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ABSTRACT
Recently, the problem of efficiently supporting advanced query op-
erators, such as nearest neighbor or range queries, over multidimen-
sional data in widely distributed environments has attracted much
attention. In unstructured peer-to-peer (P2P) networks, peers store
data in an autonomous manner, thus multidimensional routing in-
dices (MRI) are required, in order to route user queries efficiently
to only those peers that may contribute to the query result set. Fo-
cusing on a hybrid unstructured P2P network, in this paper, we
analyze the parameters for building MRI of high selectivity. In the
case where similar data are located at different parts of the network,
MRI exhibit extremely poor performance, which renders them in-
effective. We present algorithms that boost the query routing per-
formance by detecting similar peers and reassigning these peers to
other parts of the hybrid network in a distributed and scalable way.
The resulting MRI are able to eagerly discard routing paths during
query processing. We demonstrate the advantages of our approach
experimentally and show that our framework enhances a state-of-
the-art approach for similarity search in terms of reduced network
traffic and number of contacted peers.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing

General Terms
Algorithms, Experimentation, Performance

Keywords
Multidimensional routing indices, P2P query processing

1. INTRODUCTION
Routing indices [5] have been proposed to improve the perfor-

mance of search in unstructured peer-to-peer (P2P) networks. The
purpose of routing indices is to direct queries to peers in an in-
tentional manner, by discarding network paths. Traditional routing
indices in P2P systems are mainly designed for document retrieval

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

Local MBRs

m5

Local MBRs

SPD

m4

SPE

Local MBRs

SPA

m1

Local MBRs

SPC

m3

Local MBRs

SPB

m2

SPB

Multidimensional Routing Index (MRI)

SPC

SPD

m2

m3

m4,5

Figure 1: MRI of SPA in a super-peer network.

applications, thus maintaining aggregated one-dimensional values,
representing the number of documents that can be obtained in a cer-
tain direction in the network. However, many applications handle
multidimensional data and require more advanced query types. Re-
cently, there exists a trend towards supporting advanced query pro-
cessing in P2P networks as well [7, 19, 31], using multidimensional
summary information for directing queries in the network in a de-
liberate way. Similar to centralized multidimensional indices, data
stored on peers is described by representative (multidimensional)
data descriptors, realized as minimum bounding regions (MBRs)
that enclose all data points on a peer.

The main disadvantage of using multidimensional indexing tech-
niques in unstructured P2P networks, is that the query processing
performance quickly deteriorates when the number of participating
peers increases. Therefore, in this paper, we assume a super-peer
overlay that provides the necessary stability in order to provide effi-
cient query processing. Nowadays, the advantages of using a super-
peer architecture [32] have been recognized by most of the existing
P2P file-sharing networks (eMule, KaZaA) that rely on a super-peer
architecture. Beyond file-sharing, there are several important appli-
cations, such as distributed image search [12] and query processing
over distributed collaborative scientific databases [22, 24], which
can benefit from a super-peer architecture. For example, consider
scientists (peers) that collect massive datasets of astronomical ob-
servations [24] or biological data [22] and upload their descriptions
to dedicated servers (super-peers), in order to share it with other
scientists. Unlike plain file-sharing platforms, these distributed ap-
plications handle multidimensional data and require more advanced
query types, such as nearest neighbor or range queries, in order to
provide the desired functionality.

Multidimensional routing indices (MRI) [7, 10, 19] are com-



posed of different local centralized multidimensional indices, each
stored at a super-peer. The data objects stored by the MRI at a
super-peer are MBRs that summarize the data available through
each neighboring super-peer. The simplest form of a MRI at a
super-peer is a list of one or more MBRs for each neighboring
super-peer. In the example of Figure 1, the MRI of SPA is de-
picted, which consists of three entries, one for each neighbor
{SPB ,SPC ,SPD}. The MRI are constructed in a distributed man-
ner. SPD is informed about SPE’s content by receiving a set of
MBRs (i.e., m5), representing the data that can be retrieved if a
query is forwarded in that direction. This information is then ag-
gregated (m4,5) with its own MBRs (i.e., m4) and forwarded to
SPA. Thus, each super-peer (in this case SPA) builds and main-
tains its own MRI and utilizes it in order to efficiently route a query
to its neighbors.

There exists a distinct difference between a MRI and a distributed
multidimensional index, such as [11]. In the latter case, the nodes
of a single index are themselves distributed on different servers,
whereas MRI consist of multiple centralized indices at super-peers
that describe the data available through each neighboring super-
peer. Also notice the difference between approaches that rely on a
structured [28] (i.e., DHT-based) or tree-based [21] P2P network,
where each peer is (a priori) assigned and becomes responsible for a
part of the data space. These approaches follow a space partitioning
approach and rely on deliberate data placement on peers, whereas
MRI adopt a data partitioning approach where each peer stores its
data autonomously. Even though multidimensional indexing tech-
niques based on data partitioning have been extensively studied in
centralized settings [13], the advantages of using data partitioning
techniques in P2P systems have been only partially explored.

Assuming that each super-peer stores its own MRI, a super-peer
is able to deliberately route the query to some of the neighboring
super-peers during query processing. For example, a range query is
forwarded to all neighboring super-peers for which there is an MBR
in the MRI that overlaps with the query. Thus, the performance
of query processing depends on the selectivity of routing indices,
which is the ability to discard neighboring super-peers (or routing
paths) during query routing. An important parameter that affects
the selectivity of the MRI is the similarity of the data maintained by
neighboring super-peers. The aggregation of the MBRs during the
MRI construction causes the enlargement of the MBRs. In turn, this
leads to overlapping MBRs and affects the selectivity of the MRI,
similar to multidimensional access methods [13] in the centralized
case. In our running example in Figure 1, the aggregation of m4

and m5 leads to an enlarged MBR, namely m4,5. Notice that SPA

stores locally only m4,5 and the enclosed MBRs are depicted only
for sake of clarity. In addition, since each super-peer summarizes
the data stored by its peers by a set of MBRs, an important factor
is the underlying distribution of data to super-peers. Although data
on peers may be clustered into a few thematic areas that reflect the
user’s interests, when peers join the network by connecting to a
randomly chosen super-peer, the super-peers end-up indexing data
spread all over the data space. Again in this case the selectivity of
the MRI is poor.

Focusing on a super-peer network, in this paper, we propose
an efficient approach for constructing MRI of high selectivity that
boosts the query processing performance, since fewer super-peers
need to be contacted. We present algorithms for the identification
of peers with similar content and reassign them to the same super-
peer, by establishing new additional overlay connections. Our ap-
proach is self-organizing, in that there is no prior assignment of
space partitions or data to each super-peer, but the data distribution
is dynamically captured. The peer MBRs reassignment takes into

account the super-peer topology, so that neighboring super-peers
index peers with similar content.

The individual contributions of this paper are:

• We discuss the concept of multidimensional routing indices
and analyze important performance parameters that deter-
mine their routing ability (Section 3).

• We present novel self-organizing algorithms for detecting peers
with similar content and, subsequently, grouping such peers
to the same super-peer (Section 4).

• We study the problem of assigning groups of peers to super-
peers, by taking into account the network topology, in order
to maximize the similarity of neighboring super-peers. The
proposed mapping creates a clustered overlay topology lead-
ing to improved selectivity of the resulting multidimensional
routing indices (Section 5).

• We describe efficient maintenance techniques of MRI in the
presence of data updates, peer joins and failures (Section 6).

• We demonstrate the advantages of our approach using large-
scale simulations and show that our techniques support ef-
ficient query processing in terms of reduced network traffic
and contacted peers (Section 7).

In addition, we provide the definitions in Section 2, we review re-
lated work in Section 8, and we conclude in Section 9.

2. OVERVIEW AND DEFINITIONS
In this paper, we assume a super-peer network [7, 32] that con-

sists of Nsp super-peers, each connected to a limited set of at most
DEGsp other super-peers. Such networks include many simple
peers and few enhanced super-peers, in terms of processing power,
storage capacity or network connectivity. Each super-peer SPi is
responsible for DEGp simple peers, which connect to SPi di-
rectly. The initial assignment of peers to super-peers is random with
respect to peers’ contents [7, 32]. Each peer Pi, i ∈ [1, Np], main-
tains its own dataset Oi that consists of ni d-dimensional points.
Hence, the complete dataset O is the union of all Np datasets Oi

(O = ∪Oi, i ∈ [1, Np]), which is the case of horizontal data dis-
tribution, and moreover the size of the complete set of points is
n =

∑Np

i=1 ni.
We are interested in supporting exact query processing on top of

the super-peer network, which means that we would like to process
a query in a distributed manner, but the answer set should be the
same as if the query had been executed on the dataset O in a central-
ized setting. In the rest of the paper, we describe how range queries
are processed, merely as a showcase example, although other query
types can be supported as well.

DEFINITION 1. Range query R(q, r). Given a query object q
and a radius r, a point p ∈ O belongs to the result set of the range
query if dist(q, p) ≤ r, where dist() denotes the distance function.

Multidimensional routing indices are built at super-peer level, in
order to route user queries more efficiently to only few super-peers
that can contribute to the query result set. We now provide a more
concrete description of a multidimensional routing index at super-
peer SPi. The routing index MRI can be considered as a set of
up to DEGsp entries MRI = {S1, . . . , SDEGsp}, one for each
neighboring super-peer. Each entry Sj consists of kj MBRs and is
associated with a super-peer SPj that is a neighbor of SPi. Any
data point stored by a peer that is accessible through super-peer



SPj is enclosed by an MBR that belongs to the Sj entry. Each
super-peer SPi can use any centralized technique to store and query
efficiently these sets of MBRs, such as an R-Tree [16].

In the following, we quantify the similarity between MBRs by
defining appropriate metrics, analogously to construction methods
of multidimensional access methods. We refer to dead space as the
space that is covered by the aggregated MBR, but not by the MBRs
that are enclosed by it.

The similarity of a set of MBRs can be expressed by the volume
of the MBR that encloses all MBRs that belong to the set.

DEFINITION 2. Enclosed Volume. Given a set of n MBRs
{m1,. . . ,mn}, the enclosed volume V̂ is defined as the volume of
the MBR m′ that encloses m1,. . . ,mn:

V̂ (m1, ..., mn) = V olume(m′) (1)

When V̂ is large, the enclosed MBRs are dissimilar and the prob-
ability of enclosed dead space is high. Small values of V̂ indicate
that the enclosed MBRs are probably overlapping or lying nearby
in the data space.

The most important factor that determines the quality of an indi-
vidual MBR is the volume of dead space that it encloses. In order to
quantify the dead space, we define a quality measure named com-
pactness.

DEFINITION 3. Compactness. Given an MBR mi which en-
closes a set of k MBRs mj , 1 ≤ j ≤ k, the compactness of mi is
defined as:

CO(mi) =

∑j=k
j=1 V olume(mj)

V olume(mi)
(2)

A small value of compactness (much smaller than 1) means that
there is a large volume of dead space inside mi.

The overlap of two MBRs also conveys some notion of similar-
ity, therefore we define the relative overlap of two MBRs.

DEFINITION 4. Relative Overlap. Given mi and mj , their over-
lap from the perspective of mi is defined as relative overlap:

RO(mi, mj) =
V olume(mi ∩ mj)

V olume(mi)
(3)

By definition relative overlap is not symmetric RO(mi,mj) �=
RO(mj ,mi), when V olume(mi) �= V olume(mj), and its values
vary between 0 and 1. When RO is high, close to 1, with respect
to the volume of mi, then mi is almost covered by mj . In the case
that RO is low, the volume of the intersection is much smaller than
the volume of mi, even though the overlap may be significant.

3. MULTIDIMENSIONAL ROUTING INDICES
In this section, we first describe the construction of MRI and

then we describe how query processing is performed. Finally, we
analyze the factors that affect the selectivity of MRI.

3.1 Construction Phase
Prior to MRI construction, local indexing of peer MBRs at the

responsible super-peer is performed. Each super-peer aggregates
and maintains a set of MBRs that summarize the available data
stored on its peers. Assume that each peer’s data is described by
a list of ki MBRs, which enclose all data objects that exist on the
peer. Each super-peer gathers the MBRs of its DEGp associated

peers and stores them locally using any available centralized mul-
tidimensional indexing data structure, such as an R-Tree. In addi-
tion, each super-peer creates a list of aggregated MBRs1, based on
the collected MBRs of its peers. Then, given a peer Pj connected
to a super-peer SPi, every MBR of Pj is enclosed by at least one
MBR of the aggregated MBRs of SPi. In the case of an R-Tree,
the aggregated MBRs could be the root MBRs.

The MRI are constructed in a distributed manner, by having each
super-peer receive, aggregate and propagate the MBRs of its neigh-
bors. Assuming an acyclic network topology, each super-peer in-
forms its neighbors about the data that it indexes, by broadcast-
ing its aggregated MBRs. A super-peer SPi that receives a set of
MBRs by a neighbor SPN performs two operations. First, SPi up-
dates the set SN with SPN ’s MBRs, in order to accurately describe
the data that can be obtained, if a query is forwarded to SPN . Then,
for each neighbor SPj (j �= N ), SPi aggregates its local MBRs
with all sets of MBRs present in its routing index (except for the
MBRs in entry Sj), and sends the aggregated MBRs to SPj . In
this way, any neighbor super-peer SPj has an accurate view of the
data that can be obtained through SPi. Following this construction
protocol, all super-peers have eventually built their routing indices
and have sufficient information in the form of MBRs that describe
what data can be retrieved by routing the query to each of their
neighbors. Figure 1 serves as a showcase of MRI construction,
from the aspect of super-peer SPA.

In order to handle cycles, one simple solution is to assume a
spanning tree over the super-peer network. Then, MBRs are prop-
agated and aggregated using only the super-peer connections in
the spanning tree. An alternative solution is that each super-peer
propagates the MBRs that it has received from its neighbors, with-
out aggregating them, so duplicate elimination can be performed.
Then, each super-peer that receives some MBRs from a neigh-
boring super-peer, can exclude already received MBRs, i.e., from
super-peers that are accessible through a different neighbor.

3.2 Query Processing
Consider a range query R(q, r) initiated at a querying super-

peer. At query time, any super-peer SPi is able to decide which of
the neighboring super-peers may contribute to the query result set
based on the MBRs in its MRI. The query is forwarded to all neigh-
bors SPj , for which at least one routing entry Sj overlaps with the
query, while all other neighbors are pruned. This constitutes the
query routing mechanism.

Furthermore, by storing its peers’ MBRs, SPi is able to deter-
mine during query processing the peers that may contribute to the
result set of the query. Thus, SPi contacts only peers responsible
for MBRs that overlap with the query and this process is called lo-
cal query processing at SPi. Then, the queried peers process the
query based on their local data, and return their results to SPi.

The query is processed by all super-peers that receive the query
in a similar way. Each recipient super-peer first performs query
routing, then performs local query processing and waits to gather
the results of its neighbors. Finally, the combined result set is sent
back through the reverse query path to the querying super-peer.

3.3 Selectivity of MRI
During the construction of the routing indices, MBRs are ag-

gregated at intermediate super-peers. As it is well-known from
centralized multidimensional access methods, the aggregation of
MBRs causes the enlargement of the MBRs and worsens the per-

1Any technique proposed in centralized settings for creating MBRs
that enclose multidimensional data may be used, such as packing
algorithms [23, 29] or spatial clustering algorithms [17].
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Figure 2: Example of MBR aggregation.

formance of the indices during query processing. Similarly in the
case of MRI, the aggregation of the MBRs affects their selectivity,
since their enlargement may lead to forwarding the query to more
super-peers than necessary. Obviously, the enclosed dead space in
an aggregated MBR leads to its enlargement. The aggregation of
the MBRs may lead to MRI of low selectivity due to high overlap
and dead space.

EXAMPLE 1. Figure 2 depicts two alternative aggregations of
four MBRs in two groups. The aggregation in Figure 2(a) is ob-
viously inappropriate, as the aggregated MBRs have much dead
space and overlap, whereas the aggregated MBRs in Figure 2(b)
are non-overlapping with much less dead space. Consider now the
case that these MBRs represent peer data, and as such they are dis-
tributed over a super-peer network. Let us assume that m1 and m3

belong to super-peer SPA, while m2 and m4 belong to super-peer
SPB . Then the aggregated MBRs of these super-peers are similar
to Figure 2(a), leading to a high probability that a query must be
sent to both super-peers. Therefore, a third super-peer that indexes
the aggregated MBRs of SPA and SPB forwards most queries to
both directions.

High volumes of dead space of the aggregated MBRs increase
the probability that a query is forwarded to a direction that retrieves
no results, while high overlap results in more traversed paths. The
combination of both is even worse, since the query is forwarded to
multiple directions with low probability of finding any result.

The problems of MBR aggregation are also reflected in the se-
lectivity of MRI, due to: (1) the initial peer to super-peer assign-
ment, and (2) the MBR propagation and aggregation required by
MRI construction. First, even if the peers’ MBRs cover a small
part of the data space, when peers join the network and connect to
a super-peer that is chosen at random, super-peers end up indexing
MBRs spread all over the data space. In this case, the MBRs de-
scribing the super-peer’s data cover a large part of the data space.
This causes the degradation of query processing performance, since
a query may – in worst case – reach all super-peers, even though

some of them may not return any result. Secondly, during MBR
propagation, if the MBRs of a super-peer’s neighbors are not simi-
lar to its own MBRs, the aggregated MBRs will span over the entire
data space.

To address these problems, we describe two techniques that are
applied prior to MRI construction, aiming to improve the selectiv-
ity of MRI.

• Discovering and reassigning peers with similar content to the
same super-peer, in order to improve the quality of MBRs
indexed a each super-peer (Section 4). Then, queries can
be directed to specific super-peers only, thus improving the
selectivity of MRI during query routing.

• Maximizing the similarity of MBRs at neighboring super-
peers, in order to improve the performance of MRI even fur-
ther (Section 5).

In this way, the initial random peer to super-peer assignment changes
in an intentional manner. By establishing new additional overlay
connections, super-peers are assigned with peers with similar con-
tent in a self-organizing way, which is beneficial for the quality of
the subsequently constructed MRI.

4. DISCOVERING SIMILAR PEERS
In order to identify similar peers across the entire network, we

use a hierarchical overlay that aggregates in a distributed way the
MBRs of all peers into NR MBRs. These MBRs describe the data
available in the entire network. In the next step, the NR MBRs are
dynamically decomposed to Nsp groups2, essentially one group for
each super-peer. After Nsp groups are created, the peers whose
MBRs belong to the same group are assigned to a super-peer. We
emphasize that the hierarchical overlay is only used to assign simi-
lar peers to super-peers. Thereafter, MRI are constructed at super-
peer level (i.e., only one level is used), as described in Section 3.1,
to ensure fault-tolerance and load-balancing during query process-
ing.

4.1 Hierarchical Aggregation of MBRs
In order to acquire an overview of the data distribution over the

entire network, a super-peer hierarchy is required. Although any
hierarchical overlay can be applied, we employ the DESENT hi-
erarchy [6] to ensure scalability. The hierarchy is formed in an
unsupervised, bottom-up manner. The bottom level consists of the
individual peers, while the next level consists of all super-peers. In

2In the following instead of referring to the set of the MBRs that
belong to a group, we refer to the group.



Figure 3(a), the first level of the hierarchy consists of 8 peers, while
the next level of 4 super-peers.

At the same time, a hierarchy of MBRs is created, as depicted in
Figure 3(c). Initially, each super-peer aggregates the MBRs of its
peers by using at most NR MBRs. For the sake of simplicity, in our
example we set NR = 2 and Figure 3(b) shows the corresponding
data space. The aggregated MBRs of SPA at level-1 are repre-
sented by m7 and m8. As the super-peer hierarchy is created, each
super-peer assembles the MBRs of its children and creates a new
aggregated set of MBRs that correspond to all the contents of the
tree rooted at that super-peer. For example, SPA maintains the ag-
gregated MBRs m3 and m4 at level-2. Eventually, at the top-level
super-peer, a set of NR MBRs that span the contents of the entire
network is created. In the example, SPA becomes the super-peer
of the last level, collects SPD’s MBRs and aggregates them with
its own, and produces MBRs m1 and m2 that describe all data. No-
tice that the information about which MBRs of the previous level
form an MBR mi is maintained only at the super-peer responsible
for mi, and it is not necessary to be disseminated to the rest of the
network.

The aggregation process results in a hierarchy of MBRs, where
the top-level consists of NR MBRs enclosing all the available data.
Notice that the MBR hierarchy is distributed over different super-
peers and each level of the hierarchy describes the data in the entire
network at a different level of detail.

4.2 Dynamic MBR Decomposition Algorithm
We propose an algorithm that dynamically decomposes the MBR

hierarchy to form Nsp groups of similar MBRs. Each group con-
tains one or more MBRs of potentially different level of detail.
The overall objective is to assign similar MBRs to the same group,
while at the same time make the different groups as dissimilar as
possible. This is accomplished by dynamically identifying the level
of detail of MBRs that results in groups with high intra-group and
low inter-group similarity. Intuitively, this can be thought of as
a cut in the MBR hierarchy, depicted in Figure 3(c) by the grey-
colored MBRs. In this example, an appropriate group assignment
is: {m3}, {m9, m12}, {m10, m11} and {m6}.

The dynamic decomposition of the NR MBRs to Nsp groups
is performed by the top level super-peer in the hierarchy. Notice
that the lack of global knowledge of lower level MBRs makes the
task of MBR assignment particularly challenging. Moreover, each
time an MBR of lower level of detail is required, communication
is necessary between the top level super-peer and the responsible
super-peer.

Initially, the NR top-level MBRs are given as input to our algo-
rithm that dynamically explores the hierarchy by expanding some
MBRs, until the appropriate level of detail is obtained. By expan-
sion, we mean that an MBR mr is replaced by the MBRs that are
enclosed by mr in the previous level. For example, if m1 is ex-
panded in (Figure 3(c)), then it is replaced by m3 and m4. There
exist two reasons that require the expansion of an MBR. First, a
group may be empty and all MBRs have already been assigned to
other groups. Then, an MBR must be expanded, in order to ensure
that all groups have at least one MBR assigned. Second, and more
important, our algorithm aims to determine an appropriate cut in
the MBR hierarchy, which creates high quality groups. Consider
for example Figure 3(b). Let us assume that m1 and m2 have been
expanded, so that m3, m4, m5 and m6 have been assigned to the
4 groups. Even though there exists no empty group, the quality
of the groups is not sufficient. For example, by expanding m4 and
m5 and replacing them with more detailed MBRs, groups of higher
quality can be created, as demonstrated earlier. Our algorithm uses

Algorithm 1 Dynamic MBR decomposition.
1: Input: Top-level MBRs {m1, ..., mNR

}
2: Output: Groups {G1, ..., GNsp} of MBRs
3: Gi ← ∅, ∀i ∈ [1...Nsp] // group initialization
4: list← {m1, ..., mNR

} // list initialization
5: while (list �= ∅) do
6: if (∃Gi = ∅) then
7: mr ← list.getMostDissimilarMBR()
8: Gi.add(mr)
9: else

10: (mr, j)← list.getMostSimilarMBR()
11: Gj .add(mr)
12: end if
13: if ((list = ∅) and (∃Gi = ∅)) then
14: (mr, j)← getMaxV olMBR()
15: Gj .remove(mr)
16: list.add(expand(mr))
17: end if
18: if ((list = ∅) and ( � ∃Gi = ∅)) then
19: for (∀mr ∈ Gj , 1 ≤ j ≤ Nsp) do
20: if (mr.getCO() < mr.getRO()) then
21: Gj .remove(mr)
22: list.add(expand(mr))
23: end if
24: end for
25: end if
26: end while

a heuristic quality test that ensures that when it terminates, there
exist Nsp groups of sufficient quality, each of them containing at
least one MBR, without exploring the whole hierarchy.

The pseudocode of our algorithm is presented in Algorithm 1.
A list is used to keep the MBRs that have not been assigned to
any group yet. Initially the list maintains only the NR top-level
MBRs (line 4). In each iteration, if there exists an empty group, we
assign to it the MBR that is unassigned and most dissimilar to all
already assigned MBRs (lines 6-9). This MBR mr is determined
by function getMostDissimilarMBR(), which returns the MBR with
maximum enclosed volume. In the case where no empty group ex-
ists, but there exist unassigned MBRs in the list, these MBRs are
assigned to the most suitable group (lines 9-12) based on similar-
ity with already assigned MBRs. Function getMostSimilarMBR()
identifies for each MBR mr in the list, the most appropriate group
based on minimizing the enclosed volume. In case the list becomes
empty and there exists an empty group (line 13), then it is neces-
sary to expand an MBR (mr) that is already assigned to a group Gj

(lines 13-17). mr is removed from Gj (line 15) and all enclosed
MBRs are inserted in the list (line 16). Lines 18-23 describe our
quality test for the created groups, which is invoked only when the
list is empty and all groups have been assigned with MBRs. Fi-
nally, the algorithm terminates, when the list is empty at a new
repetition (line 5). This occurs if all groups have been assigned
with MBRs of acceptable quality. In the following we describe the
basic functionality in more detail.
Expansion of MBR, if an empty group exists (lines 13-17). This
is achieved by the function expand() (line 16). The MBR with
the largest volume is selected from all assigned MBRs, using get-
MaxVolMBR(), since this MBR is more probable to lead to overlap-
ping groups and its expansion may reduce the enclosed dead space.
Notice that replacing an MBR mr by its enclosed MBRs requires
communication between the top level super-peer and the super-peer
SP that generated mr . This communication is efficiently accom-
plished using the super-peer hierarchy. The cost for such a commu-
nication is bound by a number of messages equal to the height of
the hierarchy (logNp), which are required to contact SP .



Figure 4: Graph matching example.

Expansion of MBR, if no empty group exists (lines 18-23). In
this case, our algorithm employs the quality test to determine if a
cut of sufficient quality in the MBR hierarchy has been found, oth-
erwise some MBRs have to be expanded further. An MBR mr is
expanded, if its compactness is smaller than the relative overlap of
mr with mj , where mj any MBR that belongs to a different group.
The intuition is that when this condition holds, the volume of the
overlap with mj is larger than the volume of the enclosed MBRs
of mr . Notice that the compactness provides a lower bound of the
dead space in the MBR, while the relative overlap provides an esti-
mate of the overlapping volume of two MBRs. The compactness of
a bounding region is computed by function getCO(), whereas the
overlap is computed using getRO() (line 20).

5. MAPPING OF MBRs TO SUPER-PEERS
Given the generated Nsp groups of MBRs, the remaining chal-

lenge is to assign each group to a super-peers. A naive way is to
pick for each group a super-peer randomly. However, this approach
can result in a situation where neighboring super-peers in the super-
peer topology index dissimilar MBRs of peers. This influences the
aggregated MBRs of neighboring super-peers, and hence, the selec-
tivity of the MRI. Therefore, the aim is to assign groups to super-
peers, in such a way that neighboring super-peers index peers with
similar content.

In the following, we first show that the problem of group assign-
ment to super-peers can be mapped to a weighted graph matching
problem [30] and then we present our algorithm for mapping the
MBRs to super-peers.

5.1 Problem Formulation
The problem of group assignment to super-peers can be mod-

eled in the following way. The super-peer network topology is an
undirected graph Graph1 that consists of Nsp vertices. We also rep-
resent the groups of MBRs and their similarity as a graph Graph2,
also mentioned as similarity graph. The similarity graph is an undi-
rected fully-connected graph with Nsp vertices. Each vertex corre-
sponds to a group of MBRs and the weights on edges represent the
similarity between the corresponding vertices, i.e., groups. We use
as a similarity measure the enclosed volume of the MBRs that be-
long to the two groups. The weights are normalized in the interval
[0, 1] and smaller weight values indicate higher similarity.

The problem of assigning each group to a super-peer, is equiva-
lent to matching the vertices of the network topology graph (Graph1)
to the vertices of the similarity graph (Graph2), in such a way that
the edges of Graph2 that correspond to an edge in Graph1 have a
weight as small as possible. Consider for example Figure 4, where
a super-peer topology is matched to a similarity graph. By map-
ping groups to super-peers as depicted in Figure 4, we ensure that
similar groups are assigned to neighboring super-peers, because the
sum of weights is minimized.

More formally, we further assume that Graph1 is also weighted,

Algorithm 2 Mapping of groups to super-peers.
1: Input: Nsp groups {G1, ..., GNsp}
2: Output: Assignment
3: parent← ∅, nei← ∅
4: list← {G1, ..., GNsp}
5: SPnext ← maxDEGspSP

6: parent.add(SPnext)
7: Gi ← min∀Gj∈list(scoredeg(SPnext)(Gj))

8: assign Gi to SPnext

9: list← list− {Gi}
10: while (parents �= ∅) do
11: SPi ← parents.pop()
12: nei← SPi.getUnassignedNeighbors()
13: best← topnei.size()(Gi)

14: for (∀SPj ∈ nei) do
15: Gj ← best.pop()
16: assign Gj to SPj

17: list← list− {Gj}
18: parent.add(SPj)
19: end for
20: end while

where edges that correspond to the links between super-peers have
a weight equal to 0, while other edges have a weight of 1. Then,
the problem of group assignment to super-peers is mapped to the
weighted graph matching problem.

PROBLEM 1. Weighted Graph Matching: Let Graph1(V1, E1)
and Graph2(V2, E2) be weighted undirected graphs with |V1| =
|V2| = n nodes. Also, let w1 : E1 → �+ and w2 : E2 → �+

be the weighting functions of graphs Graph1 and Graph2 respec-
tively. The weighted graph matching problem is finding a corre-
spondence f between V1 = {v1, v2, ..., vn} and V2 = {v′

1, v
′
2, ..., v

′
n},

which minimizes the difference:

n∑

i=1

n∑

j=1

(w1(vi, vj) − w2(f(vi), f(vj)))
2 (4)

The aim is to find a 1-1 mapping between the vertices of the
two graphs, while keeping the weights of the edges as similar as
possible, by minimizing the sum of their squared difference. Intu-
itively, this conveys that similar groups are assigned to neighboring
super-peers, since groups with small values of enclosed volume are
assigned to super-peers with network-edges that exist (weight 0).

5.2 Mapping Algorithm
The algorithm that solves the problem of weighted graph match-

ing has a combinatorial complexity with respect to the number of
vertices (Nsp), which becomes prohibitively expensive for large
networks. Therefore, we present an approximate algorithm of lin-
ear complexity with respect to Nsp. Our algorithm dynamically
creates a spanning tree over the network topology and assigns the
most appropriate group to each super-peer in breadth-first man-
ner. As a root of the spanning tree, the super-peer with the maxi-
mum connectivity degree is chosen. We assume that the super-peer
with highest connectivity degree is more important and the reason
is twofold. First, a super-peer with many connections influences
the performance of the MRI more, since it propagates aggregated
MBRs to more super-peers. Secondly, it is less probable to find a
group that is similar to many other groups, and it gets more difficult
if some groups are already assigned, as they impose constraints to
new assignments. After assigning an appropriate group to the first
super-peer, the next subset of super-peers is its neighbors; priority
is based on super-peer connectivity degree, with well-connected



super-peers being assigned with groups first. This procedure is re-
peated until all groups are assigned to a different super-peer.

Group selection is based on the similarity to the group already
assigned to the neighboring super-peer. If Gi denotes the already
assigned group to SPi, we assign to a neighboring super-peer SPj

the group Gj that minimizes the enclosed volume V̂ (Gi, Gj). Given
a group Gi, a ranking of a set of groups {Gj} can be defined based
on the enclosed volume with respect to Gi. We denote as topk(Gi)

the k groups Gj that have the minimum values V̂ (Gi, Gj). Then,
the following formula defines a score for each group Gi based on
its k most similar groups.

scorek(Gi) =
∑

∀Gj∈topk

V̂ (Gi, Gj) (5)

The pseudocode describing the algorithm is presented as Algo-
rithm 2. First, the super-peer SPnext with the highest connectivity
degree deg(SPnext) is selected (line 5). Since there is no group
assigned to SPnext, we pick the group Gi that has the highest
similarity with k=deg(SPnext) unassigned groups, i.e., minimum
scorek(Gj) value (line 7). Notice that we take into account only
the k=deg(SPnext) most similar groups, because each group of
MBRs has high similarity to some groups and low similarity to the
remaining groups. Then, SPnext is added to the parent list (line 6)
which stores the super-peers for which their unassigned neighbor-
ing super-peers will be processed in the next iterations. Then, until
the parents list is empty (line 10), the first element is examined (line
11) and a group is assigned to each neighbor (lines 14-19). The
most similar groups to SPi are retrieved (line 13) and assigned to
the neighbors (lines 15-16). Each neighbor is added to the parent
list (line 18). Thus, the algorithm assigns groups to super-peers by
visiting them in a breadth-first way, starting from SPnext. In the
end, each of the Nsp groups has been assigned to a super-peer.

Notice that the algorithm requires knowledge of the super-peer
topology only at runtime. As super-peers are usually a couple or-
ders of magnitude fewer than peers (i.e., the size of the P2P net-
work), this assumption is tolerated. Moreover, notice that peer
to super-peer reassignment may increase their real geographic dis-
tance. This is the basic idea behind overlay networks, which cre-
ate overlay links between peers based on content similarity. It is
generally established that the performance of query processing im-
proves by using such overlay links (as for example in CAN [28] or
VBI-tree [21]), compared to the case of links reflecting geographic
distance but no useful information about content location.

6. MAINTENANCE
Data and MBR Updates. Updates, insertions and deletions of

data stored at a peer may alter the set of MBRs that encloses the
peer’s data. As long as the data distribution of the peer’s data does
not change, the MBRs will not change by each single data update.
Only if some of the peer’s MBRs changes, the corresponding super-
peer has to be informed. Then, this super-peer has to update its
locally stored peer MBRs and the set of aggregated MBRs that en-
close the data of all peers. Notice that this does not necessary lead
to an update of the MRI. Assuming that a peer’s MBR changes
slightly, it is quite probable that the super-peer’s MBR that sum-
marizes the peer data does not change, since other peers may store
similar data. Only when the set of aggregated MBRs of a super-
peer changes, this leads to an MBR update3, which influences the
MRI. Thus, MBR updates occur less frequently than data updates.

The case of an MBR update at a super-peer is the most generic
maintenance operation, as it can be triggered by peer data updates,
3The term MBR update refers to an update of an aggregated MBR.

peer joins and failures. When an MBR increases in size, this change
must be immediately communicated to other super-peers, other-
wise a query intersecting only with the increased region will not
be routed to the updated super-peer. When an MBR decreases in
size, this change can be communicated with some delay, as in the
meantime the updated super-peer may be queried in vain, but the
correctness of the result is still guaranteed. In a similar way, if
a super-peer SPN receives an updated set of neighboring MBRs,
then SPN updates its local MRI and informs its neighboring super-
peers about the MBR update.

Although data and MBR updates can be efficiently handled us-
ing the aforementioned protocols, it is possible that high rates of
churn may result in MRI of poor quality. However, using the met-
rics defined and used throughout this paper, a super-peer can indi-
vidually decide when the quality of its local MBRs has degraded
significantly. For example, by observing the average compactness
of its local MBRs, a super-peer can decide that their quality is no
longer acceptable. Therefore, when most of the super-peers iden-
tify such a situation, the routing indices construction is triggered
anew, in order to generate MRI of higher selectivity. Even though
the construction could run periodically regardless of churn rate, the
proposed approach is more appropriate, because it is on demand
and it can self-adapt to the peer dynamics in the system.

Peer joins. When a new peer PJ joins the system, PJ provides
a summary description of its data by means of a set of k MBRs.
Obviously the value of k is not fixed and it varies for different peers.
Initially, PJ connects to a super-peer SPJ at random, using the
basic bootstrapping protocol. Then, SPJ undertakes the task to
discover the most relevant super-peers that PJ should connect to.
In order to achieve this goal, the MRI are exploited.

For each mi (1 ≤ i ≤ k) of PJ ’s MBRs, SPJ executes the
following procedure. SPJ computes the minimum enlargement of
volume of its aggregated MBRs caused by mi. This value serves
as a measure of goodness for accommodating mi. Then, SPJ uses
its MRI to compute the value of enlargement for each neighbor-
ing super-peer, and forwards mi only to those neighbors that have
a smaller value of enlargement based on the MRI. Any recipient
super-peer SPR computes the value of enlargement and checks if
mi needs to be forwarded further. Eventually, any recipient super-
peer SPR sends back to SPJ its locally computed value of enlarge-
ment and SPJ assigns mi to the SPR with smallest value. The ob-
jective is to assign mi to that super-peer, which can accommodate
mi with minor changes to its MBRs. Using this peer joining proto-
col, PJ establishes up to a maximum k intentional connections to
other super-peers in the network. For each super-peer SPR that is
assigned with PJ due to one of its MBRs, it is possible that SPR

needs to update its MBRs, in order to enclose also the data of PJ .
Fault-tolerance. Regarding peer failures, each super-peer SPi

can easily and timely detect the failure of a peer PF , by sending
periodically ping messages to all peers connected to SPi. Since PF

was connected to SPi, we assume without loss of generality that
there exists (at least) one MBR of SPi that encloses an MBR of PF .
When the failure is detected, SPi deletes the peer’s MBRs from its
local index, and updates its list of aggregated MBRs that contained
PF ’s MBR. Finally, SPi checks if an MBR update occurred and if
necessary the neighbors are informed as already described.

Churn of super-peers is infrequent, however it can be efficiently
handled capitalizing on the methods for MBR updates. When a
super-peer failure occurs, peers have to reconnect to the network
using the bootstrapping protocol. Whenever neighboring super-
peers detect a super-peer failure, the corresponding MBRs are deleted
from the MRI and their neighbors are informed. When a super-peer
joins the network, it connects to DEGsp other super-peers, and



peers connect to this super-peer through the peer join procedure. In
this way, the super-peer builds its aggregated MBRs and exchanges
MBRs with its neighbors.

7. EXPERIMENTAL STUDY
We evaluate the selectivity of MRI using large-scale simulations,

with a simulator prototype implemented in Java. We used the GT-
ITM topology generator4 to create well-connected random graphs
of Nsp (200-600) super-peers with average connectivity DEGsp

(4-7). Unless mentioned explicitly, we use DEGp=10 for the ini-
tial P2P topology, thus obtaining the number of peers Np (2000-
6000). We conduct experiments varying the dimensionality d (2-6)
and the cardinality n (1-3M) of the dataset. We keep the number of
objects per peer (n/Np) constant and equal to 500.

In order to evaluate the scalability of our approach, we experi-
mented with synthetic clustered data collections, partitioned evenly
among the peers. For the clustered dataset generation, we randomly
pick Nsp d-dimensional points and each peer obtains k distinct cen-
troids from them at random. Obviously, two peers may share the
same centroid. Thereafter, each peers’ object is generated inside a
radius r from one of the peer’s centroids. The radius r is selected in
a way that the total volume of the data capture v% of the data space.
Although we use as default value v=10%, we study the effect of
varying v values in our experiments. Peer data are represented by
spherical MBRs, and they are determined using the k-means clus-
tering algorithm. Notice that the choice of the clustering algorithm
is orthogonal to our framework and other techniques can be em-
ployed. MBR aggregation at any super-peer is also performed us-
ing the k-means algorithm on the MBRs centroids. Naturally, we
study the performance of MRI for varying values of k.

To study the performance of query processing on top of the MRI,
we employ the SIMPEER [7] framework, which is the state-of-the-
art approach for multidimensional query processing over a super-
peer architecture. For comparative purposes, we compare against
SIMPEER that assumes random peer to super-peer assignment. The
comparison against SIMPEER helps to quantify the improvement
of the MRI in terms of selectivity achieved by our approach. Fur-
thermore, we evaluate the performance of routing indices constructed
by our approach (MRI) to indices constructed by an OPTIMAL
peer to super-peer assignment, which provides the best performance
that any algorithm can achieve.

7.1 Selectivity of MRI
Our first objective is to evaluate the selectivity of MRI, which di-

rectly depends on the quality of the groups (or equivalently MBRs)
that have been assigned to the super-peers, as their dead space and
overlap determine the selectivity of the MRI. Our default setup con-
sists of a network of 2000 peers, 200 super-peers, 1M data objects,
and we set the k-means parameter to k=10. All experiments were
repeated using 10 different synthetically generated datasets and the
average number of the measurements is depicted in all cases.

In Figure 5(a), we study the compactness with respect to the data
dimensionality, in particular by increasing the dimensionality from
d=2 to d=6. We compare the compactness of the groups assigned
to super-peers using MRI to SIMPEER, for varying number k of
MBRs. Recall that a value of compactness smaller than 1 means
that definitely dead space is enclosed, while for values larger than
1 the probability of existing dead space decreases. Clearly, the
groups created by SIMPEER have compactness close to zero for
all tested values of k. In contrast, MRI manages to create groups of
high quality, especially with increasing k. This is because higher

4Available at: http://www.cc.gatech.edu/projects/gtitm/
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Figure 5: Selectivity of MRI for varying d.

number of MBRs enables more detailed description of data, hence
MBRs are aggregated in a more efficient way. Notice that the de-
crease of compactness with increasing dimensionality is expected,
however its values remain high and 1 to 2 orders of magnitude bet-
ter than SIMPEER in all cases.
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Figure 6: Selectivity of MRI for varying Np and v.

To evaluate the routing ability of the MBRs, we select randomly
20 MBRs out of the original peer MBRs, and consider them as
range queries that follow the data distribution. We measure the
average number of groups that contain an overlapping MBR with
the queries or, equivalently, the minimum number of super-peers
that have to be contacted during query evaluation. We fix the value
of k to 10 and vary the super-peer network topology, from sparse
(DEGsp=4) to dense (DEGsp=7) in Figure 5(b). We conclude
that the topological characteristics only slightly affect the number
of super-peers that is necessary to be contacted. This verifies the
high quality and routing ability of MRI, regardless of the topology.
Moreover, based on the way data is generated on each peer, we can
define an OPTIMAL case where all peers that obtained a particular
centroid connect to the minimum possible number of super-peers.
Since the number of such peers is 100 and each super-peer indexes
DEGp=10 peers, the OPTIMAL number of super-peers is 10. We
observe that MRI manages to achieve performance much closer to
OPTIMAL than SIMPEER.

In Figure 6(a), we depict only dimensionality 3 and 4 and we
increase the network size Np by scaling the number of peers up to
6000. The number of super-peers Nsp is kept to 200. Thus, each
super-peer is assigned with DEGp=10 to 30 peers. With respect
to compactness, MRI outperforms SIMPEER for all network sizes.
Moreover, the compactness increases with network size, since each
super-peer is initially connected to more peers, hence more MBRs
are collected and their aggregation is of higher quality. In addi-
tion, we increased Nsp up to 600 super-peers, and we observed that
MRI always outperforms SIMPEER in terms of number of con-
tacted super-peers (chart omitted due to space limitations). More
importantly this gain is maintained as the number of super-peers
increases, clearly demonstrating the scalability of MRI.

The effect of the percentage v of data space volume captured by
the dataset is studied in Figure 6(b). We test v=1%, v=10% and
v=20%, where increasing values resemble the more uniform data
distribution. In all cases, MRI performs gracefully compared to
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Figure 7: Study of query processing performance for multidimensional routing indices.

OPTIMAL, and MRI is more stable and less affected by increasing
v values, compared to SIMPEER.

7.2 Query Processing Performance
In the following, we verify that the gains in the quality of MRI

are also reflected in query processing performance. We compare
the performance of routing indices constructed using our algorithms
(MRI) to the indices of SIMPEER. We generate random range queries
of varying selectivity (number of results) that follow the distribu-
tion of data. We measure the comparative performance of both ap-
proaches in terms of average number of messages for searching and
peer success ratio, i.e., how many of the contacted peers returned
results. Figure 7 reports the experimental results. Although several
different setups were tested, we only show the most important find-
ings, due to lack of space. As an example we show results of range
queries with selectivity (res) equal to 100 and 200 objects.

In Figure 7(a), the average number of messages used for query
processing is shown. MRI requires fewer messages than SIMPEER
to retrieve the complete result set and, most importantly, this gain
increases with d. This verifies the robustness and superiority of
MRI, in terms of query processing performance, irrespective of di-
mensionality. We also measure the peer success ratio, shown in
Figure 7(b). Despite the expected drop of success ratio with in-
creased dimensionality, MRI is always better than SIMPEER and
MRI achieves acceptable values even for d=6. This result demon-
strates the efficiency of routing using MRI. In order to ensure the
validity of this result for larger networks, we increase the num-
ber of super-peers (Nsp) from 200 to 600, while the number of
peers also increases to 10 × Nsp. The chart in Figure 7(c) shows
that MRI maintains a stable peer success ratio when the network
size increases, whereas SIMPEER presents a downward tendency.
Hence, MRI is a scalable solution when the network size increases.
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Figure 8: Effect of data updates on peers.

7.3 Maintenance of MRI
In Figure 8, we study the effect of peer data updates on the MRI.

We update all 500 data points at each peer (in total 1M data points
are updated), modeled as deletions and insertions, and we measure
the percentage of data updates that caused an update at peer and
super-peer MBRs for varying dimensionality (Figure 8(a)), as well

as the number of peer MBR updates as time elapses (Figure 8(b)).
The updates follow the data distribution of the generated data. In
Figure 8(a), the results show that fewer than 1% of data updates
lead to peer MBR updates, while even fewer than 0.1% of data
updates lead to super-peer MBR updates. Therefore, only 0.1% of
the updates on the peers cause an update of the MRI. In Figure 8(b),
we depict how many peer MBRs are updated per batch of 100K
data point updates. The decreasing tendency shows that the effect
of data updates on peers diminishes as time elapses.

8. RELATED WORK
Routing indices [5] have been originally proposed in the con-

text of unstructured P2P systems, as a search-enabling technique
that provides a direction to routing, instead of blind forwarding.
Although the original context was best-effort document retrieval,
several research papers adopt routing indices, including super-peer
networks [26], semantic routing indices [25] and routing indices
based on histograms [27]. Unfortunately, traditional routing indices
are not applicable for multidimensional data that require more ad-
vanced query types, such as similarity search, and when the aim is
retrieval of the exact and complete result set.

Distributed data summaries as routing indices. The most rel-
evant works to ours are those that assume autonomous data storage
by peers and build distributed data summaries for routing. Hose
et al. use a tree-based structure, named QTree [19], for summariz-
ing data and query routing. Recently in [20], the maintenance of
routing indices is addressed and the authors discuss requirements
that need to be fulfilled by such routing structures. In contrast, our
approach focuses more on improving the selectivity of the MRI by
dynamic peer reallocation. The use of P2P data summaries has also
been proposed in [18]. SIMPEER [7, 8] supports exact query pro-
cessing over multidimensional data distributed in a super-peer net-
work. Sharing similar goals to this paper, namely efficient routing
of similarity search queries, SIMPEER relies on routing indices,
but ignores the factors that influence their selectivity.

Scalable distributed data structures (SDDS). Distributed mul-
tidimensional indices, such as distributed R-trees, have been pro-
posed in the literature. SD-Rtree [11] is a distributed balanced bi-
nary spatial tree that is used to store and query spatial objects. Each
node has knowledge of all other nodes in the system and this con-
stitutes a major difference to P2P systems, where a (super-)peer is
only aware of a limited set of neighboring (super-)peers.

P2P multidimensional indexing based on space partitioning.
Content addressable network (CAN) [28] was the first approach for
P2P multidimensional indexing. Although it is based on hashing,
CAN is similar to a dynamic multidimensional grid on the data
space. Space partitioning, based on distributed tree structures, has
also been considered. In [14], the authors identify two primary
components for multidimensional query processing, namely parti-
tioning and routing. They propose an adaptation of the kd-tree for
partitioning and use of skip pointers for routing. P-ring [4] is a



P2P index that assigns ranges of the search space to peers. VBI-
Tree [21] is a framework for multidimensional indexing in P2P
networks. Peers are organized in a balanced tree structure based
on the space partitions assigned to them. Our techniques differ
significantly from such space partitioning approaches [4, 14, 21],
because each peer stores its own data autonomously, in contrast to
predefined assignment of regions of the data space to peers and de-
liberate data placement on peers. Moreover, P2P multidimensional
indexing approaches suffer from load balancing issues, which even-
tually leads to the additional cost of restructuring the network.

Dynamic topology adaptation has been thoroughly studied in
unstructured P2P systems [1, 2, 3], where the aim is for peers to
create links to peers with similar content, thus improving the per-
formance of routing. Nevertheless, in super-peer architectures, in-
tentional peer to super-peer assignment has only recently attracted
the attention of the research community. A self-organizing super-
peer network architecture named SOSPNET, is presented in [15],
and deals with the issue of how clients connect to a super-peer. Al-
though relevant to our approach, the main difference is that SOSP-
NET organizes peers according to requests for files, while our ap-
proach is data-centric and focuses on data distribution. Moreover
our approach can handle more complex data types than files and
process complex queries. In [9], self-organization of peers based
on content similarity has been shown to improve the performance
of search, thereby motivating the appropriateness of building selec-
tive multidimensional routing indices as described in this paper.

9. CONCLUSIONS
In this paper, we addressed the challenging problem of construct-

ing multidimensional routing indices (MRI) of high selectivity. Fo-
cusing on a super-peer architecture, we identified an important fac-
tor that affects the performance of query routing, namely the en-
largement of the MBRs that describe the data available through
each neighboring super-peer. Our proposed approach improves the
selectivity of the MRI by assigning peers with similar content to
the same super-peer in a self-organizing manner. Moreover, neigh-
boring super-peers index similar content which improves the rout-
ing process even further. The experimental results show that MRI
significantly improve a state-of-the-art approach for P2P similarity
search, by boosting the performance of query routing.
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