
AGiDS: A Grid-based Strategy for Distributed

Skyline Query Processing

João B. Rocha-Junior⋆, Akrivi Vlachou⋆⋆, Christos Doulkeridis⋆⋆, and
Kjetil Nørv̊ag

Norwegian University of Science and Technology
{joao,vlachou,cdoulk,noervaag}@idi.ntnu.no

Abstract. Skyline queries help users make intelligent decisions over
complex data, where different and often conflicting criteria are consid-
ered. A challenging problem is to support skyline queries in distributed
environments, where data is scattered over independent sources. The
query response time of skyline processing over distributed data depends
on the amount of transferred data and the query processing cost at each
server. In this paper, we propose AGiDS, a framework for efficient sky-
line processing over distributed data. Our approach reduces significantly
the amount of transferred data, by using a grid-based data summary
that captures the data distribution on each server. AGiDS consists of
two phases to compute the result: in the first phase the querying server
gathers the grid-based summary, whereas in the second phase a skyline
request is sent only to the servers that may contribute to the skyline
result set asking only for the points of non-dominated regions. We pro-
vide an experimental evaluation showing that our approach performs
efficiently and outperforms existing techniques.

1 Introduction

Skyline queries [1] have attracted much attention recently, mainly because they
help users to make intelligent decisions over data that represent many conflicting
criteria. The skyline of a given set of d-dimensional points S is the set of points
which are not dominated by any other point of S. A point p is dominated by
another point q if and only if q is not worse than p in any dimension and q is
better than p in at least one dimension.

During the last decades, the vast number of independent data sources and
the high rate of data generation make central assembly of data at one location
infeasible. As a consequence, data management and storage become increasingly
distributed. Skyline query processing in a distributed and decentralized environ-
ment has received considerable attention recently [2–12]. Distributed information
systems are applications that can benefit from this query type. Consider a hotel

⋆ Ph.D. student at NTNU, on leave from Universidade Estadual de Feira de Santana.
⋆⋆ This work was carried out during the tenure of an ERCIM ”Alain Bensoussan”

Fellowship Programme.

2 Authors Suppressed Due to Excessive Length

reservation system, consisting of a large set of independent servers geographi-
cally dispersed around the world, each of them storing its own data about hotels.
Such a system could potentially provide booking services over the universal hotel
database, by allowing users to find suitable hotels based on skyline queries.

In this paper, we propose a novel way to process skyline queries efficiently
in a distributed environment. We make no assumption on the existence of an
overlay network that connects servers in an intentional manner, thus a querying
server directly communicates with other servers. We assume horizontal parti-
tioning of data to servers. Furthermore, each server stores a lightweight data
structure, which enables obtaining summary information about the data stored
at each server. Each participant is responsible to maintain its own data structure
with information about its local data. Based on this information, we are able
to process skyline queries only at the servers and regions in the d-dimensional
data space, which have data points belonging to the skyline result set. By means
of an experimental evaluation, we show that our solution reduces both response
time through higher parallelism and the amount of data transferred.

This paper makes the following contributions: First, we present an overview of
the current research on distributed skyline query processing. Then, we propose a
new strategy to compute skyline queries efficiently in a distributed environment,
where data is horizontally distributed to servers and no overlay network exists.
Further, we propose the use of a data structure to maintain summary informa-
tion about the data stored at each server. Finally, we perform an experimental
evaluation in order to demonstrate the effectiveness of our approach.

This paper is organized as follows: Section 2 presents an overview of the
related work. In Section 3, we provide the necessary preliminaries and definitions.
In Section 4, we describe our approach for distributed skyline computation. The
experimental evaluation is presented in Section 5 and we conclude in Section 6.

2 Related Work

Skyline computation has recently attracted considerable attention both in cen-
tralized [1] and distributed domains [2–12]. One of the first algorithms in the
distributed domain, by Balke et al. [2], focuses on skyline query processing over
multiple distributed sources, with each source storing only a subset of attributes
(vertical data distribution). Later, most of the related work has focused on highly
distributed and P2P environments, assuming all sources store common attributes
(horizontal data distribution). In the following, we provide a brief survey of ex-
isting P2P skyline processing algorithms. A comparative overview of distributed
skyline literature is presented in Table 1.

Approaches that assume horizontal data distribution can be classified in two
main categories. In the first category, the proposed methods assume space parti-
tioning among peers, thus each peer is responsible for a disjoint partition of the
data space. Towards this goal, a structured P2P or tree-based network overlay
is employed. The system controls the location of each data point and splits the
data in a way that the system can visit first the peers with higher probability of

AGiDS: A Grid-based Strategy for Distributed Skyline Query Processing 3

Papers P2P overlay Skyline query type Partitioning

MANETs [4] no overlay global data

QTree [7] unstructured approximate data

DSL [5] DHT (CAN) constrained space

SKYPEER [3] super-peer subspace data

BITPEER [8] super-peer subspace data

PaDSkyline [6] no overlay constrained data

iSky [9] BATON global space

SkyFrame [10, 11] CAN and BATON global, approximate space

FDS [12] no overlay global data

Table 1. Summary of approaches for P2P skyline processing.

having skyline points. DSL was proposed by Wu et al. [5] and it is the first paper
that addresses constrained skyline query processing over disjoint data partitions,
which are assigned to peers using CAN. Wang et al.[10] propose the SSP algo-
rithm based on the use of a tree-based overlay (BATON) for assigning data to
peers. They use a one-dimensional mapping of data based on z-order and then
data is assigned to peers. Later, the authors present SkyFrame [11] as an exten-
sion of their work. SkyFrame is a framework that comprises two methods: GSS
(Greedy Skyline Search) and RSS (Relaxed Skyline Search). GSS and RSS can
run on top of either CAN or BATON. GSS achieves low bandwidth consumption,
whereas RSS reduces the overall response time. Chen et al. [9] propose the iSky
algorithm, which employs another transformation, namely iMinMax, in order to
assign data to BATON peers.

In the second category, data partitioning is assumed and each peer au-
tonomously stores its own data. Huang et al. [4] study skyline query processing
over mobile ad-hoc networks. The aim is to reduce communication costs as well
as processing costs on the individual device. In SKYPEER [3], each super-peer
computes and stores the extended skyline of its associated peers. Then, when
a super-peer processes a skyline query, the query is forwarded to neighboring
super-peers, processed locally using the extended skyline set, followed by in-
network merging of results. Fotiadou et al. [8] propose BITPEER that uses a
bitmap representation, in order to improve the performance of query processing.
Hose et al. [7] use distributed data summaries (QTree) about the data stored by
the peers. During skyline query processing, the QTree is used as routing mech-
anism to determine the peers, which need to be processed, in order find the
skyline points. The approach supports approximate result sets for reducing the
processing cost and provides guarantees for the completeness of the result.

Cui et al. [6] study skyline query processing in a distributed environment,
without the assumption of an existing overlay network, where a coordinator can
directly communicate with all peers (servers). They propose the use of MBRs
(Minimum Bounding Regions) to summarize the data stored at each server. The
proposed PaDSkyline algorithm works in two steps. In the first step, the MBRs

4 Authors Suppressed Due to Excessive Length

of all servers are collected and assigned to incomparable groups, which can be
queried in parallel, while specific plans are used within each group. Subsequently,
servers are queried and the results are returned back to the coordinator. Recently,
in [12], a feedback-based distributed skyline (FDS) algorithm is proposed, which
also assumes no particular overlay network. The algorithm is efficient in terms
of bandwidth consumption, however it requires several round-trips to compute
the skyline, thus it may incur high response time.

Our framework, similar to the ones presented in [6, 12], assumes no particular
network topology. In contrast to [12], our approach requires only two round trips,
thus avoiding high latency caused by multiple round trips. Differently than [6],
we use grid-based summary information instead of MBRs. Therefore, the data
space is split into non-overlapping regions, which makes easier to identify and
discard dominated regions across different servers, whereas MBRs may have high
overlap and cannot be discarded.

3 Preliminaries

Given a data space D defined by a set of d dimensions {d1, ..., dd} and a dataset
P on D with cardinality |P |, a point p ∈ P can be represented as p = {p1, ..., pd}
where pi is a value on dimension di. Without loss of generality, let us assume
that the value pi in any dimension di is greater or equal to zero (pi ≥ 0) and
that for all dimensions the minimum values are more preferable. Figure 1 offers
an overview of the symbols that are used throughout this paper.

Definition: Skyline Query (SQ). A point p ∈ P is said to dominate another
point q ∈ P , denoted as p ≺ q, if (1) on every dimension di ∈ D, pi ≤ qi; and
(2) on at least one dimension dj ∈ D, pj < qj . The skyline is a set of points
SKYP ⊆ P which are not dominated by any other point in P . The points in
SKYP are called skyline points.

Consider a database containing information about hotels where each tuple
of the database is represented as a point in a data space consisting of different
characteristics of the hotel. In our example, the y-dimension represents the price
of a room, whereas the x-dimension captures the distance of the hotel to a point
of interest such as the beach (Figure 2). According to the dominance definition, a
hotel dominates another hotel because it is cheaper and closer to the beach. Thus,
the skyline points are the best possible tradeoffs between price and distance. In
our example, the hotels that belong to the skyline are a, i, m and k.

In this work, we assume a set of N servers Si participating in the distributed
skyline computation. Each server Si stores a set of points Pi that is a fraction
of the dataset P such that Pi ⊆ P and

⋃
1≤i≤N Pi = P . The data partitions are

not necessarily disjoint and they may overlap. We also assume that each server
Si can directly connect to any other server Sj . Thus, we do not make an explicit
assumption about the availability of an overlay network that assigns regions of
the data space to specific peers intentionally. Moreover, each server Si is able

AGiDS: A Grid-based Strategy for Distributed Skyline Query Processing 5

Symbol Description

d Dimensions

P Dataset

|P | Cardinality of the dataset

p, q Data points

Si Server i

N Number of servers

Pi Dataset of server Si

SKYP Skyline points of dataset P

Fig. 1. Overview of symbols.

a
 c

1

1

2
 3
 4
 5
 6
 7
 8
 9
 10

2

3

4

5

6

7

8

9

10

b

i

m
 k

h

g

d

e

f

n

l

x

y

distance

price

Fig. 2. Skyline example.

to compute the local skyline set SKYPi
(mentioned also as local skyline points)

based on the locally stored points Pi. Similarly, we refer to the skyline set SKYP

of the dataset P as global skyline set.

Observation: A point p ∈ P is a skyline point p ∈ SKYP if and only if
p ∈ SKYPi

⊆ P and p is not dominated by any other point q ∈ SKYPj
, j 6= i.

In other words, the skyline points over a horizontally partitioned dataset are
a subset of the union of the skyline points of all partitions. Therefore, aggregating
and merging the local skyline points produces the skyline result set SKYP . In
the following, we propose an algorithm that computes the exact skyline result
set SKYP by transferring only a subset of the local skyline points.

4 AGiDS Algorithm

In a distributed environment, a skyline query can be initiated by any server,
henceforth also called query originator (Sorg). The naive approach to process a
skyline query is to send the query to all the servers Si, which in turn process the
skyline locally, and report the local skyline result to Sorg. Then, Sorg merges all
received results to obtain the global skyline set. This approach requires transfer-
ring an excessive amount of data and processing the complete skyline query at
each server. Instead, we present an algorithm (AGiDS) that improves the overall
performance, aiming at reducing both processing and communication cost.

AGiDS is divided in two phases: planning and execution. To this end, we
propose the usage of a grid-based data structure that captures the data distri-
bution of each server (Section 4.1). During the planning phase (Section 4.2),
Sorg contacts all servers Si and obtains information about which regions contain
data that belong to the local skyline result set. The assembled regions enable
two improvements during the subsequent execution phase (Section 4.3): Sorg

queries only the servers that contain at least one non-dominated region, and
more importantly Sorg requests only a subset of local skyline points, namely

6 Authors Suppressed Due to Excessive Length

1

1

2
 3
 4
 5
 6
 7
 8
 9

2

3

4

5

6

7

8

9

R
i

j

x

y

u
j

l
j

Maximum corner of

the data space D

(a) Grid structure at Si.

1

1

2
 3
 4
 5
 6
 7
 8
 9

2

3

4

5

6

7

8

9

R
i

2

x

y
 Maximum corner of

the data space D

R
i

1

R
i

3

R
i

4

c

b
 f

d

e

a

(b) Dominations of regions.

Fig. 3. Information at Porg after receiving the important regions from all the servers.

the local skyline points that belong to non-dominated regions. After gathering
the relevant points, Sorg computes the skyline result set by merging only the
necessary regions.

4.1 Grid-based Data Summary

AGiDS employs a grid-based data summary for describing the data available at
each server. We assume that all servers share a common grid and the partitions
cover the entire universe D. Optimizing the grid is out of the scope of this paper
and in the following we assume that the partitions are created by splitting each
dimension di in a predefined number of slices. Therefore, each partition has the
form of a d-dimensional hypercube. In the following, we refer to a partition of
the server Si as the j-th data region R

j
i of server Si. Obviously, the regions of

a server Si are non-overlapping d-dimensional data regions R
j
i . A region R

j
i is

defined by two points lj and uj indicating the lower left and upper right corner
of the region respectively.

Consider for example Figure 3(a), that depicts the data structure maintained
by each server Si and a data region R

j
i . We define a region of R

j
i of server Si as

populated, if there exists at least one point p ∈ Pi enclosed in region R
j
i , i.e. for

each dimension di ∈ D, l
j
i ≤ pi < u

j
i . For instance, in Figure 3(b), the populated

regions are R1

i , R2

i , R3

i and R4

i . Furthermore, given two populated regions of

R
j
i and Rk

i , we define the following dominance relationships. Notice that all the
examples used in the definitions below can be found at Figure 3(b).

Definition: R
j
i dominates Rk

i , if the right upper corner uj of R
j
i dominates the

left lower lk corner of Rk
i . For example, R2

i dominates R4

i , which means that any
point of R2

i dominates all the points of R4

i . Notice that point f is dominated by
both points c and e of region R2

i .

Definition: R
j
i partially dominates Rk

i , if R
j
i does not dominate Rk

i , but the left

lower corner lj of R
j
i dominates the right upper corner uk of Rk

i . For example,

AGiDS: A Grid-based Strategy for Distributed Skyline Query Processing 7

R1

i partially dominates R4

i . Therefore, some points of R1

i may dominate some
or all points of R4

i . In our example point b dominates point f , but a does not
dominate f .

Definition: R
j
i and Rk

i are incomparable, if there is no point in R
j
i able to dom-

inate any point in Rk
i and vice versa, e.g. R1

i and R2

i . This means that R
j
i does

not dominate nor partially dominate Rk
i , and also Rk

i does not dominate nor

partially dominate R
j
i .

Finally, we define as region-skyline of a server Si the skyline of the populated
regions of Si, based on the aforementioned definition of region dominance. Thus,
the region-skyline contains all regions that are not dominated by another region.
Moreover, it can be easily computed in a way similar to the traditional skyline
query on the data points. In Figure 3(b), for example, the regions R1

i , R2

i and
R3

i define the region-skyline of peer Si in the data space D.

Using the grid-based data summary common for all servers enables deter-
mining regions that are dominated by other servers in an efficient way. Also, the
grid regions are easily and uniquely identified with a small cost. Furthermore,
local skyline points can be easily merged based on the region that they belong.
Having a common grid makes the regions directly comparable, which means that
each server can uniquely identify a region in the entire universe D. Moreover,
a compact representation of regions is feasible, usually just a small number of
bits, which avoids the use of two d-dimensional points. Thus, each server Si just
needs to send an identifier of the populated regions R

j
i .

4.2 Phase 1: Planning

The planning phase starts with Sorg requesting the region-skyline of each server
Si in parallel. We assume that Si has a grid-based data structure, which is used
to answer queries of Sorg. The message sent by Si back to Sorg returns the
region-skyline of Si. In Figure 4, for example, B is the single region sent to Sorg

by S2, because all other populated regions in S2 are dominated by region B and
are not part of the region-skyline of S2.

After receiving the region-skyline from all the servers, Sorg computes the
global region-skyline. The global region-skyline is the skyline of the populated
regions of all servers contacted by Sorg. The objective of computing the global
region-skyline is eliminating all the regions of a server, which are dominated by
other regions of another server. For example, in Figure 4, region H is dominated
by region A and does not belong to the global region-skyline. Computing the
global region-skyline is much cheaper than computing the entire skyline over
data points, because the number of populated regions is much smaller than the
number of points. After computing the global region-skyline, Sorg has informa-
tion about all the regions in the entire data space D, which have points that may
be part of the global skyline. In the current example, Sorg computes as global
region-skyline the regions A, B and F .

8 Authors Suppressed Due to Excessive Length

1

1

2
 3
 4
 5
 6
 7
 8
 9

2

3

4

5

6

7

8

9

x

y

1

1

2
 3
 4
 5
 6
 7
 8
 9

2

3

4

5

6

7

8

9

x

y

1

1

2
 3
 4
 5
 6
 7
 8
 9

2

3

4

5

6

7

8

9

H

x

y

B

server S
1

server S
2
 server S
3

1

1

2
 3
 4
 5
 6
 7
 8
 9

2

3

4

5

6

7

8

9

x

y

server S
org

region-skyline

B, F, H

F

region-skyline

B

region-skyline

A,B

B

A

B

F

B

A

H

Fig. 4. Planning phase of AGiDS.

4.3 Phase 2: Execution

The execution phase starts after Sorg has computed the global region-skyline.
Then, Sorg can determine the servers that may contribute to the global skyline
result set. Furthermore, Sorg knows which regions of each server Si are necessary
for the skyline computation. Therefore, before sending a skyline query to a server
Si, Sorg attaches the identifiers of the regions that need to be examined for the
query. For example, in order to process the skyline query at the server S3, only
the skyline points at the regions B and F are requested, since region H was
eliminated in the previous phase.

Thus, a server Si receives a message requesting the skyline of the regions
that are relevant for the global skyline. Si processes the skyline of the regions
requested, discarding points dominated by points of other requested regions.
Then, Si reports its result to Sorg, which comprises the local skyline points of
the requested regions, after discarding the dominated points.

The local skyline points returned to the Sorg are grouped based on the region
they are enclosed in. Sorg receives the points of each server Si and merges them
into the global skyline. Merging of the local skyline points is performed efficiently
based on the information of the regions. Only the points enclosed into regions
which are partially dominated have to be merged. Therefore, Sorg is able to
return immediately to the user the points enclosed in a region Ri, if there is
no other server which has a region Rj that partially dominates Ri. Thus, the
skyline points are reported progressively by Sorg to the user.

AGiDS: A Grid-based Strategy for Distributed Skyline Query Processing 9

Parameter Values

Dimensions 2, 3, 4, 5

Number of servers 50, 100, 150, 200, 250

Cardinality of each server 10K, 25K, 50K, 75K, 100K

Network speed 0.2 Mbit/s

Filter points percentage 10%

Maximum number of regions 1024

Table 2. Settings used in the experiments.

5 Experimental Evaluation

In this section, we study the performance of our distributed processing strategy
in a simulated environment. For this purpose, we compare our approach against
the PaDSkyline algorithm proposed by Cui et al. [6]. Both approaches were im-
plemented in Java, while the network aspects were simulated using DesmoJ1, an
event-based simulator framework. We consider two main performance aspects:
(1) the response time and (2) the total amount of data transferred. The experi-
ments were conducted in a 3GHz Dual Core AMD processor equipped with 2GB
RAM.

We compare our approach against PaDSkyline, because both approaches as-
sume no overlay network and Sorg can directly communicate with all servers.
Furthermore, both approaches have a first phase in which some summary infor-
mation about all the servers is collected. This information is used to define the
strategy adopted on the second phase, where the skyline points are collected. In
the following, we explain the implementation of PadSkyline in more detail.

After collecting the MBRs of all the servers, PaDSkyline identifies incompara-
ble groups of MBRs (and servers) and processes each group of servers in parallel.
Within each group, servers are organized in a sequence for processing the query,
thus a way to order the servers is necessary. The servers with MBRs closer to
the minimum corner of the universe are accessed first. At each server, the local
skyline is computed, using filter points received from the previous server. The
filter points are selected based on maximizing the dominated volume (maxSum
heuristic in [6]) and they are used to reduce the amount of data transferred.

Then, the local sever computes the new filter points, which are a percentage
of the points of the local skyline. We use the default value of 10%, as in [6]. The
servers in the group that are dominated by the new filter points are discarded.
After that, the query is forwarded to the next server with the new filter points
attached. The process within each group finishes when the group becomes empty.
This is the linear approach for intra-group processing, as described in [6].

1 http://desmoj.sourceforge.net/home.html

10 Authors Suppressed Due to Excessive Length

 0

 2

 4

 6

 8

 10

 12

 14

 2 3 4 5

R
es

po
ns

e
tim

e
(s

)

Dimensions

PaDSkyline
AGiDS

(a) Uniform data.

 0

 100

 200

 300

 400

 500

 600

 2 3 4 5

R
es

po
ns

e
tim

e
(s

)

Dimensions

PaDSkyline
AGiDS

(b) Anti-correlated data.

 0
 1
 2
 3
 4
 5
 6
 7
 8

 2 3 4 5

R
es

po
ns

e
tim

e
(s

)

Dimensions

PaDSkyline
AGiDS

(c) Correlated data.

Fig. 5. Evaluation of response time for various data distributions.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 2 3 4 5

T
ot

al
 d

at
a

tr
an

sf
er

re
d

(k
B

)

Dimensions

PaDSkyline
AGiDS

(a) Uniform data.

 0

 5000

 10000

 15000

 20000

 25000

 2 3 4 5

T
ot

al
 D

at
a

tr
an

sf
er

re
d

(k
B

)
Dimensions

PaDSkyline
AGiDS

(b) Anti-correlated data.

 0

 50

 100

 150

 200

 250

 2 3 4 5

T
ot

al
 d

at
a

tr
an

sf
er

re
d

(k
B

)

Dimensions

PaDSkyline
AGiDS

(c) Correlated data.

Fig. 6. Evaluation of the total data transferred for various data distributions.

5.1 Experimental Settings

In the experiments, we have used three types of synthetic datasets: uniform,
correlated, and anti-correlated. The settings used in the simulator are listed in
the Table 2. Unless mentioned explicitly, we have used as default setup a 3-d
dataset, distributed to 50 servers with each server storing 25K points.

The network communication was simulated based on events; therefore, the
time required to transfer data is computed by dividing the size of the data
transferred with the network speed. Filter points are used only in the simulation
of PaDSkyline, thus the percentage of filter points applies only for PaDSkyline.
Similarly, the maximum number of regions Rmax is used only in the simulation of
AGiDS. This number is used to compute the number of slices s of each dimension

of the grid, as: s=R
1/d
max, where d is number of dimensions.

5.2 Experimental Results

The response time achieved with AGiDS is better than the response time ob-
tained with PaDSkyline in all evaluated setups, as shown in Figure 5. Fig-
ures 5(a), 5(b), and 5(c) provide comparative results for uniform, anti-correlated
and correlated datasets respectively. We study the scalability of the algorithms
with increasing dimensionality d. In all cases, the response time increases more
rapidly in PaDSkyline than in AGiDS. In particular, notice the excessive re-
sponse time required by PaDSkyline for the anti-correlated dataset.

The main reason for the better response time achieved by AGiDS is the
higher parallelism during the second phase. After collecting the region-skyline,

AGiDS: A Grid-based Strategy for Distributed Skyline Query Processing 11

 0

 5

 10

 15

 20

 25

10K 25K 50K 75K 100K

R
es

po
ns

e
tim

e
(s

)

Number of points stored at each server

PadSkyline
AGiDS

(a) Cardinality of Pi.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 50 100 150 200 250

T
ot

al
 d

at
a

tr
an

sf
er

re
d

(k
B

)

Servers

PaDSkyline
AGiDS

(b) Number of servers.

Fig. 7. Scalability study of AGiDS.

AGiDS processes in parallel the skyline points at regions of each server which can
contribute to the global skyline. In contrast, the linear approach of PaDSkyline
achieves parallelism in the second phase only between incomparable groups. Dur-
ing the intra-group processing, PaDSkyline uses sequential execution on servers,
thereby spending much time to produce the global skyline result.

Another reason for achieving better response time with AGiDS is the reduced
processing time at each server. While PaDSkyline computes the entire skyline,
AGiDS computes only the skyline at the regions requested by Sorg, which are
the only regions that can contribute to the global skyline.

Figure 6 depicts the total amount of transferred data for the two algorithms,
for different data distributions. This amount corresponds to the number of bytes
transferred during query processing for all required communications. Only in the
case of uniform data (Figure 6(a)) PaDSkyline transfers less data than AGiDS.
Both in the anti-correlated (Figure 6(b)) and correlated (Figure 6(c)) data dis-
tributions, AGiDS performs better. PaDSkyline transfers less data in the case
of uniform data distribution, because the MBRs of the servers are completely
overlapping, and one filter point located near the minimum corner can prune
several servers within a group. However, notice that despite the higher amount
of transferred data in the case of the uniform dataset, AGiDS achieves much
better response time. In any case, for anti-correlated and correlated datasets,
AGiDS is better in both measures.

Then, in Figure 7(a), we test the effect of increasing the cardinality of the
data stored at each server from 10K to 100K points, following a uniform data
distribution. We observe that the response time of AGiDS is not affected by the
increasing number of points stored at each server. The main reason is that the
number of regions in the region-skyline is the same, irrespective of the number of
points stored. Therefore, the performance of the planning phase is not affected.
Only the number of local skyline points transferred at the second phase changes
slightly, but this does not have a significant impact on the response time. How-
ever, notice that the response time of PaDSkyline increases significantly with
the number of points stored at each server.

Finally, in Figure 7(b), we conduct a scalability study with the number of
participating servers. In this setup, AGiDS benefits from the fact that it requires
only two steps to finalize the query processing, while PadSkyline may have to
access many servers within a group sequentially. Therefore, the amount of data
transferred by PaDSkyline grows much faster than with AGiDS.

12 Authors Suppressed Due to Excessive Length

6 Conclusions

Distributed skyline query processing poses inherent challenges, due to the dis-
tribution of content and the lack of global knowledge. In this paper, we pre-
sented AGiDS, a skyline query processing algorithm for distributed environ-
ments. AGiDS processes skyline queries efficiently by applying a two phase ap-
proach. In the first phase, it uses a grid-based data summary on each server, in
order to discard regions that cannot contribute to the skyline result. In the second
phase, local skyline points that belong to non-dominated regions are selectively
collected, in order to produce the global skyline. By means of an experimen-
tal evaluation, we have demonstrated the superiority of AGiDS compared to an
existing approach that is appropriate for our context.

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Int. Conf. on
Data Engineering (ICDE). (2001) 421–430

2. Balke, W.T., Güntzer, U., Zheng, J.X.: Efficient distributed skylining for web
information systems. In: Int. Conf. on Extending Database Technology (EDBT).
(2004) 256–273

3. Vlachou, A., Doulkeridis, C., Kotidis, Y., Vazirgiannis, M.: SKYPEER: Efficient
subspace skyline computation over distributed data. In: Int. Conf. on Data Engi-
neering (ICDE). (2007) 416–425

4. Huang, Z., Lu, C.S.J.H., Ooi, B.C.: Skyline queries against mobile lightweight
devices in MANETs. In: Int. Conf. on Data Engineering (ICDE). (2006) 66

5. Wu, P., Zhang, C., Feng, Y., Zhao, B.Y., Agrawal, D., Abbadi, A.E.: Parallelizing
skyline queries for scalable distribution. In: Int. Conf. on Extending Database
Technology (EDBT). (2006) 112–130

6. Cui, B., Lu, H., Xu, Q., Chen, L., Dai, Y., Zhou, Y.: Parallel distributed processing
of constrained skyline queries by filtering. In: Int. Conf. on Data Engineering
(ICDE). (2008) 546–555

7. Hose, K., Lemke, C., Sattler, K.U.: Processing relaxed skylines in PDMS using
distributed data summaries. In: Int. Conf. on Information and Knowledge Man-
agement (CIKM). (2006) 425–434

8. Fotiadou, K., Pitoura, E.: BITPEER: Continuous subspace skyline computation
with distributed bitmap indexes. In: Int. Workshop on Data Management in Peer-
to-Peer Systems (DAMAP). (2008) 35–42

9. Chen, L., Cui, B., Lu, H., Xu, L., Xu, Q.: iSky: Efficient and progressive skyline
computing in a structured P2P network. In: Int. Conf. on Distributed Computing
Systems. (2008) 160–167

10. Wang, S., Ooi, B.C., Tung, A.K.H., Xu, L.: Efficient skyline query processing on
peer-to-peer networks. In: Int. Conf. on Data Engineering (ICDE). (2007) 1126–
1135

11. Wang, S., Vu, Q.H., Ooi, B.C., Tung, A.K.H., Xu, L.: Skyframe: A framework
for skyline query processing in peer-to-peer systems. VLDB Journal 18(1) (2009)
345–362

12. Zhu, L., Tao, Y., Zhou, S.: Distributed skyline retrieval with low bandwidth con-
sumption. Transactions on Knowledge and Data Engineering (TKDE), to appear
(2009)

