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ABSTRACT
Peer-to-peer database systems (P2PDBs) aim at providing
database services with node autonomy, high availability and
loose coupling between participating nodes by building the
DBMS on top of a peer-to-peer network. A key feature of
current peer-to-peer systems is resilience to churn in the
overlay network layer. A major challenge in P2PDBs is to
provide similar robustness in the data and query processing
layer. In this paper we in particular describe how aggrega-
tion queries in P2PDBs can be handled in order to reduce
the impact of churn on accuracy of results. We perform
a formal study of data loss and accuracy of such queries,
and describe new approaches that increase the accuracy of
aggregation queries in P2PDBs under churn.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-

ing

General Terms
Algorithms, Reliability, Performance

Keywords
Aggregation, distributed querying, peer-to-peer systems

1. INTRODUCTION
A key feature of current peer-to-peer routing mechanisms
is resilience to churn, the effect of nodes constantly joining
and parting from the network. Nodes leaving the network,
either because of a planned shutdown or because of a node or
network failure, will generally not interfere with the message
passing capability of the network; network traffic is routed
through other nodes until a disconnected node reconnects.

A major challenge in peer-to-peer database systems (P2PDB)
is to provide similar robustness in the data and query pro-
cessing layer. When a node is disconnected, the data stored
at that node is also inaccessible. In some cases it may be
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possible for nodes to hand over their data before discon-
necting, but in case of node and network failures, data may
become inaccessible without warning. The failure rate of a
large distributed system is such that the system cannot ex-
pect all nodes to be accessible at all times, so waiting for
disconnected nodes to reconnect is not generally an option.
Instead, when nodes fail, query processing has to be based
on partial data.

The typical method for doing aggregation in P2PDBs is to
use a reduction tree, as illustrated in Fig. 1. In this way, the
nodes at the leaves of the tree start aggregating over their lo-
cal database, and each leaf node sends its partial aggregates
to its parent node. An intermediate-level node gathers par-
tial results from its children and merges these results with
the result from the local database. The result of the merge
is sent upwards in the tree to the parent node. This passing
of partial aggregates continues all the way to the root node,
which merges and evaluates the partial aggregates to get the
final result of the query.

The problem with this approach is that failure of internal
nodes causes loss of data from all nodes below it in the
hierarchy. Existing work propose to use replication of the
aggregation process to counter this effect [5, 7]. In this paper
we study in more detail the data loss in aggregation and
show that costly replication is not necessarily the best way
to improve the accuracy of results.

The analysis and techniques presented in this paper are ap-
plicable both for P2P systems based on distributed hash
tables (e.g., Chord [15], CAN [10], Pastry [12]), as well as
unstructured P2P-systems where tree-overlays can be cre-
ated through flooding (e.g., Gnutella-like networks).

The main contributions of this paper are 1) a formal study of
data loss in P2PDB aggregation queries, 2) new approaches
that reduces the impact of churn on aggregation accuracy,
and 3) an experimental study of the effect of various param-
eters in techniques used to reduce the impact of churn on
aggregation accuracy.

The organization of the rest of the paper is as follows. In
Section 2 we give an overview of related work. In Section 3
we perform a formal study of data loss and accuracy of query
results in P2PDBs. In Section 4 we discuss techniques for
reducing data loss. In Section 5 we present experimental
results. Finally, in Section 6, we conclude the paper and
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Figure 1: Hierarchical aggregation using a DHT.

outline issues for further work.

2. RELATED WORK
Although very popular for file-sharing applications and dis-
tributed computing, only a few P2PDBs and P2P data man-
agement systems have been realized so far. The most well-
know systems include PIER, Piazza, APPA, and PeerDB:

• The Peer-to-Peer Information Exchange and Retrieval
system (PIER) [5, 6] is a general-purpose query pro-
cessor that executes relational queries in a DHT-based
network. PIER does not implement persistent stor-
age and relies on external data producers to insert and
renew data.

• The Piazza system [4] is a peer data management sys-
tem that mediates between heterogeneous schemas. In-
stead of requiring all nodes to share a common schema
(as, e.g., PIER does), each node is allowed full auton-
omy in which data it wants to store and which schema
to use.

• The APPA system [16], on the other hand, assumes
that participating nodes will agree to a common schema
description.

• PeerDB [9] also supports schema matching using agent
technology to find relevant relations on other nodes.

Distributed aggregation queries are also performed in other
variants of distributed computing systems and sensor net-
work systems, for example:

• In Astrolabe [11], data is placed in a hierarchy of zones.
Each zone stores and maintains aggregated data from
its sub-zones, and at the lowest level, from virtual leaf

zones constructed around single nodes.

• The Scalable Distributed Information Management Sys-
tem (SDIMS) [17] is an aggregation system similar to
Astrolabe, but based on a DHT.

• The Tiny Aggregation Service (TAG) [8] is an aggre-
gation service for wireless sensor networks. TAG is
based on a hierarchical network which is also used as
the reduction tree.

• The Cougar Project [3] also uses a hierarchical algo-
rithm, but the approach is quite different from that
of TAG. Queries are processed in a hybrid pull-push
manner, where information is proactively updated at
the second level view nodes, which then are queried by
the root node.

In general, papers about aggregation queries in sensor net-
works are performed by best-effort algorithms where churn
and accuracy are not taken into account. This contrasts to
our work which makes adaption of parameters and choice
of algorthm possible in order to achive high accuracy under
churn. An exception to best-effort algorithms is the ap-
proach presented in [2], which is more robust to churn but
at considerable cost for some aggregation operator types.

Related topics to churn-resistant aggregation are approaches
to avoid/reduce the impact of cheaters/tampering and ap-
proximate query processing. For example, sensor networks
are vulnerable to tampering, and networks could be attacked
with the intent of giving erroneous answers to queries. In [13],
algorithms are presented for aggregation despite compro-
mised nodes.

When cost is more important than accuracy, approximate
query processing can be employed. A sampling-based ap-
proach to aggregation query processing is proposed in [1].

In [14] the topic of accuracy in P2P aggregation was intro-
duced.

3. DATA LOSS
In this section we investigate and formalize the notion of
data loss in P2PDB aggregation queries using reduction trees.
Formulas for evaluating the accuracy of query results are also
presented.

3.1 Network Model
A peer-to-peer network G = 〈V, E〉 consists of a set V of
nodes and a set E of network links between these nodes.
Not all nodes and network links need to be fully functional
at all times. Some nodes and network links may experience
a failure, or may choose to part the network for a time. The
total network is the network where V contains all nodes,
both those currently in the network and those that are cur-
rently disconnected, and E contains all network links used



by these nodes to communicate with each other. The com-
ing and going of nodes that occurs in peer-to-peer networks
is known as churn.

There are different types of events that generate churn in
a peer-to-peer network. One is nodes that are joining the
network or parting from it. When these events are planned,
i.e., the node knows about the event in advance and may give
warning to the network, we call them voluntary. A voluntary
parting is thus when a node parts from the network in an
organized way. Joins are always voluntary.

Other types of events are node and network failures. Failing
nodes have no time to hand over data to other nodes or even
tell the other nodes that it is failing. Data that are stored in
a failing node are therefore lost until the node connects to
the network again. A node may also be disconnected if its
network link is disabled. In some cases a disabled network
link may split the network into partitions, each partition
fully functional, but with a reduced data set. A node that
parts the network due to a node or network failure, parts
involuntarily.

Due to churn, the network is split into an active network
Ga = 〈Va, Ea〉 and an inactive network Gi = 〈Vi, Ei〉. In the
case of network partitioning into p partitions, there are p ac-
tive networks Ga1

· · ·Gap
and one inactive network. The in-

active network represents resources that could become avail-
able, but at the moment are inaccessible. The active and
inactive networks are non-overlapping and Ga ∪ Gi = G.

3.2 Processing of Aggregation Queries
The most practical solution to aggregation queries in a P2P
system with focus on distributed processing is to use a re-
duction tree, as illustrated in Fig. 1. The nodes at the leaves
of the tree start aggregating over their local database, and
each leaf node sends its partial aggregates.

A partial aggregate is the information sufficient for creat-
ing a global aggregate value based on partial results from
a number of sources. For example, assuming a grouped ag-
gregate query for finding the average value of a column c in
each group g of the relation R, i.e.:

SELECT g, AVG(c) FROM R GROUP BY g;

An example of a partial aggregate in this case is a 3-ary tuple
consisting of a group identifier (a value from the g column
of R), the sum so far for tuples within the group, and the
number of tuples that have so far contributed to the result
in the group.

An intermediate level node gathers partial aggregates from
its children and merges these results with the result from
the local database. The result of the merge is sent upwards
in the tree to the parent node. This passing of partial aggre-
gates continues all the way to the root node, which merges
and evaluates the partial aggregates to get the final result
of the query.

3.3 Causes for Data Loss

Queries can only access nodes in Va, the active network.
Data in nodes in Vi are inaccessible. If a node v∈Vi re-
mains inaccessible throughout the query, the only way data
stored in v may be accessible is through a replica stored at
another node in Va. However, v may suddenly join the net-
work and make its data accessible again. The opposite may
also happen. A node in Va may part the network, voluntar-
ily or involuntarily, during query processing. Depending on
whether it has processed the query or not, its data may also
be inaccessible to the query.

There are three events that may occur during query process-
ing that can affect the total database B(Va) of the active
network: a node may join the network, a node may part
voluntarily, and, finally, a node may part involuntarily.

When joining a network, v may bring new data to the net-
work. If B(v) = ∅, B(Va) ∪ B(v) = B(Va), and the result of
the query should be the same as if v had not joined. Nodes
with no data may occur if nodes that part voluntarily hand
off their data to other nodes before parting, and when new
nodes are introduced to the system. If B(v) 6= ∅, the to-
tal database has changed, and the result of ongoing queries
may be affected. If B(v) ∩ B(Va) = B(v), all data in v are
already present in the database, and duplicate insensitive
aggregation functions are not affected. Since data are never
lost when nodes join, the problem is limited to informing
the newly joined nodes of ongoing queries and let them take
part in processing these.

Nodes that part voluntarily may hand off data to other
nodes before they part. This would be the natural behavior
in a peer-to-peer database system. In file sharing systems
nodes usually take data with them when they part, but in
these systems data are usually heavily replicated, so the to-
tal database of files is not affected. However, aggregates,
e.g., count of nodes that contain certain files, may change.

When nodes part involuntarily, data are lost if it is not repli-
cated on other nodes still in Va. Also, due to the use of
reduction trees, failing nodes may contain aggregated data
from other nodes. These shadow nodes are part of the active
network, but due to the failure of another node, their data
are lost to the querying process.

3.4 Importance of Nodes
To investigate the consequences of involuntary parting and
shadow nodes, we introduce the concept of importance of
a node. The importance of a node v is the amount of the
total database v is responsible for. In a reduction tree, leaf
nodes are only responsible for their own data, so if vl is a
leaf node, its importance is

I(vl) =
|B(vl)|

|B(Va)|
. (1)

Its parent node, vi, is an internal node with C children,
v1, v2, . . . , vC , and its importance is

I(vi) =
|B(vi)|

|B(Va)|
+

C
X

c=1

I(vc). (2)



The root node is in the end responsible for the whole database,
making its importance

I(vroot ) =
|B(Va)|

|B(Va)|
= 1. (3)

This is natural, since if the root node fails, all data are in
its shadow, and the whole query result is lost.

In a DHT we assume a uniform distribution of tuples, so
the size of the local database and hence the importance of
each leaf node is the same. The formulas for importance are
simplified and become

I(vl) =
1

|Va|
, (4)

I(vi) =
1

|Va|
+

C
X

c=1

I(vc), (5)

I(vroot ) =
|Va|

|Va|
= 1. (6)

Generally, the importance of a node at depth h in an aggre-
gation tree of height H is

Ih =
kH−h+1 − 1

k − 1
· I(vl), (7)

where k is the degree, i.e., the number of child nodes at each
level.

3.5 Expected Data Loss
Using the notion of importance, we can calculate the ex-
pected data loss caused by a single node failure. The data
loss consists of both the local database of the failing node
and of all nodes in its shadow, which is summed up in the
importance number for that node.

In a full, perfectly balanced reduction tree where each node
is of degree k, the probability of a random failing node to
be a node at depth h, is

Pr(h) =
kh

|Va|
. (8)

The expected data loss caused by a single node failure is

LH =
H

X

h=0

Pr(h) · Ih. (9)

3.6 Accuracy
The expected data loss, L, is closely related to the accuracy
of the query result, but accuracy depends not only on how
much data is lost, but also on which data are lost. Some
tuples may be more important than others, and some queries
and aggregation functions can tolerate more data loss than
others. One way of measuring accuracy is to look at the
distance from the ideal result, i.e., the result of the query if
the system was not subject to churn during query processing.

For the aggregation functions count , sum and avg , we simply
define the distance function as

dcount(r, ri) = dsum(r, ri) = davg(r, ri) =
r − ri

ri

, (10)

i.e., the percentage of deviation from the ideal result.

The min and max functions should behave similarly, and
the distance between the actual and ideal result should be
comparable between these two functions. The definition of
distance given for count , sum and avg will result in large
distances for small deviations from the ideal answer of the
min function, while the same deviation will result in a short
distance for the max function. By defining the distance
function as

dmin (r, ri) = dmax (r, ri) =
r − ri

|Dvalue |
, (11)

where Dvalue is the domain of the value attribute, the dis-
tance measure should be comparable for these two functions.

The definition of the ideal result, however, is not so straight
forward. In a system without churn, all nodes would be
connected and all data would be present in the system at
all times. Given a network G = 〈V, E〉, the ideal result of a
query Q can be defined as the result of executing Q on all
data residing on nodes in V , i.e., the result of Q executed
on all data in the total network.

Another definition may be to consider the active network
Ga = 〈Va, Ea〉 at a given time, e.g., at the start of query
execution. The ideal result is then defined as the result of
executing Q on all data residing on nodes in Va at that time.

Yet another approach is to look at the nodes Vq ⊆ Va that
have actually received the query. The ideal result is then
the result one would get if none of Vq fails during query
execution.

Whichever definition of ideal result is chosen, it should be
possible to calculate the expected accuracy under a certain
churn level based on the formulas for expected data loss
given in 3.5. In these calculations one should notice that,
e.g., the min and max functions are very sensitive to loss of
tuples with extreme values, but tolerate much more loss of
other tuples, so the distribution of values should be taken
into account.

4. FIGHTING DATA LOSS
In this section we first look at the current method of pre-
venting data loss on node failure, i.e., replication. We then
present a two new approaches to increasing accuracy:
1) importance-based replication (IB-replication) and 2) in-
creasing node degree.

4.1 Replication
The current approach to fighting data loss (as suggested
by, e.g., [5] and [7]) is replication. This is easily done by
creating several independent reduction trees, replicating the
whole aggregation process. To run a parallel aggregation
processes a complete trees have to be created, as illustrated
in Fig. 2(b) for a = 2. The query is executed in each of these
trees. Different trees can be constructed from the routing



(a) Basic. (b) Replicated.

(c) IB-replication. (d) Higher node-degree.

Figure 2: Variants of aggregation trees. In the case of replication, solid lines denote one of the replica trees,
and the dashed lines the other replica. Note that in general, a node participating in replica trees do not have
to be in the same part of the tree in the different trees (as is the case in the figures above), it can for example
be leaf node in one tree but function as a higher-level node in a replica tree. Note also that in practice, the
node degrees of the aggregation trees will be much higher than in the figures.

path by selecting different destination identifiers for the tree
generation message.

When aggregation is done, the algorithm is presented with
a set of a complete aggregation results from which it may
select one. However, this still leaves room for some unnec-
essary data loss, as the results for one group may be better
in one replica, while the results for another group is better
in another replica.

The solution is to pick the best results from each replica of
the final result. In general, a result is better than another
if it is based on the information from more tuples, i.e., the
result with the highest count is the best. This selection of
the best result may be done on the final result as a whole,
but also on individual groups in the results. For each group,
the algorithm selects the result from the replica with the
best result.

The best result of the count function is the maximum result
among the replicas. Similarly the best result for the sum

function over positive integers is the highest sum. The max

and min aggregation functions behave similarly, choosing
the maximum and minimum among the replicas for each
group. When computing the avg function, it is hard to tell
which result is the best, but again, choosing the result with
the highest tuple count will statistically be the better choice.

The major drawback with replication is the increased num-
ber of messages sent. An a-replication results in a times the
communication costs of the original algorithm. While even
doubling the costs is expensive, selecting a = 3 or a = 4

would seriously degrade the scalability of the system.

4.2 Importance-based Replication
As noted above, replication of the complete tree results in
considerably more expensive query execution. This cost may
be decreased by only replicating nodes of a certain impor-
tance, with respect to Equation (7). This would result in a
replication of the nodes that will have a big impact on the
system if they fail, while the large number of lesser impor-
tant nodes are kept at a = 1, i.e., unreplicated. Such a tree
is illustrated in Fig. 2(c). Note that in Fig. 2(c) replication
is only omitted at the lowest level, while in a higher tree
more than one level might be without replication.

Importance-based replication requires the tree generation al-
gorithm to know at which level of the hierarchy the node is
placed. This information could be included in the parent
node’s response to the tree generation message. The repli-
cation scheme could be arranged to have several levels of
replication, e.g., three copies of the immediate children of
the root, two copies of their children and only one copy of
other nodes. Since most nodes are placed at the leaf level or
the level above, this would greatly reduce the cost of repli-
cation while still replicating the most important nodes. I.e.,
the result is no significant extra cost (the replicated commu-
nication and processing at upper part is very low compared
to the total number of nodes in the tree participating in the
processing), but accuracy comparable to full replication.

4.3 Increasing Node Degree
Replication is prohibitively costly for large systems, and
other approaches should be followed if possible. Based on



the formulas in Section 3.4, we propose that more attention
is paid to other parameters, especially the degree of nodes.
A tree with larger node-degree is illustrated in Fig. 2(d).

Using trees based on routing paths, the degree is decided by
the size of the routing tables and the routing strategy used
by the DHT algorithm. A large routing table that allows
the node to do long jumps in the DHT space will result in a
broad tree with few tiers, while a small routing table or an
algorithm that only does short jumps will result in a deeper
tree.

This hierarchy results in low communication costs, but the
drawback is that nodes become more valuable towards the
top. If one of the higher-level nodes fail, a lot of data will
be lost. This effect is documented by Li et al. [7].

The importance of a node depends not only on its level in
the hierarchy, but also on the degree. This is evident in
Equations (2), (5) and (7). If the tree is broad, each of
the higher level nodes are less important. A pathological
case is when the degree is 1, i.e., the hierarchy is a linked
list where the importance is increased by one for each level
of the hierarchy. If one node is lost, all information from
nodes below it in the hierarchy is lost. Assuming a uniform
failure model, this hierarchy would on average lose half of
the information each time a node fails.

If the hierarchy is a binary tree, the two nodes below the
coordinator node are each responsible for one half of the in-
formation in the tree. Instead of losing half the information
on average, it is the worst case loss. If the degree is three
or four, the expected data loss is still lower. In the extreme,
the degree is equal to the number of nodes, in which case
the distributed aggregation degenerates into centralized ag-
gregation.

If routing paths are used to build the hierarchy, the degree
and depth of the hierarchy are decided by DHT algorithm
parameters. The size of the routing table is one of the factors
that decide how many hops a message needs to get to the
root, and therefore also the depth of the tree. The properties
of the hierarchy are also dependent on the routing policy
of the network, e.g., if the DHT algorithm always routes
messages in a greedy manner or if it takes other aspects into
consideration. The degree of nodes could be changed either
by modifying the routing principles of the algorithm, or by
disconnecting the tree generation from the routing path.

In [7], Li et al. describe a tree construction protocol that
takes the degree of internal nodes as a parameter. Such
functions could be used to generate trees independent of
routing paths, thus deciding in each case the desired degree
of the tree.

The tree generated by existing algorithms can be estimated
by considering the height of the tree to be the maximum
length of the routing path, i.e., the maximum number of
hops when doing a lookup. Assuming that all nodes have
the same degree and that the tree is completely balanced, the
degree can be calculated. The connection between number

of nodes, N , degree, k, and height h of the tree is given by

N =
kh+1 − 1

k − 1
.

The Chord algorithm has a high-probability upper bond of
O( 1

2
log2 N), where N is the number of nodes. Experiments

show that the routing path length for a Chord network of
10,000 nodes varies from 2 to 11 [15], with an average of
approximately 5. Assuming that all nodes have the same
degree, and that the tree is completely balanced and full, a
network of 10,000 nodes with maximum path length 5 has a
degree of approximately 6.

In CAN, the degree depends on the number of dimensions.
Experiments in [10] show that the number of hops in a 4-
dimensional CAN of approximately 130,000 nodes, the path
length is approximately 5, which should give a degree of
approximately 10.

These low numbers indicate that more attention should be
paid to the degree of nodes in the reduction tree. From
Section 3.4 we see that the degree is directly related to the
importance of nodes, and hence, the expected data loss.

5. EXPERIMENTS
In this section we compare full replication and varying node-
degrees by simulating aggregation by reduction trees in a
DHT. Results from importance-based replications are omit-
ted as their performance will be close to full replication (al-
though at a very much lower cost).

5.1 Network Model
The simulated network system is a DHT network experienc-
ing different churn levels. The focus is on the results of the
queries, not on the number of messages sent between nodes
or other network metrics. This allows for some simplifica-
tions in the network model.

The first assumption that is made, is that nodes that leave
the network without failure, i.e., in a planned, organized
way, will hand over data and ongoing queries to other nodes
before disconnecting. This can be done either by trans-
ferring data and queries to other nodes, or by entering a
state where the node completes all ongoing queries, but does
not accept new queries. When a node no longer has active
queries or data, it can leave the network. This assumption
is one on the behavior of the software system, not of the
network structure.

Based on this assumption, the network (without node fail-
ures) is modeled as of constant size, i.e., the number of nodes
joining is equal to the number of nodes leaving the network.

Node failures are assumed to occur after the node has re-
ceived all messages, but before it sends any messages. This
means that failed nodes are not discovered by the network,
and that all messages to failed nodes are lost. The justifi-
cation for this assumption is that nodes that discover failed
nodes can take actions to overcome this problem, e.g., up-
date its routing tables and route messages through a differ-
ent node.



Since some cases of node failure are supposed to be discov-
ered and handled otherwise, the number of node failures for
the simulations should be lower than in the corresponding
real-world situation.

The simulations are run on a network of 10,000 nodes. 10%
of the nodes fail during query processing. This is a fairly
high number, chosen to show how the algorithms perform
under the bad conditions.

5.2 Data and Query Model
The data model is that of a relational database consisting
of a single 100,000 tuple relation which is distributed over
all nodes. Since the network is based on a DHT, a uniform
distribution of tuples is assumed.

The aggregation functions studied in the experiments are
the standard SQL functions sum, count , avg , min and max .

The tuples have 3 attributes: key , group and value. The key

attribute is a unique value which is used as the primary key
for the tuple. When aggregating, the results are grouped
by the group attribute, and the value attribute is used as
parameter to the aggregation function. All values are pos-
itive integers. The value and group attributes are chosen
randomly from their domains, using a uniform distribution.

5.3 Algorithm Implementation
The generated reduction trees are completely random, and
not based on any DHT. This design choice allows the simu-
lator to construct trees with different properties, so that the
effect of changing the degree can be studied.

When doing replication, all replicas of the result are exam-
ined to pick out the best result for each function over each
group, as described in Section 4.1. Replication is done by
generating new reduction trees.

5.4 Metrics
The results are compared to an ideal result aggregated over
B(Va), and the accuracy of the query result is calculated
using the formulas defined above. As a result, the accuracy
of min and max cannot be compared directly to the accuracy
of the other aggregation functions.

Each query is run 10,000 times, and the mean and inter-
quartile range is used when discussing the results of the ex-
periments.

5.5 Results
First we look at the effect of replication. Fig. 3 shows the
accuracy for avg , count and max functions. The results for
sum and min functions are similar to those of the count and
max functions, respectively, and are not reproduced in the
figure. The figure shows the mean value, and lines extend
to the first and third quartile to show distribution density.

We see that the results of the count function are more inac-
curate than those of avg and max . For avg this is the result
of the DHT distributing values randomly. The loss of one
node does not result in systematic data loss, so the average
value is not severely affected by data loss.

The max function depends on a specific value being present
in the accessible dataset. If this value is not lost, the function
will return the correct answer. If there are more than one
tuple with this value, the function is even more resilient to
data loss.

The count function, however, depends on every tuple being
present, and is thus much more vulnerable in case of node
failures. Unlike the other functions, which come much closer
to an accurate result even when not replicated, count (and
sum) clearly show improvement when replicated.

From the results, we see that the accuracy can be increased
somewhat by replicating the process, but that there is little
to gain by increasing to three or four complete processes.
Replication is a costly solution, and if there is little to gain
in terms of accuracy, it may not be worth the cost. Also, the
avg , min and max functions prove to be quite accurate to
start with, whereas the count and sum functions show that
some method to fight data loss is needed. In the rest of the
experiments, only single replication is used, so the results
compared are from simple hierarchical aggregation (H) and
replicated hierarchical aggregation (RH).

Fig. 4 shows the results of varying the degree of nodes in
the reduction tree from 10 to 1,000 (using steps 10; 50; 100;
1,000). We can see that the accuracy of count queries climb
quite steeply from 10 to 100, i.e., from 0.1% to 1% of the
number of nodes in the system, but that accuracy does not
increase much beyond this number. The replicated algo-
rithm (RH) performs better than the non-replicated algo-
rithm (H), but for low node degrees, there is more to gain
by increasing the degree than by replicating.

Due to implementation details, the replicated algorithm ac-
tually performs worse for low node degrees when computing
the average, as can be seen in Fig. 5. The reason for this
peculiar result, is that the simulator computes the result of
avg from the results of sum and count .

The algorithm chooses the best result for count and sum

separately, and only computes avg in the end. The result is
that the two components of the partial aggregate for avg are
chosen from different replicas which generally do not contain
the same tuples, and the result of the query becomes more
inaccurate. This shows that it is important to choose all el-
ements of the partial aggregates from the same replica, even
though the single parts may be more accurate by themselves
in different replicas.

We also see that there is little to gain by increasing the de-
gree when computing avg queries. The distribution becomes
somewhat denser, but not much.

When computing the maximum value, the results in Fig. 6
show that the node degree is important, but that there is
more to get from simple replication. For the parameters
used in our simulations it is always better to replicate than
to increase the degree of internal nodes.

The results from the experiments show that the different ag-
gregation functions react differently to varying node degrees.
The count function has much to gain from increasing the
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Figure 3: Accuracy of aggregation functions with
different number of replicas.
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Figure 4: Accuracy of the count function with dif-
ferent node degrees.
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Figure 6: Accuracy of the max function with differ-
ent node degrees.

node degree before replicating the process, but max gains
more from replication than from increasing the degree. The
results also show that the two techniques can be combined
to increase accuracy further. The avg function is quite ac-
curate to begin with, and does not seem to react much to
either method.

If we compare the results to the estimated node degrees
of trees based on routing paths in Chord and CAN given
in Section 4.3, we see that the simulation results indicate
that trees based on current DHT implementations are too
narrow, and that accuracy could be increased by generating
broader trees.

6. CONCLUSION AND FUTURE WORK
We have performed a formal study of data loss in aggre-
gation queries and described the different events that may
affect the result of such queries. The focus has been on the
uncontrollable events, i.e., node and network failure, and
how algorithms can be adapted to provide accurate answers
in a setting where node failures are common.

Based on this analysis, we have proposed new approaches
to increasing accuracy. Instead of just replicating the whole
aggregation process, which until now has been the suggested
solution, we proposed two alternatives based on importance-
based replication and the degree of internal nodes in aggre-
gation trees.

Our experiments showed that these new approaches in some
cases may be more efficient in increasing accuracy than the
costly replication, and also that these two methods may be
combined to increase accuracy further. The simulations also
indicate that there is much to gain from increasing the node
degree from that of current implementations.

Several open problems remain. The query processor should
be able to use statistics to predict which algorithm and
which parameters would suit the query best. This could
be combined with a requested level of accuracy to find the
most efficient aggregation method to achieve the requested



accuracy.

The data and accuracy loss of other relational operations
should also be studied, so that queries do not suffer unnec-
essarily from data loss. When planning query execution,
the methods chosen for each operation should be selected
to achieve the requested accuracy. This requires a formal
study of data loss and functions for predicting accuracy of
relational operations.
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