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Abstract. The community detection in networks is a prominent task in the graph data
mining, because of the rapid emergence of the graph data; e.g., information networks or
social networks. In this paper, we propose a new algorithm for detecting communities
in networks. Our approach differs from others in the ability of constraining the size
of communities being generated, a property important for a class of applications. In
addition, the algorithm is greedy in nature and belongs to a small family of community
detection algorithms with the pseudo-linear time complexity, making it applicable also
to large networks. The algorithm is able to detect small-sized clusters independently of
the network size. It can be viewed as complementary approach to methods optimizing
modularity, which tend to increase the size of generated communities with the increase
of the network size. Extensive evaluation of the algorithm on synthetic benchmark
graphs for community detection showed that the proposed approach is very competitive
with state-of-the-art methods, outperforming other approaches in some of the settings.

1 Introduction

Many real-world data sets have the form of graphs. The most straightforward examples are
those of various types of networks; e.g., information networks, citation networks, social
networks, communication networks, transportation networks or biological networks. This
wide variety of existing graph data has triggered an increased attention to the graph analysis
and the graph mining within the research community. One of the prominent tasks in graph
mining is that of the community detection. The community detection aims to discover the
community structure of a graph by dividing nodes of graph to clusters, where nodes of the
same cluster are densely linked among themselves and less densely linked to the nodes of
other communities.

Real-world networks exhibit the community structures, along with other properties like
power law degree distribution and small-world property. Although the notion of a graph
community structure has not been formally defined and is still intuitive for the most part (a
number of diverse definition can be found through the literature), research on the commu-
nity detection has gained a momentum in recent years. The most widely used approach in
community detection algorithms is to maximize the modularity measure of the graph par-
tition [16]. The problem of the modularity based algorithms is the resolution limit [8] –
identified communities get bigger as the size of the network increases.

In this paper we first formalize the problem; we define affinity partition of the network,
based on the notion of community as defined by Hu et al in [12]. We then propose a new
greedy algorithm for community detection in graphs. It builds on the label propagation al-
gorithm [19] and overcome its drawback, which is the collapse of the result into a single



community when the community structure of the given network is not very clear. Our al-
gorithm is pseudo-linear in the execution time and it is designed to allow a user to specify
the upper size limit of the communities being produced. As we will illustrate later on a real-
world example, the communities identified in large networks are often of large sizes. This
can be very impractical for certain classes of applications; in case the identified community
structure is used by human expert (e.g. identification of a social group for a user of a social
network), the community of several hundred thousands of nodes is not very useful. Another
example of usefulness of size-constrained community detection is the task of partitioning the
graph data for a distributed graph database into k balanced components.

The ability to constrain the size of communities is a feature that distinguish our ap-
proach from other methods. It is especially suited to identify small-scale communities in
large networks and can be viewed as a complementary approach to the methods maximiz-
ing the modularity. The main contribution of the paper is the new algorithm for community
detection, which has following distinctive features:

– Allows user to specify upper size limit of the produced communities
– Fast in execution time; as it is pseudo-linear in time complexity, it can be used also for

clustering of large graphs
– Achieves very good quality in unveiling community structure for networks with com-

munities of small sizes and has results competitive with state-of-the-art methods (often
with higher time complexity)

We first present related work in Section 2. In the Section 3, we describe measures useful
for the evaluation of the goodness of the identified graph partition into communities and we
discuss other existing fast algorithms for community detection. In Section 4 we propose a
new algorithm for community detection. Section 5 presents the evaluation of our approach.
We conclude the paper in Section 6 where we also provide directions for future research.

2 Related work

The problem of the community detection has been quite popular in recent years and a large
number of different algorithms addressing the problem were proposed. The interest in the
problem boomed after introduction of divisive methods based on betweenness centrality
measures, mainly the Girvan-Newman algorithm [9]. Same authors have later proposed mod-
ularity measure [16] – a quality function that can be used to evaluate how good a partition
of the network is. The underlying idea is to compare how community-like the given parti-
tion is compared to a random graph with the same node degrees. This is perhaps the most
influential work in the community detection research. A number of proposed methods rely
on maximizing the modularity when identifying the community structure; e.g., greedy tech-
niques [1] [4], simulated annealing based method [11] or extremal optimization [3]. As was
shown in [8], the modularity function has a resolution limit that prevents communities of
small sizes (compared to the graph size) to be identified, even if they are clearly defined.
Variants of basic community detection problem were studied in literature, e.g. clustering of
bipartite graphs [17], identification of overlapping communities [10, 23] or clustering based
on graph structure combined with additional content associated with nodes [22].

The most related to our work are fast, greedy algorithms for community detection [1,19,
20]. We discus those works in more detail in Section 3. A number of other approaches to
the community detection task has been proposed; an extensive overview of the methods and
graph clustering related problems can be found in surveys on the topic [7, 18].



3 Preliminaries

In this section, we discuss the measures used for the evaluation of the goodness of identified
community structures, when the community structure is known, e.g. is artificially planted in
the network by a benchmark graph generator. We than discuss in more detail three algorithms
closely related to our algorithm proposed in Section 4.

3.1 Community detection

Although there is no consensus on the formal definition of the community detection task,
we try to explain the problem at hand in a more formal manner, following the approach
in [7]. Let the G, be a graph G = {V,E, f}, where V is a set of nodes, E is a set of
edges, f : V × V → E. The partition of the node set is P (V ) = {C1, C2, . . . , Ck} where⋃

∀Ci∈P (V ) Ci = V and
⋂

∀Ci∈P (V ) Ci = ∅. Let ECi,in be a set of intra-cluster edges of
cluster Ci : ECi,in = {ek,l ∈ E : k ∈ Ci ∧ l ∈ Ci} and let ECi,out be a set of inter cluster
edges: ECi,out = {ek,l ∈ E : (k ∈ V \ Ci ∧ l ∈ Ci) ∨ (k ∈ Ci ∧ l ∈ V Ci)}. Let |V | = n
and |Ci| = nCi ; we can define

δin(Ci) =
|ECi,in|

nCi × (nCi − 1)/2
and δout(Ci) =

|ECi,out|
nCi × (n− nCi)

The goal of community detection is then finding a partition with a good balance between
large δin(Ci) and small δout(Ci). We formalize out perception of the community structure
in 4.2.

3.2 Comparing partitions of a network

Benchmark graph generators produce a definition of network and a division of nodes to
communities – the ’ground truth’ partition of the given network. The community detection
algorithm also produces a partition of the given network. The problem is how to evaluate how
good the partition provided by a community detection algorithm approximates the original
partition. In the community detection literature, an established similarity measure for com-
paring network partitions is Normalized Mutual Information (NMI). This measure originates
from the information theory and was first adopted for the community detection by Danon et
al. in [6].

For NMI computation a confusion matrix is used. Rows in confusion matrix C repre-
sent original communities and columns represents communities identified by a community
detection algorithm. An element Nij of C denotes the number of nodes in the intersection
of the original community i and the generated community j. Let cA denotes the number
of communities in the original partition and cB the number of communities generated by
the algorithm. Let the sum of the row i in C be Ni. and the sum of the column j be N.j .
Normalized mutual information is defined as follows:

NMI(A,B) =
−2
∑cA
i=1

∑cB
j=1Nij log

(
NijN
Ni.N.j

)
∑cA
i=1Ni.log

(
Ni.
N

)
+
∑cB
j=1N.j log

(
N.j
N

)
Lancichinetti et al. proposed in [15] a modification of the NMI measure able to compare

graph partitions with overlapping communities. As argued by authors, although it does not



reproduce exactly the same values as NMI, it is close. We will refer to this measure as
cNMI. The cNMI was used as the similarity measure in comparative analysis of community
detection algorithms in [14]. In order to be able to perform head-to-head comparison of our
approach with those evaluated in [14], we use NMI as well as cNMI in our experiments.

3.3 Greedy approaches to community detection

In this subsection, we discuss greedy algorithms for community detection with the pseudo-
linear execution time. We discuss three algorithms, the Label Propagation by Raghavan
et al. [19], heuristic method for modularity optimization by Bondel et al. [1] and multi-
resolution community detection algorithm using Potts model proposed by Ronhovde and
Nussinov [20] (we will refer to this algorithm as RN). Algorithms are similar in their basic
operational principle, where the label propagation is a basic approach, the two other can be
regarded as the extension and modification of the label propagation mechanism. In that re-
spect, the algorithm proposed in this paper can also be viewed as a modification of the label
propagation.

Label Propagation algorithm [19] is based on the greedy assignment of a node to the com-
munity which contains the most of its neighbors. E.g., let node n has neighbors n1, n2, . . . nk
each of them has a label denoting its group membership. Node n will join the community,
the most of its neighbors belong to. If several communities contain the same highest num-
ber of n’s neighbors, the ties are broken uniformly at random. The algorithm is initialized
by assigning unique labels to all nodes in the network. Labels are propagated through the
network in iterations; at the beginning of each iteration a list l of all the nodes is constructed
and order of nodes is randomized. The algorithm’s iteration consist of traversing the list l
and updating the label of each node in l. The process should continue until no node changes
its label during iteration. As the convergence of such a greedy approach might be hard to
prove, one may use the constraint on the iterations number to ensure that the algorithm will
stop. Authors experiments indicate that more than 95% of the nodes are classified after the
fifth iteration. Resulting communities are created from the nodes with the same labels.

This approach, as the result of randomizations, does not have a unique solution. The
algorithm might reach the stop criterion for multiple different partitions of the network.
Authors also propose to aggregate multiple different partition of the network by creating new
labels for nodes based on the labels they received in different runs and re-run the algorithm
on that initial setting. Although, the principle of the algorithm is quite simple, it yields good
results. The problem of label propagation approach is that it’s solution often collapses into
one single community, in case the boundaries between communities are not clearly defined.

Processing similar to label propagation is used by Bondel et al. in [1], where the com-
putation is done in two phases. The first phase is similar to label propagation, with the dif-
ference in the greedy step, where the authors choose the community to join based on the
gain of modularity. The second phase of their algorithm consist of contracting partition into
a new network. Those two phases are repeated iteratively until no gain in modularity can be
achieved. Ronhovde and Nussinov in [20] use the processing of the label propagation style,
with different decision function for changing the node’s community membership. Their de-
cision function, referred to as absolute Potts model (APM), can be parameterized to produce
communities at different resolutions. Their proposed multi-resolution algorithm computes
partition at different resolutions and they compute correlation among multiple partitions,
identifying significant structures by strong correlations.



4 Size Constrained Greedy Community Detection

In this section, we propose a new community detection algorithm, based on the label prop-
agation principle, which allows a user to constrain the size of the communities being gen-
erated. It is named Size Constrained Greedy Community Detection algorithm (SizConCD).
First, we describe the motivation for the work. We then provide the formalization of the
problem, which correspond to our perception of the communities and the community struc-
ture (Subsection 4.2). We provide the description of the proposed greedy algorithm. The
algorithm constructs, in the first phase, seed groups, each of which contains small number of
nodes (Section 4.3). The Section 4.3 presents SizConCD algorithm, designed to approximate
the community structure as defined in Subsection 4.2 and allowing to constrain the size of
the communities. We provide the pseudocode of the SizConCD algorithm and conclude the
section by analyzing the time complexity of the algorithm.

4.1 Motivation

Our work was motivated by the limitations of existing approaches to the problem of the
community detection. In our view, there are the two major limitations. The first is the com-
putational complexity of majority of methods which prevents them to be applied on large
networks. The second is that algorithms with pseudo-linear computational time, which can
be used on large networks, often produce partitions with very large communities. This is not
very useful for the detailed analysis of a node (e.g. a community of 100 000 nodes is not
particularly useful when one wants to identify social group of a user in a social network).
Let us provide an illustrative example.

We have tried to detect the community structure of the Wikipedia link graph. Our ex-
pectation was that semantically similar topics should be grouped together in communities.
The size of the link graph extracted from Wikipedia XML dump was 3.1 million nodes and
91 million edges. The large size of the network limited our choice of a community detec-
tion algorithm only to those running in linear time. We have analyzed the link graph using
Label Propagation [19] algorithm and the greedy modularity optimization [1]. The commu-
nity structure produced by label propagation algorithm had the largest community with over
2.96 million of nodes. The size of the largest community in the partition identified by the
greedy modularity optimization method was smaller (containing around 400 000); however,
20 largest communities of this partition comprised more than 95% of the nodes.

In general, producing the partition with communities of limited sizes is useful for certain
applications; e.g. when the community structure is analyzed by a human expert (inspecting
social community of a user in social network, inspecting related concepts in semantic net-
work). Another example of usefulness of size-constrained communities is the task of splitting
the network into k groups, minimizing the number of edges connecting them. This task is
useful for example for partition of the graph data for distributed graph database. This moti-
vated us to develop a new algorithm for the community detection, which would allow us to
constrain the community sizes.

4.2 Problem formalization

Currently, there is no consensus on the formalization of the community detection problem.
Several definitions can be found in the literature; often, the problem is not formalized at all
and the definition of the task is provided as an informal, intuitive description.



In our work we adopt the definition of the community proposed by Hu et al., in [12].
Informally, every node of a community C should have higher or equal number of edges
connecting it with other nodes of C, than number of edges connecting it with other commu-
nities. LetG = (V,E, f, w) be a graph, with nodes V , edgesE and function f : V ×V → E
defining the mapping between nodes and edges and w : E → R be the function defining the
weights of the edges.

We will use the term affinity of a node n towards a clusterC to denote the sum of weights
of edges connecting n with nodes of the cluster C:

aff(n,C) =
∑
i∈C

w(en,i) : en,i ∈ E

Let us consider an example graph in Figure 1 and let all edges have the weight of 1. The
affinity of n towards cluster A is 1 (aff(n,A) = 1); aff(n,B) = 2 and aff(n,C) = 3. Based
on work in [12], we define affinity partition of a graph to be γ = C1, C2, .., Cm, such that⋃

k∈〈1,...,m〉

Ck = V and
⋂

k∈〈1,...,m〉

Ck = ∅

and
∀j ∈ Ck, aff(j, Ck) ≥ max{aff(j, Cl), Cl ∈ γ}

A

B

C

n

Fig. 1. Example of node’s affinity to-
wards clusters.

It is obvious that there is more than one affin-
ity partition of a graph. In fact, trivial partitions
(single community containing all the nodes and
partition where each node is a member of differ-
ent community) also comply with the definition of
the affinity partition. The authors in [12] propose
to favor the partition which minimize number of
intra communities edges, and provide mathematic
formulation of the criterion. We do not adopt this
criterion, as it favor partition with small number
of large communities. (E.g., it can be shown that
for GN-benchmark graphs [9], using this criterion,
we would favor the partition of two communities
instead the canonical four communities partition.)
We propose a new criterion to compare affinity
partitions. It is based on the following: if a node has the highest value of affinity towards
multiple communities it should be assigned to the community where the ratio of the affinity
towards the community and the number of community members is highest. This means that it
should be assigned to the smallest community (of the candidate communities). We can define
the compactness of the community as: compactness(C) =

∑
n∈C

aff(n,C)

|C|2 and we can define

average compactness of a community partition as: avg_copactness(γ) =
∑
C∈γ compactenss(C)

|γ| .
Thus, the goal of our work is to approximate the affinity partition γ of a given network with
highest value of avg_compactness(γ).

4.3 SizConCD algorithm

The label propagation algorithm uses the function identical to our definition of affinity of
a node towards a community to resolve node’s community membership in its greedy step.



However, when the community structure is not very clear, the label propagation algorithm
often fails, and produces a single community comprising all the nodes as a result. The reason
is the following: let there be a canonical affinity partition of a network; if we modify this
partition, e.g. by margining two communities into one, the balance of the affinity partition
can be broken and applying the greedy label propagation algorithm on this setting can lead
to collapsing, node after node, the solution into a single community. We want to keep low
computational complexity of the greedy approach, but we want to prevent the collapse of the
community structure being produced into a single community. To achieve that, we first build
seed groups containing small number of nodes.

Building seed groups We first introduce the basic mechanics of the algorithm and than
describe it in a step by step manner. Basic procedure of the algorithm is the iteration over
all nodes of the graph; for every node we consider all of its neighboring communities and
select the best one to join. To identify the best cluster for node n, we define a gain function
seed_gain(n,C). The gain function in seed groups building phase is:

seed_gain(n,C) = aff(n,C)× log
(

UpperLimit
|C|

)
(1)

where UpperLimit is the user provided upper limit for community sizes, this parameter is
set in seed groups building phase toN (number of nodes in the graph); Once we compute the
gain function for all neighboring clusters, we choose to assign node n with the community
with highest gain value. In case when multiple clusters have the same (highest) gain value,
we choose the smallest one. If there is still multiple candidates, we break the ties uniformly
at random. For the example depicted in Figure 1, given the UpperLimit = 100, the gain
values in SizConCD algorithm are: seed_gain(n,A) = 1.699, seed_gain(n,B) = 3.045
and seed_gain(n,C) = 3.903. Thus, the node n would be assigned to community C in this
particular iteration.

We now discuss the whole algorithm step by step. The algorithm is initialized by crating
communities for all the nodes – i.e., each node is initially placed in a separate cluster. If edges
of the graph are unweighted, we assign the weight equal to 1 to all edges. The processing
is done in iterations (the pseudocode is presented in Algorithm 1).Each iteration begins by
creating a list of nodes l and randomize their order in the list (line 5). We than traverse
nodes in the list l and process each node separately (lines 7–9). The node processing is
as follows (pseudocode is presented in Algorithm 2): we remove the node from it’s original
community (line 5) and compute the gain function for all the neighboring communities (lines
7–17). We assign the node to the community with the highest gain value (lines 18–19). If the
community the node is assigned to is different from it’s original community, we say that the
node moves between communities (return value of Algorithm 2 indicates whether the node
has moved). After iteration over the list l is finished, we decide whether we continue with
another iteration or finish the computation. The stop criteria are: a) no node has moved in
the whole iteration; b) user specified maximum number of iteration has been reached. The
condition b) is introduced to ensure the convergence of the process and avoid the oscillation
of nodes between communities with equal gain value for the node (we remind that we break
ties by randomly picking one of the communities with the highest score). In our experiments,
we have set the maximum number of iteration to 25. The Algorithm 1 handles iterations and
terminal conditions, while Algorithm 2 is the greedy step, where we select the community
the given node will join, based on current state of the intermediate partition of the network.



Algorithm 1 SizConCD function: ComputeOneLevel
Require: int iteration_limit > 0
Require: Graph G
Require: int upper {Upper limit for community size}
1: int current_iteration = 0
2: int moves = −1

{create partition where each node is in separate community}
3: Set of Set of Node C = initialize_partition(G)
4: while (current_iteration < iteration_limit) ∨ (moves = 0) do
5: List l = randomizeNumbering(G) {create randomized list of nodes}
6: int moves = 0
7: for ∀n ∈ l do
8: moves += move(n, G, C, upper) {greedy step - choose community for n}
9: end for

10: end while
11: return C

We omit the definitions of functions used only for manipulation with data structures, as
we consider them to be quite simple and unnecessary for the comprehension of algorithm’s
mechanism. Considering the definition of the gain function, our expectation is to receive
communities of smaller sizes and rather balanced in sizes. This expectation is based on
modification of affinity introduced in seed_gain function.

Approximation of affinity partition and size constrained community detection The al-
gorithm for building seed groups is very accurate itself for identifying good approximations
of the affinity partition of a network with small communities. However, it fails when the
range in community sizes is high. The algorithm, in this case, identifies large number of
small communities. On the other hand, if we use aff(n,C) as a gain function instead of gain
function 1, the algorithm collapses into a single community, when the community structure
is not very clear. The following function was proposed as a gain function for size constrained
community detection, which allows a user to impose constraint on the community sizes. Let
UpperLimit be the desired size limit (user provided parameter).

sizcon_gain(n,C) =
aff(n, c)

b |C|
UpperLimitc+ 1

The function returns value equal to aff(n, c) for the communities smaller then UpperLimit;
the gain of joining communities larger then UpperLimit is purposely lowered. When the user
does not wish to constrain the size of the communities, he/she uses UpperLimit equal to N
(number of node in the network).

Experimentation with the use of different gain functions lead us to the following solution,
the SizConCD algorithm: we first build the seed groups as described in Subsection 4.3; we
then continue in the iterations with altering gain functions, switching sizcon_gain(n,C) and
seed_gain(n,C) as the gain function. The intuition is that use of sizcon_gain(n,C) as a
gain function pushes the intermediate result towards the state of affinity partition, while the
use of the seed_gain(n,C) prevents the procedure from collapsing the result into a single
large community. This greedy heuristics leads to very good results on synthetic benchmark
graphs.



Algorithm 2 SizConCD function: move
Require: Graph G
Require: Node n ∈ G
Require: Set of Set of Node C {graph partition}
Require: int upper {Upper limit for community size}
1: double max_gain = 0
2: Set of Node orig_comm = getCommunityForNode(n, C) {get community n belongs to}
3: int orig_comm_id = getCommunityId(orig_comm)
4: Set of Set of Node candidate_comms = ∅
5: orig_comm = orig_comm \ n {First, remove n from original community}
6: Set of Set of Node neighbor_comms = getNeighboringCommunities(n, G, C) {get communities

adjacent to n}
7: for ∀comm ∈ neighbor_comms do
8: double affinity = getAffinity(n, comm) {compute affinity of n towards comm}
9: double gain = affinity× log

(
upper
|comm|

)
{compute gain}

10: if gain = max_gain then
11: candidate_comms = candidate_comms ∪ comm
12: end if
13: if gain > max_gain then
14: max_gain = gain
15: candidate_comms = {comm}
16: end if
17: end for
18: Set of Node best_comm = selectCommunity(candidate_comms) {select smallest community from

the candidates}
19: best_comm = best_comm ∪ n {add node to the best fitted community}
20: if getCommunityId(best_comm) = orig_comm_id then
21: return 0
22: end if
23: return 1

Time complexity We first express time complexity of a single iteration of the algorithm.
Let n be the number of nodes andm be the number of edges. The randomization of the order
in which the nodes are processed takes O(n) steps. In the subsequent loop we process all
the edges when computing the gain function for each node, taking O(m) steps. The time
complexity of an iteration is thenO(n+m). To ensure convergence of the algorithm, we use
the limit on the number of iterations, a constant; we thus perform at most k iterations. This
means that the resulting time complexity of the algorithm stays O(n+m).

5 Evaluation

In this section, we report on our experiments with the proposed SizConCD algorithm. We
first describe the benchmark used for the evaluation. Our experiments include evaluation on
artificial benchmark graphs and experiments on the Wikipedia link graph as a real-world
network. To be able to take advantage of the comparative analysis of community detection
algorithms conducted by Lancichinetti et al. in [14], we have redone their experiments with
the use of our method. This allows us a head-to-head comparison with a number of popular
community detection algorithms. In our experiments, we have used NMI similarity measure,



which is dominant in the literature. We have used the cNMI measure as well (see Section
3.2), as it has been used in the comparative analysis paper. We perform thorough evaluation
of our approach on networks with various properties.

5.1 Benchmarks

For research purposes, it is practical to compare results of community detection algorithms
with a ground truth, analyzing networks with the known community structure. For those
purposes, community detection benchmarks were proposed. Benchmarks generate artificial
networks containing communities.

The most widely used approach for generating artificial networks with communities is
planted l-partition model [5]. In this model, we generate defined number of groups of nodes;
nodes are connected with probability of pin to the other members of their group and with
probability pout to the nodes in other groups. Girvan and Newman used in their work [9]
planted l-partition graphs with 128 nodes (each node having degree 16) divided into 4 dis-
joint communities, each having 32 nodes (GN-benchmark). This class of graphs becomes
quite popular within community detection research, we refer to this type of benchmark
graphs as GN-benchmark.

The criticism of the GN-benchmark is that all the nodes have the same degree and com-
munities are of the same size, which makes them dissimilar to real-world networks where
power-law distribution of node degrees and community sizes has been observed [2]. Lan-
cichinetti et al. [13] have proposed LFR-benchmark that overcomes the drawbacks of GN-
benchmark and generates networks with more realistic properties. LFR-benchmark is based
on planted l-partition model; degrees of nodes and sizes of communities are assigned from
a power law distribution, instead of probabilities pin, pout the mixing parameter µ is used.
The value of µ defines the percentage of node’s edges that connects it to the nodes outside
it’s own community. For simplicity, µ is constant for all nodes of the generated network. We
believe that, to date, LFR-benchmark provides the most reliable way to test and compare
community detection algorithms. Therefor, we have used the LFR-benchmark to evaluate
the algorithm presented in this paper. Moreover, Lancichinetti et al. [14] have conducted
a comparative analysis of several popular community detection algorithms on their bench-
mark. Thus, performing the evaluation on the graph with the same properties as the graphs
used in [14] allows us the head-to-head comparison with numerous existing approaches to
community detection.

5.2 Evaluation on the LFR benchmark, on small undirected graphs

We have performed experiments, using LFR-benchmark, with the proposed method on small
undirected networks (1000 and 5000 nodes), with the same settings as in [14]. This bench-
mark test evaluates community detection methods on small undirected networks with small
communities (10-50 nodes) and big communities (20-100 nodes). The results are depicted in
Figure 2, each results represent the average of 100 trials, using SizConCD algorithm without
constraining community sizes (upper limit: N ).

SizConCD algorithm has clearly better performance on the networks with smaller com-
munities. Surprising are consistently high values of NMI measure, even in case of network
with high value of the mixing parameter (µ = 0.9). Those high values of NMI are caused
by the bias of NMI measure towards partition with very small communities and do not indi-
cate the accuracy of the proposed approach. SizConCD algorithm produced a large number
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Fig. 2. LFR benchmark on undirected small graphs (1000 and 5000 nodes); small communities are of
size 10–50, size of big communities ranges between 20–100. (x-axis: µ, y-axis: cNMI and NMI)

of very small communities (3-5 nodes) when the community structure is very unclear (high
values of µ); this is the cause of high NMI values. By comparing achieved results with the
performance of those tested in [14], we can conclude that for LFR-benchmark on small undi-
rected networks, the SizConCD has performance similar to the algorithm by Bondel et al. [1]
and it is outperformed by algorithm introduced in [21] and RN [20] algorithms.

5.3 Evaluation on small directed graphs

The next set of test was performed on small directed networks of LFR-benchmark. The ex-
periment settings were identical to [14]. The results are depicted in Figure 3, each point in
plots represent the average of trials on 100 generated networks, using the SizConCD algo-
rithm without size constraint (upper: N). We can observe better performance on networks
with smaller communities. Comparison with benchmark results presented in [14] is rather
favorable; in the comparative analysis paper, two algorithms were tested on benchmark for
directed graphs (as lot of community detection algorithms are not adapted for directed net-
works) – Infomap [21] and the modularity optimization via simulated annealing [11]. We
observe higher values of cNMI for the partition produces by SizConCD than partitions by
Infomap in all cases. Simulated annealing method has a slightly higher values for the case
of 1000 nodes network with big communities, approach proposed in this paper is better in
other settings. As the simulated annealing method optimizes the modularity, its results are
rather poor for the case of 5000 node network with small communities due to the resolution
limit of modularity. We can thus conclude that SizConCD method achieved the best results
on this benchmark setting.

5.4 Evaluation on large undirected graphs with wide range of communities

In this experiment, we verify the performance of the algorithm on large networks of 50000
and 100000 nodes. Benchmark graphs were generated with the following settings: commu-
nity sizes ranged between 20 and 1000, nodes degrees ranged from 20 to 200. The results
are shown in Figure 4(a). Again, the comparison of the proposed SizConCD algorithm with
the algorithms tested in [14] is rather favorable. Our approach achieves better cNMI values
than all the algorithms tested in the comparative analysis study.
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Fig. 3. LFR benchmark on directed small graphs (1000 and 5000 nodes); small communities are of size
10–50, size of big communities ranges between 20–100. (x-axis: µ, y-axis: cNMI and NMI)

5.5 Applying size constraint

To evaluate the results of the SizConCD algorithm when constraining the community size,
we have performed following experiment. Using LFR-benchmark, we have generated di-
rected graphs of 10000 nodes, containing 10 communities, each of 100 nodes; the average
node degree was set to 20, maximal,degree set to 50. We have then run the SizConCD al-
gorithm a) without the size constraint (as a baseline), b) with the size constraint set to 50
nodes and c) with the size constraint set to 25 nodes. The results are depicted in Figure 4(b).
High values of NMI indicates that algorithm constructs meaningful groupings when the size
of generated communities is constraint.

5.6 Detecting communities in Wikipedia

With promising results achieved on artificial networks, we wanted to apply the SizConCD al-
gorithm on a real-world network. We have used proposed algorithm to cluster the link graph
of Wikipedia, where each node represents an article and edges represent hyperlinks between
articles. We obtain the link graph by processing Wikipedia XML dump (from November
2009) by a custom script. Links to redirect pages were replaced by links to targets of the
redirects. Resulting link graph contains 3.1 million nodes and 91 million edges. Thanks to
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the low computational complexity of SizConCD algorithm, we were able to analyze the
graph of this size.

We have first run the SizConCD algorithm on Wikipedia link graph without constraining
the size of the communities. The resulting partition had 51 communities with more than
10000 nodes, with the largest community containing 170000 nodes. Nodes had on average
34% of edges going out of the community. As several communities of the partition were still
too large, we have rerun the experiments, setting upper size constraint to 100. The resulting
partition had the largest community of 1900 nodes, nodes had on average 56% of edges
going out of the community.

After clustering Wikipedia link graph, one would expect nodes in communities to be
somehow semantically related. As an example we provide the listing of titles of article shar-
ing the community with article on ’Community structure’. We consider this clustering to be
semantically correct, containing semantically close concepts. The members of the commu-
nity are the following: Duncan J. Watts, Six Degrees: The Science of a Connected Age, Si-
mon model, Clustering coefficient, Modularity (networks), Random regular graph, Random
graph, Preferential attachment, Luciano Pietronero, Watts and Strogatz model, Generalized
scale-free model, Mixing patterns, Shlomo Havlin, Sexual network, Community structure,
Small world experiment, Social-circles network model, Assortativity, Steven Strogatz, Aver-
age path length, Copying mechanism, Countability, Adilson E. Motter, Scale-free network,
Degree distribution, Complex network zeta function, Fitness model (network theory), Reci-
procity in network, Mark Newman, Giant component, Guido Caldarelli, Fitness model, As-
sortative mixing, Shortcut model, Triadic closure, Derek J. de Solla Price, Fractal dimension
on networks, Erdős-Rényi model, Complex network, Small-world network, Barabási-Albert
model, Eli Upfal, Alessandro Vespignani.

6 Conclusion

We have proposed a new algorithm for the community detection in networks. A notable fea-
ture of the proposed algorithm is that a user can constrain the size of the communities being
generated, which might be a practical feature for a number of applications. The algorithm
has a pseudo-linear time complexity which makes it applicable also to large networks. Re-
cent work on the LFR-benchmark for community detection algorithms allowed us to perform
thorough evaluation of the performance of the proposed approach. The comparative analy-
sis of community detection algorithms on the LFR-benchmark enabled direct, head-to-head
comparison of our approach with existing popular community detection algorithms. Evalu-
ation showed very competitive performance of the proposed algorithm, which outperformed
other approaches in several of the benchmark tests.

As the algorithm has the potential to identify communities at different size resolutions
(by varying size limit), the direction for the future work is to extend the algorithm for hi-
erarchical clustering. Another direction for the future work is to identify multi-community
membership of the nodes as a post-processing step of the algorithm. This would allow us to
study proposed algorithm for the task of identifying overlapping communities.
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