in the bibli-
ographic analysis are implicitly built on such motifs and, thus, perfectly suited
for applying Power Graph Analysis. A publication is either considered as Clique
of all authors or as Biclique with first and last authors on one and all other au-
thors on the other end. Motivated by this, in this paper we apply Power Graphs
Analysis into co-authorship graphs extracted from bibliographical databases, in
order to define authors’ features. As shown in the experimental section, the re-
sulting Power Graphs allow for a very efficient visualization of the co-authorship
graph.

2.2 Mining Graphs from Bibliographical Databases

Graph-based mining methods in bibliographic databases usually create a graph
from author names, venues, or papers’ topics, apply a graph partitioning algo-
rithm to locate interesting sub-graphs, and present results in the form of node
clusters, e.g., authors by topic, or through visualization of the graph, e.g., co-
authors of a single author in a star topology. The various methods for repre-
senting bibliographical databases as graphs, can be divided in two categories: (i)
those that use n-partite graphs, which contain for example authors, conferences,
or topics as nodes, and edges that connect different node types representing re-
lations, and, (ii) those that use graphs with a single node type and edges that
may vary in meaning depending on the application. An example of the former
category can be found in [8], where bipartite models connecting conferences to
authors are employed to rank authors and conferences. Tripartite graph mod-
els for authors-conferences-topics have also been introduced in the past [9]. In
the later category, e.g., the work in [2], nodes correspond to authors, and edges
represent citation or co-authorship relation. The resulting representation can be
used to rank authors, find author communities, measure author centrality [3, 4,
6], or find special relations between authors, such as advisor-advisee [10]. Re-
garding the evolution analysis of graphs, snapshot-based approaches, e.g., an
author-paper graph per year, are frequently used [1, 8]. In these approaches, pre-
defined measures from each snapshot are extracted and monitored over time.
In this work we present an approach which differs from the aforementioned in
several points; (a) the co-authorship graph is used only as a basis for defining
collaboration-related authors’ features , (b) the authors’ clustering process an-
alyzes the evolution of these features over time, as well as the changes in the
volume and impact of the authors’ publications, and, (c) the clustering aims at
identifying author evolution motifs and uncover their characteristics, and not to
detect author communities.



Fig. 3. A sample co-authorship Power Graph.

3 Approach

The suggested methodology comprises the following steps: (1) creation of the
co-authorship Power Graphs in different time points, i.e., years, within a given
time frame (Section 3.1), (2) computation of each feature per time point, and
of each features’ evolution index per author (Section 3.2), and, (3) clustering of
authors based on their evolution indices (Section 3.3).

3.1 Co-authorship Graphs with Power Graphs

The initial co-authorship graph contains authors as nodes and weighted edges
that connect pairs of authors. Given a paper with k authors, an edge connecting
each pairwise combination of the k authors is added in the graph. Given a
specific time point ti (e.g. a year), the initial co-authorship graph accumulatively
contains all the publication records from the beginning until ti. Edges’ weights
represent the number of papers that the two authors have co-authored until ti.

The original graph is converted to a Power Graph as explained in [5]. An
example of bibliographic records (papers and authors), and the resulting co-
authorship Power Graph is depicted in Figure 3, where for reasons of simplicity
we assume that all papers have exactly two authors. Authors a1 and a2 have
exactly the same co-authors (a3, a4, a5). The same holds for authors a3, a4 and
a5. This is depicted by a bi-clique in the Power Graph. Author a3 has collabo-
rated with a1, a2 and a6 to a10. So a3 forms a star with his co-authors, who
form a pair of nested Power Nodes (set a1, a2 is inside the greater Power Node).
Finally, all the co-authors of a31 form a star. The transformation of the original
co-authorship graphs into Power Graphs offers three very important advantages:
(i) it performs a first-level clustering of the authors based on their co-authorship
information, (ii) it compresses the original graph, without losing information,



and, (iii) it allows for a more efficient visualization of the co-authorship infor-
mation.

3.2 Authors’ Features and Evolution Indices

After constructing the co-authorship Power Graphs, the next step is to define
the features based on which authors’ evolution may be measured. Given a Power
Graph Gi in time point ti, we define the following features for every author ak:
(1) the size of the Power Node to which ak belongs (Si) (if ak is not member
of a Power Node then Si=0), (2) the sum of the Power Nodes’ sizes with which
ak’s Power Node, or any Power Node containing her Power Node, is connected
(Ci), (3) the number of papers authored by ak (Pi) until ti, and, (4) the aggre-
gated impact of ak’s publications until ti (Ii) 3. The intuition behind each of
the aforementioned features is straightforward; Si measures the number of the
most frequent co-authors an author has at time point ti (size of her clique), Ci

measures the size of her extended clique, i.e., the co-authors of her co-authors,
Pi measures the number of publications up to ti, and, finally, Ii measures the
total impact of her work.
More formally, for an author ak who belongs to Power Node Vk, in the Power
Graph for time point ti, Si is defined as:

Sik = weVk,Vk
· |Vk| (1)

where |Vk| is the size of Power Node Vk, and weVk,Vk
is the weight of the edge

connecting Power Node Vk with itself. This later weight shows the strength of
the clique formed by the authors in Power Node Vk. Let Vk be connected to n
other Power Nodes. Then, Ci, for author ak is defined as:

Cik =
∑

m=1..n

weVk,Vm
· |Vm| (2)

where Vm is any Power Node connected to Vj with an edge of weight weVj ,Vm
.

Pi is defined as the number of papers produced by author ak up to time point
ti. If time points are years, then Pik denotes the number of papers that author
ak has produced from the beginning of her career up to ti. Finally, Ii is the sum
of the impact factors of the authors publications up to ti. More formally, if the
author has written n papers up to ti, then Ii is defined as follows:

Iik =
∑

m=1..n

IFm (3)

where IFm is the impact factor of the venue or the journal where paper m was
published.
3 We assign to each paper the impact factor of the venue or journal, in which each

paper was published. For our experiments we used the list maintained by Citeseer.
Historical impact factors are not taken into account due to the lack of respective
data



The next step is to define an Evolution Index for each of these four features
(Sik, Cik, Pik, and Iik), which capture the way the feature values evolve over time.
For this reason, given a time span T : [t1, t2], for which we monitor authors, we
build a Power Graph Gi for each ti ∈ T (e.g., for each year). Our aim is to
capture the dynamics of author ak in each of the four feature dimensions. For
the definition of each of the four Evolution Indices we employ a function, which
we call change. Change measures the ratio of the change of any of the features
Sik, Cik, Pik, and Iik from time point ti−1 until time point ti. Change for feature
Sik of author ak is defined as:

Schangeik =
Sik − S(i−1)k

Sik
(4)

The above equation captures the ratio of change occurred in ak’s Power Node
from ti−1 to ti. If ak’s clique has grown from ti−1 to ti then the respective Power
Node Vk size will increase, and Schangeik will be positive (i.e., in contrast to 0
where there is no change). In a similar manner, Cchangeik captures the ratio of
the change in the author’s connectivity with other cliques, P changeik captures
the change with regards to the volume of the papers produced from ti−1 until
ti, and Ichangeik the change in her publications’ impact.
We can now define the Evolution Index (EI) for the S feature (S.EI), given T ,
as shown in the following equation:

S.EITk = max
ti∈T

Schangeik · St2k ·
∑
ti∈T

Schangeik (5)

where t2 is the final time point in the examined time frame T . Equation 5
captures the evolution of the author over the time frame T , and measures the
dynamics of the author in the dimension of feature S, as it takes into account
the maximum occurred change, the standing of the authors according to S in
the final time point, and the sum of all occurred changes. Similarly, the C.EITk,
P.EITk, and I.EITk Evolution Indices can be defined for C, P and I features
respectively.

3.3 Clustering Authors Using Bisecting K-Means

In this section we demonstrate the use of the Evolution Indices in the author
clustering task. The clustering algorithm that we employ is bi-secting K-Means,
which delivers high clustering performance, better than K-Means, and other ag-
glomerative techniques [7]. Bisecting K-Means starts with a single cluster con-
taining all data points, and iteratively selects a cluster and splits it into two
clusters until the desired number of clusters is reached or a quality criterion
coherence is met. Its time complexity is linear to the number of data points.

In our case, each author ak is a single data point with four dimensions,
which correspond to the four evolution indices. Finding authors’ clusters is, con-
sequently, formulated as a typical clustering problem, which can be solved using
bisecting K-Means. Authors are represented as vectors in the four dimensional



Input: Database of papers D, time frame T [t1, t2], number of desired clusters k
Output: A clustering solution of authors into k groups

1 Construct Power Graph at t0, i.e., the previous time point from t1
2 foreach time point ti ∈ T do
3 Construct Power Graph at ti

4 foreach author ak ∈ D do
5 Measure and store Schangeik, Cchangeik, P changeik, Ichangeik

6 Measure and store S.EITk, C.EITk, P.EITk, I.EITk

7 Put all authors ak ∈ D into a single cluster
8 Pick a cluster to split
9 Find 2 sub-clusters using the basic K-Means algorithm (bisecting step)

10 Repeat step 9 for ITER times and choose the best split
11 Repeat steps 8, 9, and 10 until number of clusters is k
Algorithm 1: Clustering authors of a bibliographical database using Power
Graphs and bisecting K-Means.

space, so the cosine similarity measure can be used for measuring similarity
between two data points, or between a data point and a cluster centroid. The
centroid of a cluster K of authors (C), is defined as follows:

C =
1
|K|

∑
ak∈K

ak (6)

Algorithm 1 describes our methodology of organizing authors in a bibliographic
database into k groups. If the bibliographical database contains m papers writ-
ten by n distinct authors, and the resulting Power Graph at any time point
contains maximum pn Power Nodes, then the complexity of the algorithm can
be summarized into O(|T | · (m + n2logn + pn) + n), which, even for millions of
data points, makes the task computationally feasible.

4 Evaluation and Results

In order to demonstrate the organization of authors into categories, and analyze
the properties, we experiment using our methodology with the DBLP Com-
puter Science Bibliography database. The database comprises 925, 324 distinct
author names, and 1, 601, 965 publication entries (papers). For our experiments
we select the authors, and their publications, that have in total a minimum of 5
publications by 2010. We then apply our methodology using two different exper-
imental set-ups: (a) we use time frame T = [2000, 2010] to cluster the authors
into four categories, and analyze the clusters’ properties, and, (b) we use time
frame T = [2000, 2005] and examine whether our method organizes successfully
authors into clusters, by evaluating the behavior of each cluster in the next five
years, i.e., [2006, 2010]. For our experiments we construct the Power Graphs from
the original co-authorship graphs, for the periods [2000, 2010], and [2000, 2005]
respectively. Table 1 reports statistics from the construction of the Power Graphs
for all years in [2000, 2010], where the edge reduction rates reached up to 41%.



Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

#Nodes 53,679 60,732 67,530 75,490 83,797 92,453 100,301 108,051 113,548 117,619 119,767

#Edges 146,562 174,951 207,691 244,132 285,517 331,618 377,586 427,991 473,601 518,158 552,956

#Power Nodes 22,396 25,634 28,730 32,584 36,640 40,972 45,040 49,069 52,060 54,414 56,046

#Power Edges 87,346 103,864 122,279 143,698 168,736 197,421 227,889 261,704 293,246 323,583 349,538

#Edge Reduction Rate 0.404 0.406 0.411 0.411 0.409 0.404 0.396 0.388 0.38 0.375 0.367

Table 1. Number of nodes and edges in the original co-authorship graphs per year,
and in the constructed Power Graphs.

Fig. 4. The centroids of the four basic clusters, and their radar plot according to the
four feature dimensions.

4.1 Clustering DBLP Authors

In Figure 4 we show the results of experiment (a). The number of author clusters
was set to 4, in an effort to identify the basic intuitive motifs shown in Figure
1. We performed a series of experiments with an increasing number of ITER in
bi-secting K-means (from 5 to 500). As expected, higher values produced more
stable clusters. The left part of the figure shows the centroids of the four clusters
(cluster 1 to 4), and their respective values in the four dimensions (S, C, P, and
I). The right part of the figure shows a radar plot of the four centroids in the four
different dimensions. Each polygon represents a cluster centroid, and expands
more towards a specific direction, if the respective feature value is high.

Cluster 2 contains the most connected authors (highest S). The majority of
the authors in this cluster are well established with great dynamics in expanding
their collaborations (C). The explanation is that most of the authors in clus-
ter 2 are group leaders or professors and have many collaborations. One can
certainly trace rising stars inside that cluster, since its points have huge dynam-
ics in collaborations. Some examples of authors in that cluster are Christos H.
Papadimitriou, and Maristella Agosti. Cluster 1 is certainly the group with the
most candidate rising stars. The authors in this cluster show the best dynamics
in paper publishing (P ), and also really good dynamics publications’ impact (I).



(a) 2000 (b) 2010

(c) 2000 (d) 2010

Fig. 5. Evolution of Power Graphs for two authors over two time points. Grayed circles
denote a Clique and white a Biclique.

Some of the authors in cluster 1 are already well established, but the common
characteristic of all authors in cluster 1 is their high dynamics in three dimensions
(S, P, and I). Some examples of authors in cluster 1 are Gerhard Weikum, and
George Buchanan. The third most interesting cluster is 4. Authors here certainly
publish much and have great potential, but they still need to work their I and
S features. Clusters 3 and 4 contain stable publishing authors, without special
dynamics though. Finally, in cluster 3 the main motif is that of isolated authors
(low S and C values). This cluster also contains declining authors, which have
ceased expanding their collaborations, but their dynamics in paper publishing
(P ) remain high.

In Figure 5 we show an example of the Power Node evolution between 2000
and 2010 for two authors: Gerhard Weikum from cluster 1, and Maristella Agosti



(a) S and P Features. (b) C and P Features.

(c) Prediction of impact in 2006-2010.

Fig. 6. Figures 6(a) and 6(b): Authors’ scatter plots based on two feature combinations.
Figure 6(c): Clustering authors in 2000-2005, and predicting impact in 2006-2010.

from cluster 24. The figure also shows their connected Power Nodes. Figures 5a
and b, show how S and C evolved for Gerhard Weikum, and Figures 5c and d,
for Maristella Agosti : the author of cluster 2 had larger changes in her Power
Node and its neighborhood, compared to the author of cluster 1. This example
demonstrates the general motif of clusters 1 and 2 in the radar plot of Figure 4
regarding S and C.

In Figures 6a and 6b we show the authors’ scatter plot based on two feature
combinations; S and P , and P and C. The figure demonstrates an example of
the features’ ability to separate the authors. As shown, S and P can separate
cluster 1 from the rest, while C and P can separate cluster 3 from 4. Similar
findings were observed in all the remaining features’ pairs. Figure 6c shows the
results of experiment (b). The left part shows the radar plot of the authors’
cluster centroids for 2000− 2005. The clustering predicts that authors in cluster
4 have large dynamics in increasing their publications’ impact factor (I). The
right part shows the yearly increase in authors’ impact factor for 2006−2010. It

4 Zoom is possible in the electronic edition.



verifies that authors in cluster 4 had the largest difference (on average over all
cluster points) per year on the impact feature compared to the authors of the
rest clusters.

5 Conclusions

In this paper we introduced a novel methodology for the organization of au-
thors into basic clusters, using Power Graph Analysis. We defined evolution
indices over features that capture the connectivity and strength of the authors’
co-operations, as well as their publications’ volume and impact over time. We
demonstrated the applicability of our approach to capture the dynamics of au-
thors using the evolution of the four defined features by clustering authors in
DBLP with bi-secting K-Means. It is in our next plans to explore and inter-
pret authors’ clustering using several different values for the k parameter. We
also plan to explore the application of our methodology for comparing institu-
tions, based on the notion of the centroid of the institutions’ authors, as well as
comparing scientific venues, or individual authors. In this direction, the compar-
ison methodology would consider the publications of the respective institutions,
venues, or authors, and follow the methodology in this paper. Similar entities,
e.g., institutions, would result in similar clusters, for the same value of k, and
the comparison could be feasible by placing the clusters at the same radar plot.
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