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Abstract In distributed database systems, tables are frequently fragmented and replicated
over a number of sites in order to reduce network communication costs. How to fragment,
when to replicate and how to allocate the fragments to the sites are challenging problems
that has previously been solved either by static fragmentation, replication and allocation, or
based on a priori query analysis. Many emerging applications of distributed database sys-
tems generate very dynamic workloads with frequent changes in access patterns from dif-
ferent sites. In such contexts, continuous refragmentation and reallocation can significantly
improve performance. In this paper we present DYFRAM, a decentralized approach for
dynamic table fragmentation and allocation in distributed database systems based on obser-
vation of the access patterns of sites to tables. The approach performs fragmentation, repli-
cation, and reallocation based on recent access history, aiming at maximizing the number of
local accesses compared to accesses from remote sites. We show through simulations and
experiments on the DASCOSA distributed database system that the approach significantly
reduces communication costs for typical access patterns, thus demonstrating the feasibility
of our approach.

Keywords Distributed DBMS · Fragmentation · Replication · Physical database design

1 Introduction

There is an emerging need for efficient support of databases consisting of very large amounts
of data that are created and used by applications at different physical locations. Examples of
application areas include telecom databases, scientific databases on grids, distributed data
warehouses, and large distributed enterprise databases. In many of these application areas
the delay from accessing a remote database is still significant enough to make necessary
the use of distributed databases employing fragmentation and replication, a fact also evident
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recently by increased support for distributed fragmented and replicated tables in commercial
products like MySQL Cluster.

In distributed databases, the communication costs can be reduced by partitioning database
tables horizontally into fragments, and allocating these fragments to the sites where they are
most frequently accessed. The aim is to make most data accesses local, and avoid remote
reads and writes. The read cost can be further reduced by the replication of fragments when
beneficial. Obviously, important challenges in fragmentation and replication are how to frag-
ment, when to replicate fragments, and how to allocate the (replicated) fragments.

Previous work on data allocation has focused on (mostly static) fragmentation based on
analyzing queries. These techniques are only useful in contexts where read queries domi-
nate and where decisions can be made based on SQL-statement analysis. Moreover, they
also involve centralized computations based on collected statistics from participating sites.
However, in many application areas, workloads are very dynamic with frequent changes in
access patterns at different sites. One common reason for this is that their data usage often
consists of two separate phases: a first phase where writing of data dominates (for instance
during simulation when results are written), and a subsequent second phase when a subset
of the data, for example results, is mostly read. The dynamism of the overall access pattern
is further increased by different instances of the applications executing in different phases
at different sites.

Because of dynamic workloads, static/manual fragmentation and replication may not
always be optimal. Instead, the fragment and replication management should be dynamic
and completely automatic, i.e., changing access patterns should result in refragmentation
and reallocation of fragments when beneficial, as well as in the creation or removal of frag-
ment replicas. In this paper, we present DYFRAM, a decentralized approach for dynamic
fragmentation and replica management in distributed database systems, based on observa-
tion of access patterns of sites to tables. Fragmentation and replication is performed based
on recent access history, aiming at maximizing the number of local accesses compared to
accesses from remote sites.

An example of what we aim at achieving with our approach is illustrated in Fig. 1.
It illustrates the access pattern of a database table from two sites. Site 1 has a uniform
distribution of accesses, while site 2 has an access pattern with distinct hot spots. In this
case, a good fragmentation would generate 6 fragments, one for each of the hot spot areas
and one for each of the intermediate areas. A good allocation would be the fragments of the
hot spot areas (F1, F3, and F5) allocated to site 2, with the other fragments (F2, F4, and
F6) allocated to site 1. As will be shown later in the experimental evaluation, DYFRAM
will detect this pattern, split the table into appropriate fragments, and then allocate these
fragments to the appropriate sites. Whether some of the fragments should be replicated or
not depends on the read/write pattern. Note that if the access pattern changes later, this will
be detected and fragments reallocated as well as repartitioned if necessary.

The main contributions of this paper are 1) a low-cost algorithm for fragmentation de-
cisions, making it possible to perform refragmentation based on the recent workload, and
2) dynamic reallocation and replication of fragments in order to minimize total access cost
in the system. The process is performed in a completely decentralized manner, i.e., without a
particular controlling or coordinating site. An important aspect of our approach is the combi-
nation of the dynamic refragmentation, reallocation, and replication into a unified process.
To the best of our knowledge, no previous work exists that perform this task dynamically
during query execution based on both reads and writes in a distributed setting. Our approach
is also applicable in a parallel system, since one of our important contributions compared
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Fig. 1 Example access pattern, and desired fragmentation and allocation.

to previous work is that the decisions can be taken without communication of statistics or
synchronization between sites.

The organization of the rest of this paper is as follows. In Section 2 we give an overview
of related work. In Section 3 we outline our system and fragment model and state the prob-
lem tackled in this work. In Section 4 we give an overview of DYFRAM. In Section 5 we
describe how to manage replica access statistics. In Section 6 we describe in detail the dy-
namic fragmentation and replication algorithm. In Section 7 we evaluate the usefulness of
our approach. Finally, in Section 8, we conclude the paper and outline issues for further
work.

2 Related work

The problem of fragmenting tables so that data is accessed locally has been studied before.
It is also related to some of the research in distributed file systems (see a summary in [14]).
One important difference between distributed file systems and distributed database systems
is the typical granularity of data under consideration (files vs. tuples) and the need for a
fragmentation attribute that can be used for partitioning in distributed database systems.

Fragmentation is tightly coupled with fragment allocation. There are methods that do
only fragmentation [2,24,26,33,34] and methods that do only allocation of predefined frag-
ments [3,4,7,10,13,20,30]. Some methods also exist that integrate both tasks [9,11,17,19,
25,27,29]. Replication, however, is typically done as a separate task [5,8,15,21,22,32],
although some methods, like ours, take an integral view of fragmentation, allocation and
replication [11,27,29]. Dynamic replication algorithms [5,15,21,22,32] can optimize for
different measures, but we believe that refragmentation and reallocation must be consid-
ered as alternatives to replication. In DYFRAM we choose among all these options when
optimizing for communication costs. Our replication scheme is somewhat similar to that
of DIBAS [11], but DYFRAM also allows remote reads and writes to the master replica,
whereas DIBAS always uses replication for reads and do not allow remote writes to the
master replica. This operation shipping is important when analyses [8] of replication vs.
remote reads and writes conclude that the replication costs in some cases may be higher
than the gain from local data access. A key difference between DIBAS and DYFRAM is
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that DIBAS is a static method where replication is based on offline analysis of database
accesses, while DYFRAM is dynamic and does replication online as the workload changes.

Another important categorization of fragmentation, allocation and replication methods
is whether they are static or dynamic. Static methods analyze and optimize for an expected
database workload. This workload is typically a set of database queries gathered from the
live system, but it could also include inserts and updates. Some methods also use more par-
ticular information on the data in addition to the query set [26]. This information has to
be provided by the user, and is not available in a fully automated system. A form of static
method is the design advisor [34] which suggests possible actions to a database adminis-
trator. The static methods are used at major database reconfigurations. Some approaches,
such as evolutionary algorithms for fragment allocation [3,10], lend themselves easily to
the static setting.

Static methods look at a set of queries or operations. It can be argued that the workload
should be viewed as a sequence of operations, not as a set [1]. Dynamic methods continu-
ously monitor the database and adapt to the workload as it is at the moment and are thus
viewing a sequence of operations. Dynamic methods are part of the trend towards fully au-
tomatic tuning [31], which has become a popular research direction. Recently, work has
appeared aiming at integrating vertical and physical partitioning while also taking other
physical design features like indices and materialized views into consideration [2]. Adap-
tive indexing [1,6] aims to create indices dynamically when the costs can be amortized over
a long sequence of read operations, and to drop them if there is a long sequence of write
operations that would suffer from having to update both base tables and indices. Our work
is on tables and table fragments, but shares the idea of amortizing costs over the expected
sequence of operations. In adaptive data placement, the focus has either been on load bal-
ancing by data balancing [9,17], or on query analysis [19]. In our algorithms, we seek to
place data on the sites where they are being used (by reads or writes), not to balance the
load.

Using our method, fragments are automatically split, coalesced, reallocated and repli-
cated to fit the current workload using fragment access statistics as a basis for fragment
adjustment decisions. When the workload changes, our method adjusts quickly to the new
situation, without waiting for human intervention or major reconfiguration moments. Clos-
est to our approach may be the work of Brunstrom et al. [7], which studied dynamic data
allocation in a system with changing workloads. Their approach is based on pre-defined
fragments that are periodically considered for reallocation based on the number of accesses
to each fragment. In our work, there are no pre-defined fragments. In addition to reallocat-
ing, fragments can be split and coalesced on the fly. Our system constantly monitors access
statistics to quickly respond to emerging trends and patterns.

A third aspect is how the methods deal with distribution. The method can either be
centralized, which means that a central site gathers information and decides on the frag-
mentation, allocation or replication, or it can be decentralized, delegating the decisions to
each site. Some methods use a weak form of decentralization where sites are organized in
groups, and each group chooses a coordinator site that is charged with making decisions for
the whole group [15,21].

Among the decentralized systems, we find replication schemes for mobile ad hoc net-
works (see [23] for an overview). However, these approaches do not consider table fragmen-
tation and in general do replication decisions on a more coarse granularity, e.g., files.

In DYFRAM, fragmentation, allocation and replication decisions are fully decentral-
ized. Each site decides over its own fragments, and decisions are made on the fly based
on current operations and recent history of local reads and writes. Contrary to much of the
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Ahmad et al. [3] � � �
Apers [4] � � �
Bonvin et al. [5] � � �
Brunstrom et al. [7] � � �
Ciciani et al. [8] � � �
Copeland et al. [9] � � � �
Corcoran and Hale [10] � � �
Didriksen and Galindo-Legaria [11] � � � � �
Furtado [13] � � �
Hara and Madria [15] � � �
Hua and Lee [17] � � � �
Ivanova et al. [19] � � � �
Menon [20] � � �
Mondal et al. [21] � � �
Mondal et al. [22] � � �
Rao et al. [24] � � �
Saccà and Wiederhold [25] � � � �
Shin and Irani [26] � � �
Sidell et al. [27] � � � � �
Tamhankar and Ram [29] � � � � �
Ulus and Uysal [30] � � �
Wolfson and Jajodia [32] � � �
Wong and Katz [33] � � �
Zilio et al. [34] � � �

Table 1 Summary of related fragmentation, allocation and replication methods.

work on parallel database systems, our approach has each site as an entry point for op-
erations. This means that no single site has the full overview of the workload. Instead of
connecting to the query processor and reading the WHERE-part of queries, we rely on local
access statistics.

Mariposa [27,28] is a notable exception to the traditional, manually fragmented systems.
It provides refragmentation, reallocation and replication based on a bidding protocol. The
difference from our work is chiefly in the decision-making process. A Mariposa site will sell
its data to the highest bidder in a bidding process where sites may buy data to execute queries
locally or pay less to access it remotely with larger access times, optimizing for queries that
have the budget to buy the most data. A DYFRAM site will split off, reallocate or replicate
a fragment if it optimizes access to this fragment, seen from the fragment’s viewpoint. This
is performed also during query execution, not only as part of query planning, as is the case
in Mariposa.

A summary and feature comparison of our method and related fragmentation, allocation
and replication methods is given in Table 1. We show which features are provided by each
method and whether it is a dynamic method that adapts to the workload or a static method
that never updates its decision. The methods are also categorized according to the where the
decisions to fragment, allocate and replicate are made. This can be done either centralized
to a single site which has the necessary information about the other sites, or decentralized.
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3 Preliminaries

In this section we provide the context for the rest of the paper. We introduce symbols to be
used throughout the paper, which are shown in Table 2.

3.1 System model

The system is assumed to consist of a number of sites Si, i = 1 . . . n, and we assume
that sites have equal computing capabilities and communication capacities. Each site runs a
DBMS, and a site can access local data and take part in the execution of distributed queries,
i.e., the local DBMSs together constitute a distributed database system. The distribution as-
pects can be supported directly by the local DBMS or can be provided through middleware.

Metadata management, including information on fragmentation and where replicas are
stored, is performed through a common catalog service. This catalog service can be realized
in a number of ways, for example in our prototype system we use a distributed hash table
where all sites participate [16].

Our approach assumes that data can be represented in the (object-)relational data model,
i.e., tuples ti being part of a table T . A table can be stored in its entirety on one site, or it
can be horizontally fragmented over a number of sites. Fragment i of table T is denoted Fi.

In order to improve performance as well as availability, fragments can be replicated,
i.e., a fragment can be stored on more than one site. We require that replication is master-
copy based, i.e., all updates to a fragment are performed to the master-copy, and afterward
propagated to the replicas. If a master replica gets refragmented, other replicas must be
notified so they can be refragmented as well.

3.2 Fragment model

Fragmentation is based on one attribute value having a domain D, and each fragment cover-
ing an interval of the domain of the attribute, which we call fragment value domain (FVD).
We denote the fragment value domain for a fragment Fi as FVD(Fi) = Fi[mini, maxi].
Note that the FVD does not imply anything about what values that actually exist in a frag-
ment. It only states that if there is a tuple in the global table with value v in the fragmentation
attribute, then this tuple will be in the fragment with the FVD that covers v. We define two
fragments Fi and Fj to be adjacent if their FVD meets, i.e.:

adj(Fi, Fj) ⇒ maxi = minj ∨maxj = mini

When a table is first created, it consists of one fragment covering the whole domain of
the fragmentation attribute value, i.e., F0[Dmin, Dmax], or the table consists of a number
of fragments F1, . . . , Fn where ∪n

i=1FVD(Fi) = [Dmin, Dmax]. A fragment Fold can sub-
sequently be split into two or more fragments F1, . . . , Fn. In this case, the following holds
true:

∪n
i=1Fi = Fold

∀Fi, Fj ∈ {F1, . . . , Fn}Fi 6= Fj ⇒ Fi ∩ Fj = ∅

In other words, the new fragments together cover the same FVD as the original fragment, and
they are non-overlapping. Two or more adjacent fragments F1, . . . , Fn can also be coalesced
into a new fragment if the new fragment covers the same FVD as the previous fragments
covered together:
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Symbol Description
Si Site
ti Tuple
T Table T
Fi Fragment i of table T
Ri Replica i
Rm Master replica
Fi[min, max] Fragment value domain
F Fragmentation
C Cost
Ai Tuple access
REj Refragmentation

Table 2 Symbols.

Fnew = ∪n
i=1Fi

∀Fi ∈ {F1, . . . , Fn}, ∃(Fj ∈ {F1, . . . , Fn}) : adj(Fi, Fj)

Consider a distributed database system consisting of a number of sites Si, i = 1 . . . n

and a global table T . At any time the table T has a certain fragmentation, e.g., F =

{S0(F0, F3), S3(F1, F2)}. Note that not all sites have been allocated fragments, and that
there might be replicas of fragments created based on the read pattern. In this case, we dis-
tinguish between the master replica Rm where the updates will be applied, and the read
replicas Rr

i . Using a master-copy protocol the read replicas Rr
i will receive updates after

they have been applied to the master replica Rm.

3.3 Problem definition

During operation, tuples are accessed as part of read or write operations A. If the fragment
where a tuple belongs (based on the value of the fragmentation attribute) is stored on the
same site as the site Sa performing the read access AR, it is a local read access and the cost
is C(AR) = CL. On the other hand, if the fragment is stored on a remote site, a remote read
access has to be performed, which has a cost of C(AR) = CR.

In the case of a write access, the cost also depends on whether the fragment to which the
tuple belongs is replicated or not. The basic write cost of a tuple belonging to a master replica
that is stored on the same site as the site Sa performing the write access is C(AW ) = CL.
If the master replica is stored on a remote site, a remote write access has to be performed,
which has a cost of C(AW ) = CW . In addition, if the fragment is replicated, the write
will incur updates to the read replicas, i.e., C(AU ) = rCW where r is the number of read
replicas.

In this paper we focus on reducing the communication costs, and therefore assume that
CL = 0. Note, however, that it is trivial to extend our approach by including local processing
cost.

If we consider the accesses in the system as a sequence of n operations at discrete time
instants, the result is a sequence of accesses [A1, ..., An]. The total access cost is

P
i C(Ai).

The access cost of a tuple at a particular time instant depends on the fragmentation F .
Refragmentation and reallocation of replicas of fragments can be performed at any time.

Given a computationally cheap algorithm for determining fragmentation and allocation, the
main cost of refragmentation and reallocation is the migration or copying of fragments from
one site to another. We denote the cost of one refragmentation or reallocation as C(REj)
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(this includes any regeneration of indices after migration), and the cost of all refragmenta-
tions and reallocations as

P
j C(REj).

The combined cost of access, refragmentations and reallocations is thus Ctotal =
P

i C(Ai)+P
j C(REj). Note that the access, refragmentation and reallocation operations are inter-

leaved. The aim of our approach is to minimize the cost Ctotal.

4 Overview of DYFRAM

This section describes our approach to dynamically fragment tables, and replicate those
fragments on different sites in order to improve locality of table accesses and thus reduce
communication costs. Our approach has two main components: 1) detecting replica access
patterns, and based on these statistics to 2) decide on refragmentation and reallocation. The
approach is illustrated in Fig. 2.

Each site makes decisions to split, migrate and/or replicate independently of other sites.
This makes it possible to use our approach without communication overhead, changing the
network protocol or even using it on all sites in the system.

In order to make informed decisions about useful fragmentation and replica changes,
future accesses have to be predicted. As with most online algorithms, predicting the future
is based on knowledge of the past. In our approach, this means detecting replica access
patterns, i.e., which sites are accessing which parts of which replica. This is performed by
recording replica accesses in order to discover access patterns. Recording of accesses is
performed continuously. Old data is periodically discarded so that statistics only include
recent accesses. In this way, the system can adapt to changes in access patterns. Statistics
are stored using histograms, as described in Section 5.

Given the available statistics, our algorithm examines accesses for each replica and eval-
uates possible refragmentations and reallocations based on recent history. The algorithm
runs at given intervals, individually for each replica. Since decisions are made indepen-
dently of other sites, decisions are made based on the information available at that site. With
master-copy based replication, all writes are made to the master replica before read repli-
cas are updated. Therefore, write statistics are available at all sites with a replica of a given
fragment. On the other hand, reads are only logged at the site where the accessed replica is
located. This means that read statistics are spread throughout the system. In order to detect
if a specific site has a read pattern that indicates that it should be given a replica, we require
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a site to read from a specific replica so that this site’s read pattern is not distributed among
several replicas.

With all sites with replicas of a given fragment acting independently, we have to make
sure that decisions taken are not in conflict with each other. To achieve this, we handle the
master replica and read replicas differently. The site with the master replica can: 1) split
the fragment, 2) transfer the master status to a different replica, and 3) create a new replica.
Sites with read replicas can: 1) create a new replica, and 2) delete its own replica.

These decisions are made by the algorithm by using cost functions that estimate the
difference in future communication costs between a given replica change and keeping it as
is. Details are presented in Section 6.

Regarding data consistency and concurrency control, this can be treated as in existing
systems employing fragmentation and replication and is therefore not outlined here. In our
DASCOSA-DB distributed database system [16], locking in combination with the system
catalog (DHT-based) is used, however more complex protocols can also be used in order to
increase concurrency (this is not specific to DYFRAM).

5 Replica access statistics

Recording of replica accesses is performed at the tuple level. The access data consists of
(S, v, a) tuples, where S is the site from which the operation came, v is the value of the
fragmentation attribute and a is the access type (read or write). In cases where recording
every access can be costly (the overhead is discussed later), it is possible to instead record a
sample of accesses — trading accuracy for reduced overhead.

The data structure used to store access statistics is of great importance to our approach.
It should have the following properties:

– Must hold enough information to capture read and write patterns.
– Efficient handling of updates as they will be frequent.
– Memory efficient - storage requirements should not depend on fragment size or number

of accesses.
– Must be able to handle any v values, because it will not be known beforehand which

ranges are actually used.
– Must be able to effortlessly remove old access history in order to only keep recent his-

tory.

Since our purpose for recording accesses is to detect access patterns in order to support
fragmentation decisions, we are interested in knowing how much any given site has accessed
different parts of the fragment. We store access statistics in histograms. Every site has a set
of histograms for each fragment it has a local replica of. These histograms must be small
enough to be kept in main memory for efficient processing.

In the following, we present the design of our access statistics histograms as well as
algorithms for the different histogram operations.

5.1 Histogram design

Histograms have been used for a long time to approximate data distribution in databases [18].
Most of these have been static histograms constructed once and then left unchanged. In our
case, data to be represented by the histograms arrive continuously. Static histograms would
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Symbol Description
Hi Histogram
bk Histogram bucket number
Ri[bk] Number of reads in bucket
Wi[bk] Number of writes in bucket
W Bucket width
MAXB Maximum number of buckets
ZW Factor used when resizing buckets

Table 3 Histogram symbols.

therefore soon be out of date and constant construction of new histograms would have pro-
hibitive cost.

Another class of histograms is dynamic histograms [12,18], that are maintained incre-
mentally and therefore better suited for our approach. Most histograms described in the
literature are equi-depth histograms, since these capture distributions better than equi-width
histograms for the same number of buckets [18].

For our approach we chose to use equi-width histograms. This choice was made in or-
der to improve the performance of histogram operations, since equi-width histograms are by
design simpler to use and to access than equi-depth histograms. This is because all buckets
have the same width, and finding the correct bucket for a given value is therefore a very
simple computation. As will become apparent when we describe histogram updates and re-
trievals in detail below, it also simplifies computing histogram range counts when we use
two different histogram sets in order to store only the recent history. The obvious disadvan-
tage of using equi-width histograms is that we have to use more buckets in order to capture
access patterns with the same accuracy as equi-depth histograms. However, the significantly
reduced computational cost makes this an acceptable trade-off.

Histogram-related symbols used in the following discussion are summarized in Table 3.
Each bucket in a histogram Hi has a bucket number bk and contains two values: the read
count Ri[bk] and the write count Wi[bk]. We use equi-width histograms with bucket width
W and limit bucket value ranges to start and end on multiples of W . The value range of a
bucket is then [bk ·W, (bk + 1) ·W ).

Histograms only maintain statistics for values that are actually accessed, i.e., they do not
cover the whole FVD. This saves space by not storing empty buckets, which is useful since
we lack a priori knowledge about fragment attribute values. Buckets are therefore stored as
(bk, Ri[bk], Wi[bk]) triplets hashed on bk for fast access.

In order to limit memory usage, there is a maximum number of stored buckets, MAX B .
If a histogram update brings the number of stored buckets above MAX B , the bucket width
is scaled up by a factor ZW . Similarly, bucket width is decreased by the same factor if it
can be done without resulting in more than MAX B buckets. This makes sure we have as
many buckets as possible given memory limitations, as this better captures the replica access
history.

In order to store only the most recent history, we use two sets of histograms: the old
and the current set. All operations are recorded in the current set. Every time the evaluation
algorithms have been run, the old set is cleared and the sets swapped. This means that the
current set holds operations recorded since the last time the algorithm was run, while the
old set holds operations recorded between the two last runs. For calculations, the algorithms
uses both sets. This is made simple by the fact that we always use the same bucket width
for both sets and that bucket value range is a function of bucket number and width. Adding
histograms is therefore performed by adding corresponding bucket values. We denote the
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Algorithm 1 Site Si reads tuple tj in replica Rj with fragmentation attribute value vj .
(Similar for writes.)
histogramUpdate(Si, Rj , vj):

Hi ← Hcur[Si, Rj ]
bk ← vj/W
Ri[bk]← Ri[bk] + 1
if numberOfBuckets > MAXB then

increaseBucketWidth(Rj)
end if

current histogram storing accesses from site Si to replica Rj of fragment Fj as Hcur[Si, Rj ],
while the old histogram is Hold[Si, Rj ]

5.2 Histogram operations

This section presents algorithms for the different histogram operations.

5.2.1 Histogram update

Every time a tuple in one of the local replicas is accessed, the corresponding histogram is
updated. This is described in Algorithm 1. Although not included in the algorithms (to im-
prove clarity), we normalize values before they are entered into the histogram. Assume a
replica Ri of fragment Fi with FVD(Fi) = Fi[mini, maxi] and a tuple tj with fragmen-
tation attribute value vj . We then record the value vj − mini. This means that histogram
bucket numbers start at 0 regardless of the FVD.

Since this operation is performed very often, it is important that it is efficient. As de-
scribed above, the value range of bucket number bk is [bk ·W, (bk + 1) ·W ). We therefore
need to determine bk for a given fragmentation attribute value vj and then increment its
bucket value. The formula is bk = vj/W , which means that the computational cost is O(1).
Also, since histograms are kept in main memory, histogram updates do not incur any disk
accesses.

If no bucket already exists for bucket number bk, a new bucket must be constructed.
This is the only time where the histogram gets more buckets, so after the update, the current
number of buckets is checked against the upper bound MAX B and bucket width is increased
(and thus the number of buckets decreased) if we now have too many buckets.

5.2.2 Histogram bucket resizing

If at any time a tuple access occurs outside the range covered by the current buckets, a new
bucket is made. If the upper bound of buckets, MAX B , is reached, the bucket width W

is increased and the histograms reorganized. We do this by multiplying W with a scaling
factor ZW . This factor is an integer such that the contents of new buckets are the sum of a
number of old buckets. Increasing bucket width of course reduces the histogram accuracy,
but it helps reduce both memory usage and processing overhead. Since we only store recent
history, we may reach a point where the set of buckets in use becomes very small. If we
can reduce bucket width to W/ZW and still have fewer buckets than the upper bound, the
histogram is reorganized by splitting each bucket into ZW new buckets. This reorganization
assumes uniform distribution of values inside each bucket, which is a common assumption
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Algorithm 2 Increase bucket width W for histograms for replica R by factor ZW .
increaseBucketWidth(R):

for all Si ∈ getActiveSites(R) do
for all Hi ∈ Hcur[Si, R] ∪Hold[Si, R] do

H′
i ← ∅

for all bk ∈ Hi do
b′
k = bk/ZW

R′
i[b

′
k] = R′

i[b
′
k] + Ri[bk]

W ′
i [b

′
k] = W ′

i [b
′
k] + Wi[bk]

end for
Hi ← H′

i
end for

end for

[18]. Details are shown in Algorithm 2. Note that this is performed for both the current
and old set of histograms in order to make them have the same bucket width, as this makes
subsequent histogram accesses efficient. The function getActiveSites(R) returns the set of
all sites that have accessed replica R.

Similarly, if we at any point use only a very low number of buckets, the bucket widths
can be decreased in order to make access statistics more accurate. This is described in Al-
gorithm 3. Of special note is the expression max(1, Ri[bk]/ZW ). If a large bucket to be
divided into smaller buckets contain only a few tuples, rounding can make Ri[bk]/ZW = 0,
which would in effect remove the bucket (since only buckets containing tuples are stored).
To prevent loss of information in this case, new buckets contain a minimum of 1 tuple.

5.2.3 Histogram range count

When retrieving access statistics from histograms, i.e., contents of buckets within a range,
both current and old histograms are used. Since both histograms have the same bucket width
and corresponding bucket numbers, retrieval is a straight summation of range counts from
the two histograms and therefore very fast to perform. In order to count number of reads or
writes from site S to replica R stored in buckets numbered [bmin, bmax], the functions his-
togramReadCount(S, R, bmin, bmax) and histogramWriteCount(S, R, bmin, bmax) are used.
In order to get the sum of range counts for writes from all sites, the function histogramWrite-
CountAll(R, bmin, bmax) is used.

5.2.4 Histogram reorganization

As stated earlier, it is important that only the recent access history is used for replica evalua-
tions in order to make it possible to adapt to changes in access patterns. This is achieved by
having two sets of histograms, one current histogram Hcur that is maintained and one Hold

which contains statistics from the previous period. Periodically the current Hold is replaced
with the current contents of Hcur , and then Hcur is emptied and subsequently used for new
statistics.

The only time buckets are removed from the histogram is during reorganization. It is
therefore the only time that the number of buckets in the histogram can get so low that
we can decrease the bucket width (thus creating more buckets) and still stay below the
bucket number maximum MAX B . This will be performed using decreaseBucketWidth(R)

described in Algorithm 3. The function performing the reorganization is in the following
denoted histogramReorganize(R).
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Algorithm 3 Decrease bucket width W for histograms for replica R by factor ZW .
decreaseBucketWidth(R):

for all Si ∈ getActiveSites(R) do
for all Hi ∈ Hcur[Si, R] ∪Hold[Si, R] do

H′
i ← ∅

for all bk ∈ Hi do
for b′

k = 0 to ZW do
R′

i[bk · ZW + b′
k] = max(1, Ri[bk]/ZW )

W ′
i [bk · ZW + b′

k] = max(1, Wi[bk]/ZW )
end for

end for
Hi ← H′

i
end for

end for

5.3 Histogram memory requirements

wrong, remainders from old version It is important that the size of the histograms is small
so that enough main memory is available for more efficient query processing and buffering.
For every replica a site has, it must store two histograms for each active site accessing the
fragment. Every bucket is stored as a (bk, Ri[bk], Wi[bk]) triplet (note that sparse histograms
are used, so that only buckets actually accessed are stored). Assuming b buckets and c active
sites, the memory requirement for each replica is 2 · c · b · sizeOf(bucket) or O(b · c). Since
b have an upper bound MAX B , memory consumption does not depend on fragment size or
number of accesses, only on the number of active sites.

6 Fragmentation and replication

Our approach calls for three different algorithms. One for creating new replicas, one for
deleting replicas and one for splitting and coalescing fragments. These will be described in
the following sections.

These algorithms are designed to work together to dynamically manage fragmentation
and replication of those fragments such that the overall communication costs are minimized.
The communication cost consists of four parts: 1) remote writes, 2) remote reads, 3) updates
of read replicas, and 4) migration of replicas (either in itself or as part of creation of a new
replica).

Common for all three algorithms is that they seek to estimate the benefit from a given
action based on available usage statistics. This is implemented using three cost functions,
one for each algorithm. These functions are described in Section 6.4.

6.1 Creating replicas

This algorithm is run at regular intervals for each fragment of which a given site has a
replica. The aim is to identify sites that, based on recent usage statistics, should be assigned
a replica. If any such sites are found, replicas are sent to them, and the site holding the master
replica is notified so that the new replicas can receive updates.

The algorithm for identifying and creating new replicas of replica R is shown in Al-
gorithm 4. In the algorithm, a cost function (to be described in Section 6.4) is applied for
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Algorithm 4 Evaluate replica R for any possible new replicas. R is located on site Sl.
createReplica(R):

bmin ← min(Hcur[Sl, R]) {First bucket used}
bmax ← max(Hcur[Sl, R]) {Last bucket used}
cardw ← histogramWriteCountAll(R, bmin, bmax)
for all Sr ∈ getActiveSites(R) do

cardrr ← histogramReadCount(Sr, R, bmin, bmax)
utility ← wBE · cardr r − cardw − wFS · card(R)
if utility > 0 then

copyReplica(R, Sr) {Also notifies master replica}
end if

end for

Algorithm 5 Evaluate local replica R and decide if it should be deleted. R is located on site
Sl.
deleteReplica(R):

bmin ← min(Hcur[Sl, R]) {First bucket used}
bmax ← max(Hcur[Sl, R]) {Last bucket used}
cardw ← histogramWriteCountAll(R, bmin, bmax)
card lr ← histogramReadCount(Sl, R, bmin, bmax)
utility ← wBE · cardw − card lr
if utility > 0 then

deleteLocalReplica(R) {Also notifies master replica}
end if

each remote site Sr that has read from to R. The result is a utility value that estimates the
communication cost reduction achieved by creating a new replica at site Sr . All sites with
positive utility value receive a replica. If no site has a positive utility, no change is made.

Note that, if desired, the number of replicas in the system can be constrained by having
a limit on the number of replicas. This might be beneficial in the the context of massive read
access to various sites.

6.2 Deleting replicas

Since each fragment must have a master replica, only read replicas are considered for dele-
tion. This algorithm evaluates all read replicas a given site has, in order to detect if the
overall communication cost of the system would be lower if the replica were deleted. The
details are shown in Algorithm 5. Again, a cost function is used to evaluate each read replica
R. Any replica with a positive utility is deleted after the site with the master replica has been
notified.

6.3 Splitting fragments

The aim of the fragmentation algorithm is to identify parts of a table fragment that, based
on recent history, should be extracted to form a new fragment and migrated to a different
site in order to reduce communication costs (denoted extract+migrate). To avoid different
fragmentation decisions made simultaneously at sites with replicas of the same fragment,
this algorithm is only applied to master replicas.
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More formally, assume a fragmentationFold which includes a fragment Fi with FVD(Fi) =

Fi[mini, maxi] having master replica Rm
i allocated to site Si. Find a set of fragments

Fm, ..., Fn such that ∪Fm, ..., Fn = Fi with Fnew ∈ Fm, ..., Fn and master replica Rm
new

allocated to site Sk 6= Si such that the communication cost Ctotal =
P

C(Ai)+
P

C(REj)

is lower than for Fold.
The result of each execution can be either: 1) do nothing, i.e, the fragment is as it should

be, 2) migrate the whole master replica, or 3) extract a new fragment Fnew with FVD(Fnew)

= Fnew[minnew, maxnew] and migrate its new master replica to site Sk. A decision to
migrate the whole master replica can be seen as a special case of extract+migrate. In the
discussion below, we therefore focus on how to find appropriate values for minnew and
maxnew. If a refragmentation decision is made, all sites with read replicas are notified so
that they can perform the same refragmentation. This is necessary to enforce that all replicas
of a given fragment are equal.

Algorithm 6 Evaluate fragment F for any possible extract+migrates. Rm is the master
replica of F and is currently located on site Sl

refragment(F, Rm):
fragmentations ← ∅
for all Sr ∈ getActiveSites(Rm) do

for all bmin ∈ Hcur[Sr, Rm], bmax ∈ Hcur[Sr, Rm] do
cardrw ← histogramWriteCount(Sr, Rm, bmin, bmax)
card lw ← histogramWriteCount(Sl, R

m, bmin, bmax)
utility ← wBE · cardrw − card lw − wFS · card(F )
if utility > 0 and (max−min + 1) > fragmentMinSize then

fragmentations ← fragmentations ∪ (Sr, min, max, utility)
end if

end for
end for
sort(fragmentations) {Sort on utility value}
removeIncompatible(fragmentations)
for all (Sr, min, max, utility) ∈ fragmentations do

F1, Fnew, F2 ← extractNewFragment(F, min, max)
migrateFragment(Fnew, Sr) {Migrates master replica}
updateReplicas()

end for
coalesceLocalFragments()
histogramReorganize(Rm)

The algorithm for evaluating and refragmenting a given fragment F is presented in Al-
gorithm 6. It evaluates all new possible fragments Fnew and possible recipient sites Sr using
a cost function. The result is a utility value that estimates the communication cost reduction
from extracting Fnew and migrating its master replica to Sr . Afterward, all compatible frag-
mentations with positive utility values are performed. Two fragmentations are compatible
if their extracted fragments do not overlap. In case of two incompatible fragmentations, the
fragmentation with the highest utility value is chosen. Note that no fragments with FVD less
than fragmentMinSize will be extracted in order to prevent refragmentation from resulting
in an excessive number of fragments.

Given a fragment Fi with FVD(Fi) = Fi[mini, maxi], the size of the fragment value
domain is then width = maxi −mini + 1. Assume an extraction of a new fragment Fnew

such that FVD(Fnew) = Fnew[minnew, maxnew]∈FVD(Fi). If FVD(Fnew) is assumed to
be non-empty, i.e., maxnew > minnew, then width − 1 possible values for minnew and
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maxnew are possible. This means that O(width2) possible fragments Fnew will have to be
evaluated. This could easily lead to a prohibitively large number of Fnew to consider, so
some heuristic is required.

We reduce the number of possible fragments to consider based on the following observa-
tion: The basis for the evaluation algorithm is the access histograms described above. These
histograms represent an approximation since details are limited to the histogram buckets.
It is therefore only meaningful to consider FVD(Fnew) with start/end-points at histogram
bucket boundaries.

With b histogram buckets and b � width as well as b having an upper bound, process-
ing becomes feasible. The number of value ranges to consider is b(b + 1)/2 = O(b2). An
example of a histogram with four buckets and 10 possible FVD(Fnew) is shown in Fig. 3.

Bk[1] Bk[2] Bk[3] Bk[4]

Histogram

buckets

Possible

value

ranges

Fig. 3 Histogram with four buckets and corresponding value ranges.

After the algorithm has completed, any adjacent fragments that now has master replicas
on the same site are coalesced (denoted coalesceLocalFragments() in the algorithm). This
helps keeping the number of fragments low. If two fragments are coalesced, the read replicas
of those fragments must be updated as well. Some sites will likely have read replicas of only
one of the fragments. These sites must either delete their replicas or get a replica of the
fragment they are missing so coalescing can be performed on all replicas. Our heuristic is
that we send the fragment which requires least communication cost to the sites missing that
fragment. The remaining sites delete their local replicas.

Finally, old access statistics are removed from any remaining local master replicas using
function histogramReorganize, as described in Section 5.2.4.

6.4 Cost functions

The core of the algorithms are the cost functions. The functions estimate the communication
cost difference (or utility) between taking a given action (create, delete, split) and keeping
the status quo. The basic assumption is that future accesses will resemble recent history as
recorded in the access statistics histograms.

From Section 3.3 the communication cost Ctotal =
P

i C(Ai) +
P

j C(REj). Ac-
cesses can either be reads, writes or updates:

P
i C(Ai) =

P
k C(ARk) +

P
l C(AWl) +P

m C(AUm). The recent history for fragment F consists of a series of accesses SA =

[A1, ..., An]. Each access Ai comes from a site So. The accesses from a given site So is
SA(So) where SA(So) ⊂ SA. Since we measure communication cost, local accesses have
no cost, i.e., ∀Ai, Ai ∈ SA(Sl) ⇒ C(Ai) = 0.
The basic form of the cost functions is as follow:

utility = benefit − cost (1)
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Replica creation: The benefit of creating a new read replica on site Sr is that reads from
site Sr will become local operations and thus have no network communication cost. The cost
of creating a new replica is first that the new replica will have to be updated whenever the
master replica is written to. The second part of the cost is the actual transfer of the replica
to the new site. This gives the following utility function:

utilityCreate = card(SR(Sr))− card(SU)− card(F ) (2)

where card(SR(Sr)) is the number of reads from remote site Sr , card(SU) is the number
of replica updates and card(F ) is the size of the fragment.

Replica deletion: When a read replica R at site Sl is deleted, the benefit is that replica
updates will no longer have to be transmitted to Sl. The cost is that local reads from Sl to R

will now become remote. Thus we get the following utility function:

utilityDelete = card(SU)− card(SR(Sl)) (3)

Splitting fragments and migrating master replicas: As described earlier, the algo-
rithm handles splitting by using the cost function on all possible value ranges for the frag-
ment. Thus the aim of the cost function is limited to estimating when a master replica R

should be migrated from Sl to a remote site Sr . The only way a migration of the master
replica can affect the number of remote reads and updates in the system, is if Sr already has
a read replica. However, since Sl does not know the usage statistics of any possible replica
at Sr , we simplify the function by omitting this possibility. The benefit of a migration of the
master replica to Sr is therefore that writes from Sr will become local operations. Similarly,
the cost will be writes from Sl. In addition we must consider the cost of migrating in itself.
Our utility function:

utilityMigrate = card(SW (Sr))− card(SW (Sl))− card(F ) (4)

Cost function weights: While these equations are expressions of possible communica-
tion cost savings from different actions, they cannot be used quite as they are in an actual
implementation. There are a couple of issues. First, SW , SR and SU by design include only
the recent history and cardinality values are therefore dependent on how much history we
include. On the other hand, card(F ) is simply the current number of tuples in the fragment
and thus independent on history size. We therefore scale card(F ) by a cost function weight
wFS. This weight will have to be experimentally determined and optimal value will depend
on how much the usage history includes.

The second problem is stability. If we allow, e.g., migration when the number of remote
accesses is just a few more than the number of local accesses, we could get an unstable
situation where a fragment is migrated back and forth between sites. This is something
we want to prevent as migrations cause delays in table accesses and indices may have to be
recreated every time. To alleviate this problem, we scale the benefit part of the cost functions
by wBE ∈ [0..1]. For migrations, wBE = 0.5 means that there will have to be 50 % more
remote accesses than local accesses for migration to be considered, i.e., for the utility to be
positive (disregarding fragment size).

By including wFS and wBE we get the following cost functions:

utilityCreate = wBE · card(SR(Sr))− card(SU)− wFS · card(F ) (5)

utilityDelete = wBE · card(SU)− card(SR(Sl)) (6)



18

utilityMigrate = wBE · card(SW (Sr))− card(SW (Sl))

−wFS · card(F ) (7)

Different values for the two cost function weights are evaluated experimentally in the
Evaluation Section below.

7 Evaluation

In this section we present an evaluation of our approach. We aim to investigate different
dynamic workloads and the communication cost savings our algorithms can achieve. Ideally,
we would have liked to do a comparative evaluation with related work. However, to the best
of our knowledge, no previous work exists that do continuous dynamic refragmentation and
replication based on reads and writes in a distributed setting. Instead, we compare our results
with a no-fragmentation and an optimal fragmentation method (where applicable).

The evaluation has three parts. First we examine the results from running a simulator on
four workloads involving just two sites. These workloads have been designed to highlight
different aspects, such as fragmentation, replication and changing access patterns. We have
kept them as simple as possible to make it easier to analyze the results qualitatively. For the
second part of the evaluation, we do simulations using two highly dynamic workloads in-
volving more sites, providing a more realistic setting. The third part consists of experiments
on an implementation in a distributed database system.

7.1 Experimental setup

For the evaluation, we implemented a simulator which allows us to generate distributed
workloads, i.e., simulate several sites all performing tuple reads and writes with separate
access patterns. In all presented simulation results, the fragmentation and replication deci-
sion algorithms were run every 30 seconds. All simulations have been run 100 times, and
we present the average values. For each simulated site, the following parameters can be
adjusted:

– Fragmentation attribute value interval: minimum and maximum values for the accesses
from the site.

– Access distribution: either uniform or hot spot (10 % of the values get 90 % of the
accesses).

– Average rate of tuple accesses in number of accesses per minute. We use a Poisson
distribution to generate accesses according to the frequency rate.

– Access type: reads, writes or a combination of both.

Values for these parameters need not be constant, but can change at any point for any site in
the workload. In our simulations, we have used maximum histogram size of MAX B = 100

buckets, and each table has one fragment with no read replicas when a simulation starts. We
also tested with 1000 buckets, but this provided negligible benefits for our workloads.

Unlike most of the relevant previous work, our method tightly integrates fragmentation
allocation and replication. Therefore, it does not make much sense comparing against tech-
niques that only perform one of the tasks. Instead, we use the following two fragmentations
methods to act as baselines for comparison. The first is a baseline where the table is not frag-
mented or replicated at all. The table consists of a single fragment with its master replica
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Workload no. Access Distribution Rate Purpose
1 Write S1 :Uniform, S2 :Hot spot Low Detect hot spots
2, first half Write S1 :Hot spot, S2 :Uniform Low Detect distribution change
2, second half Write S1 :Uniform, S2 :Hot spot Low
3 S1 :Read, S2 :Write Uniform S1 :High, S2 :Low Make read replica
4, first half S1 :Read, S2 :Write Uniform S1 :High, S2 :Low Change replica pattern
4, second half S1 :Write, S2 :Read Uniform S1 :Low, S2 :High

Table 4 Two-site workloads.

permanently allocated to the site with the largest total number of accesses. This is what
would happen in a database system that does not use fragmentation or replication (e.g., to
simplify implementation and configuration), at least given that workloads were completely
predictable. Since there is no replication, there are no communication costs from migrations
either.

The second allocation method we compare against, is optimal fragmentation. Here we
assume full knowledge about future accesses. Each table is (at runtime) fragmented and the
fragments are migrated and/or replicated to the sites which would minimize remote accesses.

It should be noted that both these fragment allocation alternatives assume advance knowl-
edge about the fragmentation attribute value interval, distribution, frequency and type of
accesses, none of which are required for our dynamic approach.

7.2 Workloads involving two sites

In this section, we present results from four workloads, each with two sites (S1, S2). These
two sites accessed 25000-50000 tuples each. Early testing showed that 25000 tuples was
more than enough to reach a stable situation. Only two sites were used for these workloads
in order to make it easier to analyze the results. Each workload was therefore designed with
a specific purpose in mind.

The fragmentation attribute value intervals for the two sites were designed so that they
overlapped completely. Two rates were used, a high rate of 6000 accesses per minute and
a low rate of 3000 accesses per minute. For workload 1 and 3, the workload was constant
for both sites, while 2 and 4 switched workload parameters halfway through. Workloads 2
and 4 serve as examples of dynamic workloads where access patterns are not constant and
predictable. The results from these workloads should illustrate if our approach’s ability to
adjust fragmentation and replication at runtime result in communication cost savings. The
four workloads are detailed in Table 4.

Workload 1: In this workload, one of the sites has 10 hot spots while the other has
uniform access distribution. Ideally, these 10 hot spots should be detected and migrated
while the remainder should be left on the uniform access site. This case is similar to the one
presented in Fig. 1. Fig. 4(a) shows results for workload 1 with different values for wBE and
wFS. Communication costs for no-fragmentation and optimal fragmentation are also shown.

For this workload, the majority of the communication cost comes from remote writes,
i.e. when the extract+migrate algorithm is very conservative on migrating the hotspots from
S1 to S2. High values of wFS cause the algorithm to overestimate the cost of migration while
low values of wBE cause the benefit to be undervalued. This combination thus almost reduces
to the no-fragmentation case. For lower values of wFS and higher values of wBE, refragmen-
tation decisions are made earlier and the result is comparable to optimal fragmentation.

Workload 2: This is a dynamic version of workload 1, with the two sites switching access
patterns halfway through. The simulation results for this workload are shown in Fig. 4(b).
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(a) Two-site workload 1.
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(b) Two-site workload 2.
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(c) Two-site workload 3.
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(d) Two-site workload 4.

Fig. 4 (a) Results from two-site workload 1. (b) Results from two-site workload 2. (c) Results from two-site
workload 3. Note that NoFrag and Optimal are equal for this workload, at 25000 tuples. (d) Results from
two-site workload 4.

Results here are similar to workload 1, but with an extra overhead from detecting the
access pattern change. This overhead is larger than for workload 1 simply because at the time
the workload changes, the recent history is filled with the old workload and it takes a while
for the new workload to dominate. The worst result is again similar to no-fragmentation.

Workload 3: This workload has one site writing while the other site reads at twice the
rate. Ideally the site that writes should get the master replica, while the other site gets a read
replica. Results from workload 3 are shown in Fig. 4(c).

The most important factor for the communication cost of this workload is whether a read
replica is created on S2. For low values of wBE, the benefit of such a replica is undervalued
and it is never created leading to poor results. Changes in wFS only delay replica creation
slightly and therefore has comparatively little influence. The exception is where high wFS

and low wBE together prevent any migrations from happening, giving similar results to no-
fragmentation. No-fragmentation does quite well here as it allocates the fragment to the site
with the highest number of accesses which is also the optimal solution.

Workload 4: Similar to workload 3, except the two sites change behavior halfway through
the workload. What we would like to see is a deletion of the read replica, migration of the
master replica and a subsequent creation of a new read replica. Results from workload 4 are
shown in Fig. 4(d).

The results are somewhat similar to workload 3. The largest difference is the overhead
from detecting the workload change (similar to that of workload 2). For low values of wBE,
remote reads are the dominant cost since no replica is created. For higher values, a replica is
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Workload no. Re. writes Re. reads Re. updates Migrations Fragments Tuples Comm. cost No frag. Optimal
1 6229 0 0 10 20 46 6275 25000 5000
2 11145 0 0 53 47 860 12005 25000 5000
3 984 3154 22476 2 1 1385 27999 25000 25000
4 4009 6374 30310 44 21 3173 43866 50000 25000

Table 5 Detailed results, wBE = 0.9, wFS = 0.50.
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Fig. 5 Comparative results from two-site workloads.

created and remote updates dominates. No-fragmentation is now much worse since it does
not adjust to the change.

Detailed results for all four workloads with wBE = 0.9, wFS = 0.50 are shown in Table 5.
This table lists the number of remote accesses, migrations, fragments at the end of the run
and the number of tuples transferred during migrations. The communication cost is the sum
of remote accesses and tuples transferred. The final two columns shows the communication
cost from the no-fragmentation and optimal allocation methods. Average results for the four
workloads using the same cost function weight values are shown in Fig. 5.

7.3 Workloads involving several sites

This section presents the results from two workloads involving 20 active sites each (i.e., the
actual system can consist of a much larger number of sites, however only 20 sites simultane-
ously access the actual table during the simulation). The first of these workloads is intended
to resemble a distributed application which have separate read and write phases, e.g., a grid
application.

We have modeled the read phase as follows: A site uniformly accesses an random inter-
val that constitutes 10% of the table. Between 30.000 and 60.000 reads are performed at an
access rate of 2000 to 4000 reads a minute. Values for the interval, number of reads and rate
are drawn randomly at the start of each phase.

After the read phase has completed, a write phase follows. Here the site accesses uni-
formly accesses a random interval 1% of the size of the table. Anywhere from 20.000 to
40.000 tuples are written at a rate of 2000 writes a minute. After the write phase has com-
pleted, a new read phase is initiated (and so on) until the site has accessed 500.000 tuples.
With 20 sites, this gives a complete workload consisting of 10 million accesses. Also note
that due to the random parameters, two different sites will generally not be in the same
phase.

Comparative evaluation is more difficult for this workload than for those previously
presented. The no-fragmentation method is still usable, but less realistic as the fixed non-
fragmented master replica easily can become a bottleneck for remote writes and updates.
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(a) Grid application workload.
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(b) General workload

Fig. 6 (a) Results from grid application workload. (b) Results from general workload.

The optimal fragmentation method is more problematic. With 10 million accesses each run
and no clear access pattern, a very large number of fragmentations, migrations and replica
allocations would have to be evaluated to find the optimal dynamic solution. Further, the
highly random nature of this workload means that a fragmentation and replica allocation
that are optimal for one run, will not be optimal for another. The optimal fragmentation
method would therefore have to be recomputed for each run. For these reasons we found
optimal fragmentation infeasible and omitted it from this part of the evaluation.

The results are shown in Fig. 6(a). With ten times as many sites as for earlier workloads,
having too many replicas becomes a much more important issue due to the number of update
messages needed to keep all the replicas consistent. This is what causes very poor results
with a combination of low wBE and low wFS. The low wFS underestimates the cost of creating
a read replica while low wBE makes it hard to delete it later. This leads to an excessive
number of replicas and poor performance from the high number of updates needed. Due
to the highly dynamic nature of this workload, high values of wBE work well as they make
the algorithms take action earlier. Since the number of writes is low and confined to narrow
intervals of the table, fragment sizes stay small and thus the wFS value is of little importance.

The second multi-site workload is intended to resemble a more general usage pattern
where each site does not have distinct read and write phases, but rather a single phase that
includes both. We have modeled it as follows: A site uniformly accesses a random interval
that constitutes 10% of the table. Each of these accesses can be either a read (80%) or a
write (20%). The access rate is from 2000 to 4000 accesses a minute, and the phase lasts
between 30.000 and 60.000 accesses. After the phase has completed, it restarts with new
sets of parameters randomly drawn. As for the last workload, this continues until 500.000
accesses have been made from each site. The simulation results are shown in Fig. 6(b).

Similar to the grid application workload, the creation and deletion of read replicas are
the most important factors influencing the results. Low values of wBE make the algorithms
act conservatively, both when creating and deleting replicas. This leads to remote reads dom-
inating the communication cost. For higher values of wBE, more replicas are created giving
fewer remote reads but more updates. For this workload, these two factors tended to balance
each other out, giving similar communication costs for a wide selection of cost function
weight values. While there are separate write phases in the grid application workload that
each only accessed 1% of the table, writes in this workload were interleaved with reads and
accessed a much larger part of the table (for a given phase). This workload also had a smaller
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(a) Multi-site workloads in simulations.
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(b) Multi-site workloads in DASCOSA-DB.

Fig. 7 (a) Comparative results from simulations with multi-site workloads, showing reduction in commu-
nication cost relative to the no-fragmentation method. (b) Comparative results from multi-site workloads
using DYFRAM implemented in DASCOSA-DB, showing reduction in communication cost relative to the
no-fragmentation method.

Simulation Implementation
Workload No frag. DYFRAM Reduction No frag. DYFRAM Reduction
General 9.5 mill. 6.85 mill. 27.9% 100.000 59519 40.5%
Grid app. 9.5 mill. 6.95 mill. 26.8% 100.000 47921 52.1%

Table 6 Tuples transferred during multi-site workloads in simulations and implementation in DASCOSA-
DB.

fraction of the accesses as writes. These three factors caused the splitting algorithm to create
smaller fragments which meant that wFS had little impact on the results.

Comparative results for the two multi-site workloads using wBE = 0.9 and wFS = 0.50,
are shown in Fig. 7(a) and Table 6.

7.4 Implementation of DYFRAM in DASCOSA-DB

In this experiment, DYFRAM was implemented in the DASCOSA-DB distributed database
system [16] in order to verify simulation results. The workloads tested are similar to the
grid and general workloads presented in Section 7.3, but have been scaled down a bit for
practical reasons.

The grid workload has read phases of 6.000–12.000 accesses. Each phase uniformly
accesses a random 5% interval of the table. Write phases do 4.000–8.000 writes to a random
0.5% interval of the table. There is no delay between accesses. As soon as a site finishes one
phase, it starts on the next, alternating between read and write phases. The experiments are
done with 6 sites, each issuing 20.000 accesses, i.e., a total of 120.000 accesses. Half of the
sites start in a read phase, while the other half starts in a write phase. Due to the different
phase lengths, this pattern will change several times during the experiment.

The general workload is scaled with the same factors, giving phases of 6.000–12.000
accesses to 5% of the table. 80% of these are read accesses and 20% are write accesses.
Each of the 6 sites issues 20.000 accesses, resulting in a total of 120.000 accesses.

The refragmentation algorithm is run every 30 seconds with wFS = 0.2 and wBE =

0.95, which should give a quite aggressive use of refragmentation and replication. As ex-
plained in Section 6.4, the weights were found experimentally by testing on a shorter work-
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load, consisting only of a few thousand accesses. The results are compared against the no-
fragmentation method. Each experiment is repeated a number of times with different random
seeds.

The results from both workloads and the no-fragmentation method are shown in Fig. 7(b)
and Table 6. We see that the results are similar to those from the simulations. For the
general workload, communication costs are reduced by more than 40% compared to the
no-fragmentation method. The costs of the grid workload is reduced by more than 50%.
Clearly, the cost of replication is made up for by converting remote accesses to local ac-
cesses. Around 20% of the tuples transferred are caused by fragments moving around. The
ratio of read vs. write accesses varies more, with the grid workload generally having higher
write costs and the general workload having higher read costs.

The results do not vary much between each run, and small changes in wFS and wBE do
not change the results much. The length of each phase will affect the cost savings, but even
if phases are only half as long, communication costs are 25% below the no-fragmentation
method.

8 Conclusions and further work

In distributed database systems, tables are frequently fragmented and replicated over a num-
ber of sites in order to reduce network communication costs. How to fragment, when to
replicate and how to allocate the fragments to the sites are challenging problems that has
previously been solved either by static fragmentation and allocation, or based on the anal-
ysis of a priori known queries. In this paper we have presented DYFRAM, a decentralized
approach for dynamic table fragmentation and allocation in distributed database systems,
based on observation of the access patterns of sites to tables. To the best of our knowl-
edge, no previous work exists that perform the combination of continuous refragmentation,
reallocation, and replication in a distributed setting.

Results from simulations show that for typical workloads, our dynamic fragmentation
approach significantly reduces communication costs. The approach also demonstrates well
its ability to adapt to workload changes. In addition to simulations, we have also imple-
mented DYFRAM in the DASCOSA-DB distributed database system, and demonstrated its
applicability in real applications.

Future work include exploring adaptive adjustment of the cost function weights as well
as better workload prediction based on control theoretical techniques. We also intend to
develop a variant of our approach that can be used in combination with static query analysis
in order to detect periodically recurring access patterns.
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