
RIPPNET: Efficient Range Indexing in Peer-to-Peer Networks

Norvald H. Ryeng and Kjetil Nørvåg
Norwegian University of Science and Technology
Department of Computer and Information Science
Sem Sælands v. 7–9, 7491 Trondheim, Norway

{ryeng,noervaag}@idi.ntnu.no

Abstract

Write-heavy applications present a challenge to peer-to-
peer indexing methods which need to update the index for
each write operation. The costs incurred when the dis-
tributed index is updated becomes a bottleneck. Current
distributed indexing methods are designed for indexing and
retrieving single tuples, giving a very high update cost. In
this paper we present a new approach to efficient peer-to-
peer range indexing that employs indexing of ranges to re-
duce average update costs as well as providing efficient data
localization and decoupling from data placement policies.
Based on results from experiments, we demonstrate the ap-
plicability and significantly reduced update cost of the new
approach.

1. Introduction

Large, distributed simulation processes can produce a lot
of data. In some simulations the number of write operations
are much higher than the number of read operations, and
data is more often read from local storage than from other
nodes. A distributed relational database management sys-
tem (RDBMS) for large simulations, e.g., in a computational
grid, must be able to efficiently perform writes, while at the
same time allowing global lookups. The distributed, self-
organizing nature of peer-to-peer systems provides a good
basis for building such RDBMSs.

Existing peer-to-peer RDBMSs use tuple based index-
ing, which requires the distributed index to be updated ev-
ery time a tuple is inserted, updated or deleted. For write-
heavy systems, the cost of updating the distributed index is
a bottleneck. In this paper we present RIPPNET, an index-
ing method for peer-to-peer RDBMSs that instead indexes
ranges of tuples. The local database at each node is divided
into ranges that are registered in the distributed index. By
indexing ranges instead of tuples, the number of messages
used to keep the index up to date is reduced, while still al-

lowing for data localization queries.
The common indexing method for structured systems is

to use a distributed hash table (DHT) that indexes tuples.
Since the tuples are inserted into the DHT, the DHT enforces
a certain data placement based on the hashing function. Our
range index is orthogonal to any data placement policies.
This is important in a simulation setting where each node
mostly accesses the data produced locally, but occasionally
needs to access data from other nodes. If the index structure
dictates a data placement policy that is incompatible with the
pattern produced by the simulation, the result is a lot of net-
work traffic to write or read data. By decoupling indexing
from data placement, many reads can be made local.

Thus the main contribution of this paper is an indexing
method for peer-to-peer RDBMSs that:

• indexes ranges of tuples,

• significantly reduces costs for write-heavy systems, and

• is decoupled from data placement policies.

The described indexing method is implemented in a simula-
tor and results from experiments show that update costs are
significantly reduced.

In this paper we start by reviewing related work in Sec-
tion 2 before we present some preliminaries in Section 3.
Our new range indexing method is presented in Section 4,
and extensions to the basic method are described in Sec-
tion 5. Finally, we evaluate our approach and achieved re-
sults in Section 6 and conclude the paper in Section 7.

2. Related Work

Current systems typically use DHTs such as Kadem-
lia [12], Chord [18], CAN [15], Pastry [16] or Tapestry [10]
to store tuples or tuple indices. These systems support only
exact match lookups. More advanced queries, such as range
and cover queries, are blocked by the hashing function,
which destroys the data ordering.

Two techniques for performing range queries in peer-to-
peer systems are discussed in [21]. The first is simply to give
the same hash key to values within a range, thereby reducing
the number of different hash keys and DHT lookups needed.
The other technique is to create a multicast group for each
range.

Gupta et al. [8] present a range selection technique
for DHTs based on locality sensitive hashing (LSH). The
method locates data in O(log N) hops in a N -node net-
work. However, the suggested methods only give approx-
imate answers. HotRoD [14] uses a combination of locality-
preserving hashing function and replication to support range
queries in a DHT-based system. In [1] and [4] data are dis-
tributes contiguously into a DHT-like ring, but without using
the hashing function, relying on load balancing algorithms to
maintain fairness in case of data skew. GChord [23] utilizes
Gray coding to support range queries. Consecutive values
differ in only one bit, and this fact is used to forward queries
through the Chord network.

Another approach is to organize the data into a tree struc-
ture. This class of systems include the Distributed Seg-
ment Tree [22], the Range Search Tree [7], BATON [11],
P-Grid [2] and P-Tree [5]. A similar approach is search tries
stored in DHTs [19].

The Distributed Segment Tree is a binary tree that can
handle both range and cover queries. Unfortunately, nodes in
all levels must be updated when a tuple is inserted or deleted.
To reduce the load of higher-level nodes, these nodes can
decide to drop tuples belonging to their children, but still the
message has to be sent. In the Range Search Tree, each node
of the tree consists of a load balanced set of physical nodes.

P-Tree is based on B+-trees and uses Chord as the under-
lying DHT. Tuples are stored in leaf nodes, which constitute
the Chord network. P-Grid places data in a binary prefix
tree where each node maintains references to other nodes
with the same prefix. Both P-Tree and P-Grid have worst
case scenarios where the tree degenerates into a linked list.
BATON overcomes this limitation by self-adjusting to data
skew.

SkipIndex [20], SkipNet [9] and Skip Graphs [3] and
ZNet [17] are based on Skip Lists, a tree of linked lists,
where the list at level 0 is a linked list of all nodes. Higher
level lists are increasingly sparse. Using these lists, range
queries can be supported.

The RangeGuard system [13] uses a set of supernodes to
allow for range queries in a DHT. The supernodes form a
ring, each supernode taking responsibility for one range of
the value space.

Common to all these range search strategies, are that they
are based on tuple indexing. The cost of updates vary be-
tween the different structures, but all have to perform some
work on every tuple update. Our approach is to store ranges
in the index, thereby reducing the number of update mes-
sages sent to the index.

Figure 1. An example system.

3. Preliminaries

In this section we first present our system model and then
the problem of distributed data localization.

3.1. System Model

In our model of a peer-to-peer DBMS, tuples are stored in
horizontal fragments of relations. Relations are fragmented
based on some fragmentation rule that may be local to a node
or system-wide. A node may store more than one fragment
of a relation, and these fragments need not be consecutive.

In the example shown in Figure 1, there are five nodes,
n1, n2, . . . n5. Nodes n1, n3 and n4 each store a frag-
ment, numbered f1, f2 and f3, respectively, of relation
R =

⋃
∀i fi. Node n2 stores one fragment, f ′

1, and node
n5 stores two fragments, f ′

2 and f ′
3, of relation R′ =

⋃
∀i f ′

i .
It is our assumption that the data distribution is not uni-

form, at least not within a single node. Skewed data sets are
common in real life applications, such as the distribution of
names, and in our model we assume that this is generally the
case.

For each fragment there exists a minimum and maximum
allowable value for an attribute of a tuple in that fragment.
Simple fragmentation rules may fragment based on only one
attribute, e.g., separating the relation into fixed steps of the
fragmentation attribute. This would limit the value of the
fragmentation attribute in each fragment, but leave the other
attributes limited only by the limits of the data type. The
allowed range of the fragmentation attribute may be signifi-
cantly larger than the range that is actually used.

3.2. Data Localization

The localization step in a distributed query processor
needs to translate a query on global relations R and R′ to a
query on the physical fragments, f1, . . . , f3 and f ′

1, . . . , f
′
3,

of the relations. Not all fragments are needed for all queries.
If the query is for all tuples where an attribute is within some
range, only fragments containing tuples within that range are
needed. We call those fragments relevant to the query. Other

fragments of those queries are irrelevant to the query. In the
example in Figure 1, query q separates the fragments of R
into the relevant fragments, Rq = f1 ∪f3, and the irrelevant
fragments Rq = f2. This concept of relevance is extended
to nodes, such that relevant nodes contain at least one rele-
vant fragment, and irrelevant nodes contain no relevant frag-
ments. Given a query, q, we divide the set of nodes, N, into
those relevant to the query, Nq, and those irrelevant to the
query, Nq .

If the system is very small, it is more efficient to broad-
cast the query to all nodes, relevant or not, instead of first
identifying relevant nodes and then send the query only to
these nodes. The disadvantage of broadcasts increases with
|Nq|
|Nq| , the ratio of irrelevant nodes to relevant nodes. At some
point, the cost of broadcasts exceeds the cost of identifying
relevant nodes. Exactly when this occurs, depends on the
cost of identifying relevant nodes.

When the system is very small, a complete index of all
fragments can be stored on all nodes. As the system grows
larger, this becomes infeasible. For each node to have com-
plete knowledge of all fragments, even of all nodes, requires
too much communication and state information. Currently
most systems use DHTs, both to store tuples and to create
distributed indices. The DHT allows all nodes to look up and
retrieve data from all other nodes, with only a small amount
of state information on each node.

One disadvantage of DHTs is that they only allow exact
match lookups. If the relevant fragments for a query are all
those within a range, we have to look up every single possi-
ble value within that range. The total cost of a query for a
range using this method depends on the cost of a single exact
match lookup and the width of the range in question. E.g., if
there are only two possible values within the range, the two
exact match queries required will not be a very costly range
search. However, if the range is wide, the cost of looking up
every possible value within the range makes it infeasible.

Efficient data localization is not without cost. For indices
to be useful, they must be kept up-to-date. Maintaining an
index of all tuples is costly. Every time a tuple is inserted in
a relation in the system, a new index entry must be inserted.
This detailed index is useful for some purposes, but overly
detailed for data localization purposes. The data localization
step only needs to find out which nodes are to be involved in
the query, not the location of every single tuple.

A simple solution is to index ranges of tuples instead of
single tuples. To find relevant nodes, the data localization
step has to find all ranges that overlap the range requested
by the query. For each range stored in the index, a node
identifier is stored. A range query, q, will be answered by a
set of relevant ranges and corresponding relevant nodes, Nq .

4. Distributed Range Indexing

We propose a distributed index of ranges of tuples where
each node defines ranges of tuples in its local database and
stores information about these ranges in a distributed index.
A query processor that needs to identify all nodes storing
data within a range looks up in the index and finds all inter-
secting ranges.

The indexing method can be used on multidimensional
data, e.g., indexing over multiple attributes of a relation. For
ease of presentation, the examples will be limited to indices
over one attribute.

To build, maintain and use a distributed range index, there
are three main processes: range partitioning of data and
building the index, maintaining the index, and searching the
index. We will treat these processes separately.

4.1. Partitioning Local Data

Local data should be divided into ranges based on the in-
dexing attributes. This could be done using using any clus-
tering algorithm, or using fixed steps in the attribute domain.
An incremental range partitioning method that allows for
growing or shrinking of ranges is necessary. Using such a
method, the algorithm would not have to rescan the whole
database when a tuple is added.

Unlike many other applications, the ranges can be over-
lapping, i.e., a single tuple can belong to several ranges.
However, index lookups will gain from having dense ranges,
so adding tuples that are too distant from the rest of the range
will probably not gain anything. Also, keeping the index up-
dated when tuples are inserted, updated and deleted is easier
when tuples belong to only one range.

Outliers may occur, and when deemed to far away for in-
clusion into one of the other ranges, they may form ranges of
their own. However, since these outliers are in fact indexed
as single tuples, the range partitioning algorithm should try
to generate as few outliers as possible.

For each range identified, we create an index record. The
only required fields of this record is the minimum and maxi-
mum values of the range and the network address of the node
where this range is stored.

The index record can be further extended by storing var-
ious statistics on the range, such as the number of tuples,
etc. This information is not necessary for the index to work,
but may be useful to the query planner when constructing a
query plan. This is discussed further in Section 5.3.

The data distribution on one node may look similar to
that displayed in Figure 2. This node stores data that can be
partitioned into four ranges, r1, r2, r3 and r4. These ranges
cover only the parts of the attribute domain where the node
has data. The ranges of one node need not cover all possible
values. The example node has no outliers.

Figure 2. Data distribution on a node.

Figure 3. Two-dimensional index of one-
dimensional data.

If the distribution is much more uniform than in our ex-
ample, one may have to resort to fixed-width partitioning to
define ranges. These will probably be sparser than what is
outlined above, but the indexing method can still be used.

Each node has to identify ranges in its local database
before the index can be built. Later, we will see how the
ranges are maintained when tuples are inserted, updated and
deleted.

4.2. Building the Index

When each node has partitioned its data into ranges, we
can build a distributed index of all ranges. When indexing
over d attributes, we build a 2d-dimensional index. The di-
mensions are the minimum and maximum values of each of
the d attributes.

Let us consider an index over a one-dimensional attribute,
e.g., an integer value. Our index would then be a two-
dimensional index, consisting of the pair of minimum and
maximum values for all ranges. Each range, r, would be
represented as a point, 〈rmin, rmax〉, in the index space, as
shown in Figure 3.

Since the minimum value of a range is always smaller
than the maximum value, the possible index records form a
triangular space in the two-dimensional index. When par-
titioning data into ranges, some data points may be consid-
ered outliers and will be stored as single points in the index.
Since the minimum and maximum values are equal for these
points, they will be stored along the diagonal.

This structure can be stored in a Content Addressable
Network (CAN) [15]. We have to bypass the hashing step
and store the values directly in the CAN. The hashing algo-
rithm makes sure data is evenly distributed among the nodes.
When we bypass the hashing step, data will be unevenly dis-
tributed among the nodes. In particular, only the upper left
triangle of a two-dimensional network will be used. In Sec-
tion 5.2 we look at how we can keep a close to uniform data
distribution in the network without the hashing step.

New index records are inserted into the index in the same
way as for a normal CAN, except that the hashing step is
bypassed. The index is updated when ranges in the original
database changes. If a range is deleted or merged into an-
other range, the corresponding index record is deleted. Up-
dates and deletes are also similar to their normal CAN coun-
terparts.

4.3. Maintaining the Index

Once the index has been created, it must be kept up-to-
date. On inserts, updates and deletes, nodes must check if
index records have to be updated.

On inserts, nodes must check if the tuples fit inside al-
ready existing ranges. If so, no further action needs to be
taken. If not, it must decide if it should extend an existing
range or define a new range to cover the tuples.

On deletes, nodes must check if it is possible to shrink the
range the deleted tuples belong to. Too wide ranges does not
affect the result, but it affects the performance of the index.
Index records that describe a too wide range will result in
more messages sent to nodes that do not store data within
the requested range. If ranges are overlapping, there may be
more than one range to check.

Updates are treated as a combination of inserts and
deletes, and the corresponding actions must be taken.

To avoid having to look up in the distributed index for ev-
ery insert, update and delete, nodes should store information
about local ranges. This local information should be enough
to decide when to extend or shrink existing ranges and when
to create new.

If extra statistics are stored in the index records, care must
be taken to also update this. Statistics updates may occur
more often than ranges have to be extended or shrunk, so
for this reason, exact count and similar statistics should be
avoided.

The result of indexing ranges is that the index does not
have to be updated for every insert, update and delete of

Figure 4. Range placement.

database tuples. The exact savings in communications costs
depends on the data set and the frequency of such requests.

4.4. Index Lookups

The index allows for two types of lookups: range queries
and exact match queries. Range queries are used to answer
queries for indexed data, while exact match queries are used
when updating index records.

4.4.1 Range Queries

There are four different situations that may occur when com-
paring two ranges. In our case, we will compare an indexed
range, r, with the range of the query, q. The different situa-
tions that may occur are that

• r and q overlap in the lower part of r and the upper part
of q,

• r and q overlap in the lower part of q and the upper part
of r,

• q is contained in r, and

• r is contained in q.

The index is queried by ranges. A query q for the range
〈qmin , qmax 〉 is represented in Figure 3 by its reverse range
point, q̄ = 〈qmax , qmin〉, as shown in Figure 4. All points in
the area delimited by the vertical axis, the line from q̄ per-
pendicular to the vertical axis and the vertical line extending
from q̄ perpendicular to the horizontal axis represent ranges
that overlap, contain or are contained by the range of q.

Query execution is done by routing a message to q̄. The
node containing q̄ then forwards the query to its neighbors
within the requested range, which again forwards the query
to their neighbors, etc. In this way the query propagates

through the network until it reaches all index nodes poten-
tially containing overlapping ranges.

Any node that in this process receives the query, in addi-
tion to forwarding the query to its neighbors, responds to the
querying node with a list of matching ranges.

As a result of this query propagation scheme, narrow
ranges will be reached before wide ranges. These narrow
ranges are also more likely to contain useful tuples. As
shown in Figure 4, the first ranges that are encountered, are
those that are contained within the query range, and thus
guaranteed to only contain relevant data. The query then
continues to partially overlapping ranges and ranges that
contain the query range. The wider ranges are indexed on
the last nodes to receive the query, and hence, returned last.

Cover queries are queries for regions that contain a cer-
tain point. The distributed range index can answer cover
queries by answering the range query for ranges overlapping
the range with minimum and maximum values equal to this
point.

4.4.2 Exact Match Queries

The index can also be queried for an exact match, e.g., when
a record needs to be updated. This is done in the same way
as it is done in a normal CAN. This is a query type used to
maintain the index. Exact match queries for indexed values
are done as cover queries, since there may be more than one
range covering the requested value.

5. Extensions

Section 4 presented the basic idea. In this section we
present extensions to the basic idea for handling multidi-
mensional data, load distribution and more advanced index
records.

5.1. Multidimensional Data

The proposed range indexing technique supports multi-
dimensional indices. Indexing d-dimensional data requires
a 2d-dimensional CAN, since for each dimension the index
needs one minimum and one maximum dimension. The eas-
iest mapping would then be to map minimum values to even
numbered dimensions and maximum values to odd num-
bered dimensions, such that for each dimension i of the key,
the index has two dimensions, imin = 2i and imax = 2i+1.

Since the dimensions are not independent, with increas-
ing dimensions, a smaller percentage of the CAN is actually
used to store data. The problem of uneven data and compu-
tational load distribution is discussed in the next section.

5.2. Uniform Distribution

An unfortunate effect of bypassing the hashing step of the
CAN is that the data distribution is no longer uniform. For
a two-dimensional CAN, half the address space is not used
by the index. Also, the computational load is not distributed
evenly. In Figure 3, the node storing the upper left corner of
the CAN will be involved in every index lookup.

The naive approach to solving the data distribution prob-
lem is to swap maximum and minimum dimensions for dif-
ferent indices. If multiple indices are stored in the same
CAN, they can use different dimensions as minimum and
maximum dimensions, thereby evening out the data distri-
bution. Also, the direction of dimensions can be switched.
This does not guarantee uniform distribution, but helps in
distributing data to all nodes, not only one half of them.

When dimensions are swapped and reversed, this also
helps even out the differences in computational load, but still
the corner nodes of a two-dimensional CAN will be more
heavily loaded than other nodes. The most heavily loaded
nodes could be replicated, using a round-robin algorithm to
choose which replica to use for a specific index lookup.

5.3. Statistics in Index Records

Statistics on range size and distribution could be stored in
the index record. If exact answers are not needed, this could
be used to speed up aggregation queries, using the statistics
to estimate the aggregate without asking the nodes where the
data are stored.

The query planner can also use statistics to select first
the nodes with a high density of tuples within the requested
range. This could also be used to give a quick reply that
gradually improves as the rest of the database is searched.

There are disadvantages to storing statistics in the index
records. For the statistics to be correct, the index record
must be updated more often than the range indexing mecha-
nism requires. When adding statistical information to the in-
dex records, one must be careful not to require too frequent
updates. The information in index records should change
slowly and be defined as within some error margin, to avoid
updating the index record for every single tuple insert, up-
date or delete.

6. Experimental Evaluation

The proposed indexing technique was implemented in a
CAN simulator that allowed us to experiment with different
network sizes and database sizes. The proposed range index-
ing method is compared to a baseline method where queries
are broadcast to all nodes, but only those nodes that contain
relevant data reply.

6.1. Setup

The experiments were done using a Java-based CAN sim-
ulator extended with range query capabilities as described in
Section 4. The simulator ran one query at a time, waiting
until one query finished before the next was issued.

6.1.1 Network Model

For each of the network sizes, the network used was the ex-
act same for each query. Nodes joining the network were
given responsibility for zones as described in [15], using a
random number to find the zone to split.

The simulated networks were static. There were no nodes
joining or leaving the network during simulation.

Messages were forwarded through the CAN only when
doing the actual lookup. The lookup message contained a
node identifier of the querying node, and this identifier was
used for direct communication outside the CAN. When over-
lapping ranges were found, the results were returned to the
querying node directly using this identifier.

6.1.2 Data Set

A database was created for each node. The advantages of the
indexing strategy is based on principle of data locality, i.e.,
data on a single node tends to be similar, or clustered. For
each node a set of random seed points were chosen. From
these seed points data clusters were grown.

An index was made over one attribute, a positive integer.
The data on each node was partitioned into ranges using the
DBSCAN [6] clustering method. Outliers were inserted as
ranges consisting of single tuples.

6.1.3 Query Model

In each experiment, the network was queried 10,000 times.
The range queried was chosen randomly, but the width of
the query was fixed to a certain percentage of the attribute
domain.

6.1.4 Metrics

For each query, we measured the number of messages used
to propagate the query and return a complete answer. This
number includes both the propagation of the query through
the CAN and the direct return messages from nodes in the
index to the querying node.

The first experiment describes the update frequency. In
this experiment, the probability was measured in a network
of 1,000 nodes, inserting the tuples in the order they were
generated. For each node it was recorded whether the total
range of the node had to be updated when a new tuple was
inserted.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 200 400 600 800 1000 1200 1400 1600 1800 2000

U
pd

at
e

pr
ob

ab
ili

ty

Tuple number

Figure 5. Probability of index updates.

6.2. Results

We now describe the results of three experiments. In the
first experiment, we looked at the probability of index up-
dates during tuple inserts. Then we looked at how the cost
of querying varies with network size and query range.

6.2.1 Update Rate

Tuple indices must be updated on every tuple insert, update
and delete. When indexing ranges, the update frequency can
be reduced if new tuples that are arriving fall within a range
that already is registered in the index. In this experiment we
looked at the first 2,000 tuples inserted into each node of a
1,000 node network. The data set was the same as used in the
other experiments, where points tend to cluster around a few
points. Figure 5 shows the probability of tuples to extend the
range and causing an index update.

The first 10 inserts have a very high probability of causing
index updates, so they have been removed from the figure to
allow us to see better what happens afterward. As we see
from the figure, the probability of new tuples causing index
updates is greatly reduced as the database fills up. Already
after 10 inserts, the probability of causing an index update is
reduced to 17.4%. After about 150 inserts, the probability of
index updates is reduced to below 1%. This can be compared
to the 100% probability of update in a tuple based index.

6.2.2 Varying Network Size

In this experiment we looked at the number of messages used
to look up a range for varying networks sizes. The number
of nodes in the network is the main parameter that decides
the cost of a range lookup. The database used was a one-
dimensional database of 10,000,000 tuples, distributed over
networks of different sizes: 2,000; 4,000; 6,000; 8,000 and
10,000 nodes. The queries asked for a range covering 1% of
the attribute domain.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
es

sa
ge

s

Nodes

Baseline
Range index

Figure 6. Messages used in varying network
sizes.

From the results shown in Figure 6, we see that the aver-
age cost of lookups increase linearly with network size. The
great variations in number of messages are a result of the
area that is covered by a query. The query area is a function
of the width of the query and the central point. Queries that
are close to the edges of the attribute domain cover a smaller
area of the CAN space than do queries covering the central
part of the domain.

The number of messages used for range index lookup in-
creases more slowly than the number used by the baseline, so
the distance from the baseline increases with network size.

6.2.3 Varying Query Range

Our next experiment shows how the other important param-
eter, the width of the query range, affects the number of
messages. The varying query ranges should also have an
effect on the precision of the queries. The experiment was
done on a network of 10,000 nodes, storing a database of
10,000,000 tuples. The number of messages used was mea-
sured for queries covering 1%, 20% and 40% of the attribute
domain.

The results are shown in Figure 7. We see that the base-
line method is nearly constant. The reason for this is that
the only effect that increases the cost of this method is the
number of ranges that are within the query range.

The cost of the range index method increases to more than
the cost of the baseline method at a query width of about
37% of the domain width. After this point, the cost of locat-
ing nodes is higher than contacting all of them.

7. Conclusion

We have presented a method for distributed indexing of
ranges instead of tuples in a peer-to-peer system. This index-
ing method significantly reduces the cost of inserts, updates

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5 10 15 20 25 30 35 40

M
es

sa
ge

s

Query witdth (%)

Baseline
Range index

Figure 7. Messages used when varying query
widths.

and deletes, since index records do not have to be updated
every time a tuple is changed. The range index can be used
for data localization in a RDBMS.

Unlike previous peer-to-peer indexing methods, data
placement is decoupled from the index structure. This allows
for a greater degree of node autonomy and greater flexibility
in data placement.

We also look at the cost of index lookups and show that
index lookups are more efficient for narrow searches, but
that it at some point becomes more efficient just to broadcast
the query to all nodes, since so many of them are involved
anyway.

As far as we know, this is the first peer-to-peer range in-
dex, and there are still unsolved problems. Our index re-
quires a specific kind of multidimensional DHT. Many sys-
tems use one-dimensional DHTs, and the method should be
generalized to be used also in these systems.

More work should be done on answering queries by using
statistics stored in index records. Summary queries, such as
aggregation queries, will benefit from not having to check
every tuple. Many systems require only approximate an-
swers, and this would fit well in with the current indexing
method, without requiring too frequent updates.

References

[1] M. Abdallah and H. C. Le. Scalable range query processing
for large-scale distributed database applications. In Proceed-
ings of PDCS’2005, 2005.

[2] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic,
M. Hauswirth, M. Punceva, and R. Schmidt. P-Grid: A
Self-organizing Structured P2P System. SIGMOD Record,
32(3):29–33, 2003.

[3] J. Aspnes and G. Shah. Skip graphs. In Proceedings of
SODA’2003, 2003.

[4] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: sup-
porting scalable multi-attribute range queries. In Proceedings
of SIGCOMM’2004, 2004.

[5] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasun-
daram. Querying peer-to-peer networks using P-trees. In
Proceedings of WebDB’04, New York, NY, USA, 2004.

[6] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In Proceedings of KDD’1996, 1996.

[7] J. Gao and P. Steenkiste. Efficient support for range queries
in DHT-based systems. Technical Report CMU-CS-03-215,
Carnegie Mellon University, 2003.

[8] A. Gupta, D. Agrawal, and A. E. Abbadi. Approximate range
selection queries in peer-to-peer systems. In Proceedings of
CIDR’2003, 2003.

[9] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. SkipNet: a scalable overlay network with prac-
tical locality properties. In Proceedings of USENIX Sympo-
sium on Internet Technologies and Systems’2003, 2003.

[10] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Dis-
tributed object location in a dynamic network. In Proceed-
ings of SPAA’2002, 2002.

[11] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. BATON: a balanced
tree structure for peer-to-peer networks. In Proceedings of
VLDB’2005, 2005.

[12] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer
information system based on the XOR metric. In Proceed-
ings of IPTPS’2002, 2002.

[13] N. Ntarmos, T. Pitoura, and P. Triantafillou. Range query
optimization leveraging peer heterogenity in DHT data net-
works. In Proceedings of DBISP2P’2005, 2005.

[14] T. Pitoura, N. Ntarmos, and P. Triantafillou. Replication, load
balancing and efficient range query processing in DHTs. In
Proceedings of EDBT’2006, 2006.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In Pro-
ceedings of SIGCOMM’01, 2001.

[16] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-to-
peer systems. In Proceedings of Middleware’2001, 2001.

[17] Y. Shu, B. C. Ooi, K.-L. Tan, and A. Zhou. Supporting multi-
dimensional range queries in peer-to-peer systems. In Pro-
ceedings of P2P’2005, 2005.

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-to-Peer Lookup Service
for Internet Applications. In Proceedings of SIGCOMM’01,
2001.

[19] P. Yalagandula and J. C. Browne. Solving range queries in a
distributed system. Technical Report TR-04-18, Department
of Computer Sciences, University of Texas at Austin, 2004.

[20] C. Zhang, A. Krishnamurthy, and R. Y. Wang. SkipIndex:
towards a scalable peer-to-peer index service for high dimen-
sional data. Technical Report TR-703-04, Princeton Univer-
sity Computer Science Department, 2004.

[21] M. Zhang and K.-L. Tan. Supporting rich queries in
DHT-based peer-to-peer systems. In Proceedings of WET-
ICE’2003. IEEE Computer Society, 2003.

[22] C. Zheng, G. Shen, S. Li, and S. Shenker. Distributed seg-
ment tree: Support of range query and cover query over DHT.
In Proceedings of IPTPS’2006, 2006.

[23] M. Zhou, R. Zhang, W. Qian, and A. Zhou. GChord: index-
ing for multi-attribute query in P2P system with low mainte-
nance cost. In Proceedings of DASFAA’2007, 2007.

