
Efficient Distributed Top-k Query Processing
with Caching

Norvald H. Ryeng, Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørv̊ag

Norwegian University of Science and Technology
Department of Computer and Information Science

Trondheim, Norway
{ryeng,vlachou,cdoulk,noervaag}@idi.ntnu.no

Abstract. Recently, there has been an increased interest in incorporat-
ing in database management systems rank-aware query operators, such as
top-k queries, that allow users to retrieve only the most interesting data
objects. In this paper, we propose a cache-based approach for efficiently
supporting top-k queries in distributed database management systems.
In large distributed systems, the query performance depends mainly on
the network cost, measured as the number of tuples transmitted over
the network. Ideally, only the k tuples that belong to the query result
set should be transmitted. Nevertheless, a server cannot decide based
only on its local data which tuples belong to the result set. Therefore, in
this paper, we use caching of previous results to reduce the number of
tuples that must be fetched over the network. To this end, our approach
always delivers as many tuples as possible from cache and constructs a
remainder query to fetch the remaining tuples. This is different from the
existing distributed approaches that need to re-execute the entire top-k
query when the cached entries are not sufficient to provide the result set.
We demonstrate the feasibility and efficiency of our approach through
implementation in a distributed database management system.

1 Introduction

Nowadays, due to the huge amount of available data, users are often overwhelmed
by the variety of relevant data. Therefore, database management systems offer
rank-aware query operators, such as top-k queries, that allow users to retrieve
only a limited set of the most interesting tuples. Top-k queries [5, 8, 15] retrieve
the k tuples that best match the individual user preferences based on a user-
specified scoring function. Different scoring functions express the preferences of
different users. Several applications benefit from top-k queries, including web
search, digital libraries and e-commerce. Moreover, the high distribution of data
raises the importance of supporting efficient top-k query processing in distributed
systems.

In this paper, we propose a cache-based approach, called ARTO1, for effi-
ciently supporting top-k queries in distributed database management systems.

1 Algorithm with Remainder TOp-k queries.

In large-scale distributed systems, the dominant factor in the performance of
query processing is the communication cost, measured as the number of tuples
transmitted over the network. Ideally, only the k tuples that belong to the result
set should be fetched. Nevertheless, in the case of top-k queries, a server cannot
individually decide which of its top-k local tuples belong to the global top-k re-
sult set of the query. In order to restrict the number of fetched tuples and reduce
the communication costs, we employ caching of result sets of previously posed
top-k queries. Each server autonomously maintains its own cache and only a
summary description of the cache is available to any other server in the network.

In general, a top-k query is defined by a scoring function f and a desired
number of results k, and these parameters differ between queries. Given a set of
cached top-k queries in the system and a new query, the problem is to identify
whether the results of cached queries are sufficient to answer the new query. To
deal with this problem, we apply techniques similar to those of the view selection
problem in the case of materialized views [15] in centralized database systems.
Based on the cached queries, we need to decide whether the cached results cover
the results of a new query. In this case, the query is answered from the cache and
no tuples need to be transferred over the network. However, the major challenge
arises when the query is not covered by the cached tuples.

Different from existing approaches [20] that require the servers to recompute
the query from scratch, we do not evaluate the entire query, but we create a
remainder query that provides the result tuples that are not found in cache. More
detailed, we split the top-k query into a top-k′ query (k′ < k) that is answerable
from cache, and a remainder next-(k − k′) query that provides the remaining
tuples that were not retrieved from the top-k′ query. To further optimize the
query performance, we deliberately assign the top-k query to the server that is
expected to induce the lowest network cost based on the locally cached tuples.
To summarize, the contributions of this paper are:

– We propose a novel framework for distributed top-k queries that retrieves as
many tuples k′ (k′ < k) as possible from the cache, and poses a remainder
query that provides the remaining k− k′ tuples that are not found in cache.

– We present a novel method for efficiently computing remainder queries, with-
out recomputing the entire top-k query.

– We propose a server selection mechanism that identifies the server that owns
the cache with the most relevant entries for a given query.

– We evaluate our approach experimentally by integrating ARTO in an ex-
isting distributed database management system [14], and we show that our
method significantly reduces communication costs.

The rest of this paper is organized as follows. In Section 2, we explain how
this paper relates to previous work in this area. Section 3 presents prelimi-
nary concepts, and Section 4 presents our framework for distributed top-k query
processing. Answering top-k queries from cache is outlined in Section 5. The
remainder queries are described in Section 6, while Section 7 presents the server
selection mechanism. Results from our experimental evaluation are presented in
Section 8, and in Section 9 we conclude the paper.

2 Related Work

Centralized processing of top-k queries has received considerable attention re-
cently [2, 5, 8, 15]. For a comprehensive survey of top-k query processing we refer
to [16]. Hristidis et al. [15] discuss how to answer top-k queries from a set of
materialized ranked views of a relational table. Each view stores all tuples of
the relation ranked according to different ranking functions. The idea is to ma-
terialize a set of views based on a requirement either on the maximum number
of tuples that must be accessed to answer a query, or on the maximum number
of views that may be created. When a query arrives, one of these views is se-
lected to be used for answering the top-k query. In [11], the materialized views
of previous top-k queries (not entire relations) are used to answer queries, as
long as they contain enough tuples to satisfy the new query. For each incoming
query, the view selection algorithm chooses a set of views that will give an opti-
mal (in terms of cost) execution of the proposed LPTA algorithm. A theoretical
background on view selection is given in [3], providing theoretical guarantees
whether a view is able to answer a query or not. However, the algorithms that
are presented only allow a query to be answered from views if the views are
guaranteed to provide the answer.

In distributed top-k query processing, the proposed approaches can be cate-
gorized based on their operation on vertically [9, 12, 17, 6, 18] or horizontally [1,
4, 19, 20] distributed data. In the case of vertically distributed data, any server
maintains only a subset of the attributes of the complete relation. Then, each
server is able to deliver tuples ranked according to any scoring function that
is applied on one or more of its attributes [9, 12, 17]. The TPUT algorithm [6]
focuses on limiting the number of communication round-trips, and this work has
later been improved by KLEE [18].

In the case of horizontally distributed data, each server stores a subset of the
tuples of the complete relation, but for each tuple all attributes are maintained.
In [1], a broadcasting technique for answering top-k queries in unstructured
peer-to-peer networks is presented. For super-peer topologies, Balke et al. [4]
provides a method using indexing to reduce communication costs. This method
requires all super-peers to process queries, unless exactly the same query reap-
pears. SPEERTO [19] pre-computes and distributes skyline result sets of super-
peers in order to contact only those super-peers that are necessary at query time.
BRANCA [20] is a distributed system for answering top-k queries. Caching of
previous intermediate and final results is used to avoid recomputing parts of the
query. The cache is used much in the same way as the materialized views in [3,
11, 15], but on intermediate results of the query. This means that some servers in
the system must process the query from scratch, while others may answer their
part of the same query from cache. The main difference between ARTO and
other caching approaches, such as BRANCA, becomes clear in the hard cases,
when the query cannot be answered by the cache. ARTO still uses the part of
the cache that partially answers the query and poses a remainder query for the
remaining tuples, without the need to process the query from scratch, as in the
case of BRANCA.

O(0,0)

R(1,1)

Q
LQ

90°

p1

p2p3
p4

pk=p5

p6

Fig. 1. 2D representation of query and data space.

Finally, our techniques for answering top-k queries relate to stop-restart of
query processing [7, 10, 13]. These methods assume that some of the result tu-
ples are already produced and restart processing from where the original query
stopped. Our remainder queries differ by not restarting an existing top-k query
but a query that was partially answered by cached tuples.

3 Preliminaries

Top-k queries are defined based on a monotone function f that combines the
individual scores into an overall scoring value, that in turn enables the ranking
(ordering) of tuples. Given a relation R, which consists of n attributes ai, the
result set of a top-k query Q = 〈R, f, k〉 contains k tuples such that there exists
no other tuple in R with better score than the k tuples in the result set. Relation
R may be a base relation or the result of an algebra operator, i.e., the result of
a join. The most commonly used scoring function is the weighted sum function,
also called linear. Each attribute ai is associated with query-dependent weight
wi indicating ai’s relative importance for the query. Furthermore, without loss
of generality, we assume that for any tuple t and any attribute ai the values t(ai)
are scaled to [0, 1]. The aggregated score f(t) for a tuple t is defined as a weighted
sum of the individual scores: f(t) =

∑n
i=1 wit(ai), where wi ≥ 0 (1 ≤ i ≤ n), and

∃j such that wj > 0. The weights represent the relative importance of different
attributes, and without loss of generality we assume that

∑n
i=1 wi = 1. Thus,

a linear top-k query Q is defined by a vector wQ and the parameter k. The
ranked tuples can be delivered in either ascending or descending order, but for
simplicity, we will only consider descending order in this paper. Our results are
also valid in the ascending case.

A tuple t of R can be represented as a point in the n-dimensional Euclidean
space. Furthermore, given a top-k query Q = 〈R, f, k〉 defined by a linear scoring
function, there exists a one-to-one correspondence between the weighting vector
wQ and the hyperplane which is perpendicular to wQ. We refer to the (n-1)-
dimensional hyperplane, which is perpendicular to vector wQ and crosses the
kth result tuple, as the query plane of wQ, and denote it as LQ. All points on the

query plane LQ have the same scoring value for wQ. A 2-dimensional example
is depicted in Fig. 1. Processing the top-k query Q is equivalent to sweeping the
line LQ from the upper right corner towards the lower left corner. Each time LQ

meets a tuple t, this tuple is reported as the next result tuple. When LQ meets
the k-th tuple, the complete result set has been retrieved.

4 ARTO Framework

In this paper, we assume a distributed database system where the relations
are horizontally fragmented over multiple servers. In more details, each relation
R is fragmented into a set of fragments R1, R2, . . . , Rf and each fragment Ri

consists of a subset of tuples of the relation R. Our approach is generic and
imposes no further constraints on the way partitions are created or whether
they are overlapping or not. Furthermore, each server may store fragments of
different relations. Any server can pose a top-k query and we refer to that server
as querying server. During query processing, the querying server may connect
to any other server. Thus, no routing paths are imposed on the system other
than those of the physical network itself. The only assumption of ARTO is
that there exists a distributed catalog accessible to all servers, which indexes
the information about which server stores fragments of each relation R. Such a
distributed catalog can be implemented using a distributed hash table (DHT).

S1

R1

S2 S3 S4

R2 R3 R4

result

rank rank rank rank

top-k

(a)

S1

R1

S2 S3 S4

R2 R3 R4

result

lim.
rank

lim.
rank

lim.
rank

lim.
rank

top-k

rank

cache

(b)

Fig. 2. (a) Query plan for distributed top-k query. (b) Transformed query plan.

To answer a top-k query over a relation R, the querying server first locates
those servers that store fragments of R by using the catalog, and constructs a
query plan such as the one in Fig. 2(a). In our example, S2 is the querying server
and the relation R is fragmented in four fragments R1, . . . , R4 stored on servers
S1, . . . , S4 respectively. Based on the query plan, each fragment Ri is scanned in
ranked order (denoted in Fig. 2(a) as rank), and the top-k operator reads tuples
one by one, until the k highest scoring tuples have been retrieved. In more
details, the top-k operator maintains a sorted output queue and additionally a
list containing the score of the last tuple from each server. Since the tuples read

from Ri are in ranked order, whenever a tuple in the output queue has a higher
score than all scores in the list, it can safely be output as a result tuple. Thus,
the top-k tuples are returned incrementally. Moreover, the top-k operator reads
the next tuple from the fragment Ri with the tuple with the highest score in the
list. Therefore, the top-k operator reads as few input tuples as possible from the
fragments Ri.

This is the basic approach of answering top-k queries in a distributed data
management system. Since it is important to minimize the network cost of query
processing, ARTO uses a caching mechanism to take advantage of previously
answered top-k queries. Thus, ARTO avoids retrieving tuples from other servers,
when the cached tuples are sufficient to answer the new query. To this end,
each server maintains its own cache locally, and caches the queries (and their
results sets) that were processed by itself. During query processing, the querying
server first uses its cache to detect whether the cached tuples are sufficient to
answer the given top-k query (see Section 5). Even if the cached tuples are
not sufficient, ARTO minimizes the transferred data by using as many cached
tuples as possible and retrieving only the missing tuples from the remote servers
through the novel use of remainder queries (see Section 6). To this end, the query
plan is rewritten in order to take advantage of the local cache. The result of such
a query transformation is shown in Fig. 2(b). Compared to the initial query plan,
the top-k operator additionally retrieves tuples from the cache and performs a
limited scan from the relation fragments, thus transferring only tuples that are
not cached.

The combination of cached tuples and remainder queries allows ARTO to
reduce the number of transferred tuples. The exact number of transferred tuples
depends on the similarity of cached queries to the new query. Thus, in order
to improve further the query processing performance, we extend ARTO with
a server selection mechanism, which assigns the new query to the server with
the most similar cached query. In order to facilitate this mechanism, each server
publishes descriptions of its cached queries in the distributed catalog. Then, the
querying server first detects the server with the most similar cached query, and
re-assigns the new query to this server (see Section 7).

5 Answering Top-k Queries from Cache

In ARTO, each server autonomously maintains its own cache. More specifically,
after answering a top-k query and retrieving the entire result set, the query
originator is able to cache the query result. The cache C = {Ci} maintains a set
of m cache entries Ci. Each cache entry Ci = {Qi, bi, {p1, . . . , pki

}} is defined
by a query Qi = {R, fi, ki}, the tuples {p1, . . . , pki

} that belong to the result set
of Qi, and a threshold bi which is the scoring value of point pki

with respect to
fi, i.e., bi = fi(pki). Consequently, any tuple p of the cache entry Ci has score
fi(p) ≥ bi. Notice that the description of a cached entry Ci that is published in
the catalog consists only of {Qi, bi}, without the individual result tuples. For the
sake of simplicity, we assume that all cache entries refer to the same relation R.

O(0,0)

R(1,1)

Q

SLC

Q2

Q1

LQ2

LQ1

SLC2SLC1

Fig. 3. Cache containing the cache entries of two queries.

Obviously, given a query Q = {R, f, k}, only cache entries that refer to relation
R are taken into account for answering Q.

Fig. 3 shows a server’s cache C that contains two cache entries, C1 and C2.
Query Q1 corresponds to a top-3 query, while Q2 is a top-4 query with different
weights. Their corresponding lines, LQ1

and LQ2
, stop at the kth point for each

query respectively.

5.1 Basic Properties

In this section, we analyze when the query results of a cache C are sufficient to
answer a top-k query Q. When this situation occurs, we say that the cache covers
the query. Given a query Q = {R, f, k}, we identify three cases of covering: (1) a
cache entry Ci covers a query defined by the same function (f = fi), (2) a cache
entry Ci covers a query defined by a different function (f 6= fi), and (3) a set of
cache entries {Ci} cover a query defined by a different function (f 6= fi, ∀i).

In the first case, if there exists a cache entry Ci such that the weighting
vectors that define f and fi are identical and k ≤ ki, then Q can be answered
from the result of the cache entry Ci. More specifically, the first k data points
of the cache entry Ci provide the answer to Q.

In the second case, we examine if a cache entry covers a query defined by a
different function. To this end, we use the concept of safe area [3] SAi of a cache
entry Ci.

Definition 1. (Safe area) The safe area SAi of a cache entry Ci with respect
to a query Q is the area defined by the right upper corner of the data space
and the (n− 1)-dimensional hyperplane SLCi

that is perpendicular to the query
vector, intersects the query plane LQi

, and has the largest scoring value for Q
between all candidate hyperplanes.

In Fig. 3, the lines that define the safe areas for C1 and C2 with respect to
Q are shown as SLC1 and SLC2 , respectively. Given a query Q, a cache entry
Ci is sufficient to answer a query Q, if it holds that the safe area SAi of the

cache entry Ci contains at least k data points. This means that there cannot
be any other tuples in the result set of Q that have not been retrieved by the
query Qi, because the safe area has been scanned during the processing of Qi.
For example, in Fig. 3, both cache entries are sufficient for answering the query
Q for k = 2, but none of those is sufficient to answer the query Q for k = 3.

The third case deals effectively with the previous situation. Several cache
entries need to be combined to answer the top-k query, since a single cache
entry is not sufficient. To determine whether a set of cache entries can be used
to answer a top-k query, we define the concept of cache horizon.

Definition 2. (Cache horizon) The cache horizon of a cache C = {Ci} is
defined as the borderline of the area defined by the union of query planes LQi .

The cache horizon represents the border between the points that are cached
and those that are not. Points behind the cache horizon (towards the right upper
corner of the data space) are contained in at least one cached entry, while points
beyond the cache horizon (near the origin of the data space) have to be retrieved
from the relation R that is stored at different servers. In Fig. 3, the cache horizon
is defined by the lines LQ1

and LQ2
and the enclosed area has been examined to

answer queries Q1 and Q2. In order to determine if the result set of Q is behind
the cache horizon and can be answered by combining more than one cache entry,
we define the limiting point of the cache.

Definition 3. (Limiting point) The limiting point of a cache C is the point,
where the hyperplane SLC perpendicular to the query vector intersects the cache
horizon, when SLC moves from the right upper corner of the data space towards
the origin.

The area defined by the hyperplane SLC and the right upper corner of the data
space is called safe area of the cache horizon. If this area contains more than k
data points, then Q can be answered by combining more than one cache entry.

Given a cache C with m cache entries C1, C2, . . . , Cm, the limiting point of the
horizon with respect to a query Q can be identified using linear programming. We
construct a constraint matrix H and right-hand-side values b from the weights
and thresholds of the m cache entries:

H =

w11 w12 · · · w1n

w21 w22 · · · w2n

...
wm1 wm2 · · · wmn

 , b =

b1
b2
...
bm

Given a query Q, the objective is to maximize f = wQ

Ta, subject to the
constraints Ha ≤ b and 0 < ai < 1, ∀ai. The solution of this linear programming
problem provides the coordinates of the limiting point. By applying the scoring
function f defined by Q, we get the cache score b = f(p) of the limiting point
p. If at least k cached points pi exist such that f(pi) ≥ b, then the entire result
set of query Q is retrieved from the cache entries.

5.2 Cache Replacement Policy

A first observation regarding a cache entry Ci ∈ C is that it can become redun-
dant due to other cache entries in C. More formally, Ci becomes redundant if its
query Qi is covered by a set of other cache entries. Redundant cache entries can
be evicted from the cache without affecting the cache’s ability to answer queries.
Identifying whether a cache entry Ci is redundant is achieved by solving a linear
programming problem. More detailed, the objective is to maximize wCi

Ta, sub-
ject to H ′a ≤ b′ and ∀aj : 0 < aj < 1, where H ′ and b′ describe the combined
horizon of all cache entries except Ci. Thus, we find the limiting point p of the
cache when Ci is ignored. If bi > fi(p), the cache entry Ci is redundant and can
be removed.

Applying a traditional cache replacement policy, such as LRU, is inappropri-
ate due to the unique characteristics of our cache. The reason is that answering
a top-k query from the cache may require combining tuples from more than one
cache entry. Consequently, cache entries are utilized collectively, rendering any
policy based on usage statistics of individual cache entries ineffective.

Motivated by this, we introduce a new cache replacement policy named Least-
Deviation Angle (LDA), which is particularly tailored to our problem. After
removing redundant entries, LDA determines the priority of a cache entry to be
evicted based on deviation from the equal-weights vector eT = (1, 1, . . . , 1). For
each cache entry Ci, the angle θi = arccos(ŵCi ·ê) between e and Ci is calculated
and used as a measure of deviation. The entry Ci with the largest θi is replaced
first. Intuitively, LDA penalizes cache entries that have low probability to be
highly similar to other queries.

6 Remainder Queries

In the previous section, we described in which cases the entries of the cache
are sufficient for retrieving the entire result set of a query Q. When this oc-
curs, no networking cost exists for answering the query. In the case where only
k′ < k tuples t are retrieved from the cache for which the inequality f(t) ≥ b
holds (b is the cache score), the cache fails to return the complete result set.
Then, instead of executing the entire query Q from scratch, ARTO executes a
remainder query that retrieves only the k− k′ missing tuples and transfers only
the necessary tuples to provide the complete result set. We first provide a short
discussion showing that is more beneficial to execute a remainder query, rather
than restarting a cached query Qi = {R, fi, ki} and retrieving additional tuples,
so that the k tuples of Q are retrieved. Then, we define the remainder query and
explain how it will be processed in order to minimize the network consumption.

6.1 Discussion

In this section, we discuss the issue whether it is more beneficial to restart a
query of a cache entry Ci than posing a remainder query. Fig. 4 depicts a cache

containing one cache entry C1 that covers the data space until the line LQ1 (line
DB). A query Q is posed, and the points in the cache entry until the line SLC1

(line AB) are used for answering the query Q. If fewer than k tuples are enclosed
in ABR, additional uncached tuples must be retrieved from remote servers. We
consider two options for retrieving the remaining tuples. The first alternative is
to pose a remainder query that would scan the part FEBA of the data space.
Since the query is executed based on the given weighting vector of Q, we can
stop after retrieving k tuples exactly, i.e., at the query line LQ (FE). The other
alternative is to restart the cached query Q1. In this case, we can take advantage
of all k1 data points of the cache entry C1 (i.e., we save the cost of scanning
DBA). On the other hand, in order to be sure that we have retrieved all tuples
of the result set of Q we have to scan a larger area at least until the line GE .

O(0,0)

R(1,1)Q1

Q

A

B

X

Y DG F

E

SLC1

LQ1

LQ

Fig. 4. Areas examined by the remainder query vs. restarting a query Q1.

If data is uniformly distributed, the number of tuples retrieved is proportional
to the area of the data space that is scanned. For the sake of simplicity, we assume
that the query line of any query lies in the the upper right triangle of the data
space. This means that we have scanned less than half the data space, in order
to retrieve the result set of any query, which is an acceptable assumption since
usually the values of k are small. In our example, the area of FEBA is smaller
than the area of GEBD , and the retrieved tuples are expected to be fewer when
the remainder query is used. In the following, we prove that this always holds
for the 2-dimensional case, when the query line does not cross the diagonal line
XY. Similar conclusions can been drawn for arbitrary dimensionality.

Theorem 1. Given a 2-dimensional data space, if all query lines do not cross
the diagonal line XY , a smaller area is scanned if the remainder query is executed
than if continuing a cached query.

Proof. Using the areas of Fig. 4, it suffices to show that the area of trapezoid
FEBA is smaller than the area of trapezoid GEBD . The two trapezoids share
one common side, namely EB . Furthermore, it is always the case that BD > BA
and GE > FE . Based on Thales’ theorem about the ratios of line segments that

are created if two intersecting lines are intercepted by a pair of parallels, we
derive that FA

AR = EB
BR (1) and GD

DR = EB
BR (2). From (1) and (2) we conclude

that FA
AR = GD

DR . Since DR > AR, we derive that GD > FA. Therefore, three
sides of FEBA are smaller than the corresponding three sides of GEBD and the
remaining fourth side BE is common. Hence, the area of FEBA is smaller than
the area of GEBD .

6.2 Processing of Remainder Queries

Given a query Q and a cache score b, a remainder query is defined as Q′ =
〈R, f, k − k′, b〉, where k′ is the number of cached tuples p such that f(p) ≥ b.
Any server Si that stores a fragment Ri of the relation R receives the remainder
query Q′. Independently from the implementation of the top-k operator at Si,
the server Si transfers to the querying server only tuples p such that f(p) ≤ b.
Thus, it avoids transferring tuples that are already cached and lie in the safe
area of the querying server.

To further limit the number of transferred tuples to the querying server, Si

filters out some of the locally retrieved tuples by using the cache horizon before
transferring them. Even though some tuples lie outside the safe area, they are
available at the querying server in some cache entry. For example, in Fig. 4, the
remainder query has to start scanning the data space from the line SLC1

until
k tuples are retrieved, i.e., the remainder query fetches new tuples until the
query line LQ. Nevertheless, the points that fall in the triangle DBA are already
available at the querying server in the cache entry C1. These tuples do not need
to be transferred, thus minimizing the number of transferred data. In order for
Si to be able to filter out tuples based on the cache horizon, Si retrieves the
descriptions of all cache entries from the querying server. Then, all tuples p such
that there exists a cache entry Ci such that fi(p) > bi are not transferred to the
querying server, since these tuples are stored locally in the cache. The querying
server combines the tuples received from the servers Si with the tuples in the
cache and produces the final result set of the query Q. To summarize, the cache
horizon is used to limit the remainder query, which means that the whole cache
is exploited and a minimal number of tuples is fetched from other servers.

7 Server Selection

The problem of server selection is to identify the best server for executing the
top-k operator. While the rank scan operators must be located at the servers that
store the relation fragments, the top-k operator can be placed on any server. Our
server selection algorithm assigns the top-k operator to the server that results
in the most cost-efficient query execution in terms of network cost.

Intuitively, the best server S∗ to process the top-k query Q = {R, f, k} is the
one that can return as many as possible from the k result tuples from its local
cache, thereby reducing the amount of the remaining result tuples that need to
be fetched. To identify S∗, we need to inspect the cache entries for each server.

Algorithm 1 Server selection

1: Input: Query Q = {R, f, k}, Servers S
2: Output: Server S∗ that will process Q
3: for (∀Si ∈ S) do
4: {(Qj , bj)} ← catalog.getCacheDesc(Si)
5: score(Si)← computeLimitingPoint({(Qj , bj)})
6: if (score(Si) < minScore) then
7: S∗ ← Si

8: minScore← score(Si)
9: end if

10: end for
11: return S∗

This operation is efficiently performed using the distributed catalog. In more
detail, the catalog can report the descriptions of cache entries C = {Ci} of any
server, where a description of Ci consists of {Qi, bi}. Based on this information,
the limiting point of the server is calculated, as described in Section 5. Based on
the limiting point, we compute the score of each server by applying the function
f of the query Q. The server S∗ with the smallest score is selected because this
server has the largest safe area and therefore is the best candidate to process
the top-k query. Algorithm 1 provides the pseudocode for the server selection
mechanism.

8 Experiments

In this section, we present an experimental evaluation of ARTO. We have imple-
mented ARTO into the DASCOSA-DB [14] distributed database management
system and use this implementation to investigate the effect of different param-
eters, query workloads and datasets.

Experimental setup. DASCOSA-DB provides a global distributed catalog
based on a distributed hash table, and this catalog was used to implement pub-
lishing and lookup of cache entries’ descriptions. Experiments were performed
for varying a) number of servers, b) values of k, and c) cache size. We used three
datasets, with uniform, correlated and anti-correlated distributions. Each dataset
consisted of 1,000,000 5-dimensional tuples. The datasets were distributed hori-
zontally and uniformly over all servers. A separate querying server issued queries
to the system and received the results. The weights of the queries were uniformly
distributed.

Each experiment was performed both without caching and with ARTO en-
abled. In addition, we did experiments with a hit/miss implementation where
the cache was used only if it were sufficient to answer the complete query. This
is conceptually similar to previously proposed methods, e.g., BRANCA [20]. We
measured the number of tuples accessed a) locally on the querying server using
its cache, and b) from remote servers.

20k

40k

60k

80k

100k

120k

140k

160k

180k

200k

 25 50 75
T

ra
n
sf

er
re

d
 d

at
a

(t
u
p
le

s)

Number of servers

ARTO
Hit/miss

No caching

Fig. 5. Transferred data for 1,000 queries and uniform data distribution.

Varying number of servers. In this experiment, ARTO was evaluated with
uniformly distributed, correlated and anti-correlated datasets. Each dataset was
distributed over 25, 50 and 75 servers. A workload of 1,000 queries with uniformly
distributed weights and k = 50 were issued. Each server had 10,000 bytes cache,
which allows for 4 complete top-50 results to be cached at each server.

Fig. 5 shows the total number of tuples that are transferred over the network
for the query workload using a uniform dataset. We observed similar results
for correlated and anti-correlated datasets, which hints that the performance of
our approach is stable across different data distributions. The combination of
server selection with remainder queries causes a major improvement in network
communication costs, even with such a small cache size (4 cache entries). The
advantage of ARTO is clearly demonstrated when comparing to the hit/miss
strategy, which performs poorly, as it requires k tuples in the safe area to use
the cache. Since cache misses are frequent, the complete top-k query has to be
executed. The results of hit/miss are just barely better than without caching,
while ARTO achieves significant improvements.

Varying k. The size of k affects the gain that can be obtained from caching.
If k is very small, there are not that many remote accesses that can be replaced
by local accesses. In this experiment, the caching method was tested with varying
values for k. A uniform dataset of 1,000,000 tuples on 25 servers was used. Each
site had 10,000 bytes cache. The results displayed in Fig. 6 show how the number
of total and local accesses increases with increasing k. ARTO always accesses
significantly more local tuples compared to the competitor approaches. Around
k = 100, the number of local tuples accessed starts to decrease. This is because
the cache is of a limited size. With k = 100, only two complete top-k results fit in
cache. Even in this extreme case, ARTO still manages to access a high percentage
of the total tuples from the local cache, thereby saving communication costs.

Cache size. In order to study the effect of cache size in more detail, we
performed an experiment where we gradually increased the cache size up to
50,000 bytes, i.e., more than 20 complete results. We fixed k = 50 and used a
uniform dataset of 1,000,000 tuples on 25 servers. The results are shown in Fig. 7.
As the cache size increases, more top-k queries can be cached, thus enlarging the

20k

40k

60k

80k

100k

120k

140k

160k

180k

200k

 25 50 75 100 125
T

u
p
le

s

k

ARTO total
Hit/miss total

No caching total
ARTO local

Hit/miss local
No caching local

Fig. 6. Results of queries with varying k.

safe area. Consequently, ARTO reduces the number of transferred data (remote
tuples accessed). In contrast, the hit/miss strategy always results in cache misses
and cannot reduce the amount of transferred data.

20k

40k

60k

80k

100k

0 5 10 15 20 25 30 35 40 45 50

T
ra

n
sf

er
re

d
 d

at
a

(t
u
p
le

s)

Cache size (kB)

ARTO
Hit/miss

Fig. 7. Results of queries with varying cache size.

9 Conclusion

In this paper, we present ARTO, a novel framework for efficient distributed top-k
query processing. ARTO relies on a caching mechanism that reduces the network
communication costs significantly by retrieving as many tuples as possible from
the local cache. In order to retrieve the missing tuples, we define the remainder
query that transfers only the tuples that are not stored in the cache by filtering
out tuples based on the cache horizon. Moreover, ARTO provides a server selec-
tion mechanism that assigns a new top-k query to the most promising server.
We have implemented our framework in the DASCOSA-DB database manage-
ment system. The results of the experiments show considerable improvements in
network communication costs.

References

1. Akbarinia, R., Pacitti, E., Valduriez, P.: Reducing network traffic in unstructured
P2P systems using top-k queries. Distributed and Parallel Databases 19(2-3), 67–
86 (2006)

2. Akbarinia, R., Pacitti, E., Valduriez, P.: Best position algorithms for top-k queries.
In: Proceedings of VLDB (2007)

3. Baikousi, E., Vassiliadis, P.: View usability and safety for the answering of top-k
queries via materialized views. In: Proceedings of DOLAP (2009)

4. Balke, W.T., Nejdl, W., Siberski, W., Thaden, U.: Progressive distributed top-k
retrieval in peer-to-peer networks. In: Proceedings of ICDE (2005)

5. Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over relational
databases: Mapping strategies and performance evaluation. ACM Trans. Database
Syst. 27(2), 153–187 (2002)

6. Cao, P., Wang, Z.: Efficient top-k query calculation in distributed networks. In:
Proceedings of PODC (2004)

7. Chandramouli, B., Bond, C.N., Babu, S., Yang, J.: Query suspend and resume. In:
Proceedings of SIGMOD (2007)

8. Chaudhuri, S., Gravano, L.: Evaluating top-k selection queries. In: Proceedings of
VLDB (1999)

9. Chaudhuri, S., Gravano, L., Marian, A.: Optimizing top-k selection queries over
multimedia repositories. IEEE Trans. on Knowledge and Data Engineering 16(8),
992–1009 (2004)

10. Chaudhuri, S., Kaushik, R., Ramamurthy, R., Pol, A.: Stop-and-restart style exe-
cution for long running decision support queries. In: Proceedings of VLDB (2007)

11. Das, G., Gunopulos, D., Koudas, N., Tsirogiannis, D.: Answering top-k queries
using views. In: Proceedings of VLDB (2006)

12. Güntzer, U., Balke, W.T., Kießling, W.: Optimizing multi-feature queries for image
databases. In: Proceedings of VLDB (2000)

13. Hauglid, J.O., Nørv̊ag, K.: Proqid: partial restarts of queries in distributed
databases. In: Proceedings of CIKM (2008)

14. Hauglid, J.O., Nørv̊ag, K., Ryeng, N.H.: Efficient and robust database support
for data-intensive applications in dynamic environments. In: Proceedings of ICDE
(2009)

15. Hristidis, V., Koudas, N., Papakonstantinou, Y.: PREFER: A system for the ef-
ficient execution of multi-parametric ranked queries. In: Proceedings of SIGMOD
(2001)

16. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing tech-
niques in relational database systems. ACM Comput. Surv. 40(4) (2008)

17. Marian, A., Bruno, N., Gravano, L.: Evaluating top-k queries over web-accessible
databases. ACM Trans. Database Syst. 29(2), 319–362 (2004)

18. Michel, S., Triantafillou, P., Weikum, G.: KLEE: A framework for distributed top-k
query algorithms. In: Proceedings of VLDB (2005)

19. Vlachou, A., Doulkeridis, C., Nørv̊ag, K., Vazirgiannis, M.: On efficient top-k query
processing in highly distributed environments. In: Proceedings of SIGMOD (2008)

20. Zhao, K., Tao, Y., Zhou, S.: Efficient top-k processing in large-scaled distributed
environments. Data and Knowledge Engineering 63(2), 315–335 (2007)

