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ABSTRACT {

Top-k spatial preference queries return a ranked set ofktbest
data objects based on the scores of feature objects in their spatial @ (0.6)
neighborhood. Despite the wide range of location-based applica- 5 02 @)
tions that rely on spatial preference queries, existing algorithms in- ° X 0 Jty(0.8)
cur non-negligible processing cost resulting in high response time. VNS
The reason is that computing the score of a data object requires s o *
examining its spatial neighborhood to find the feature object with
highest score. In this paper, we propose a novel technique to speed Figre 1: Spatial area containing data and feature objects.
up the performance of top-k spatial preference queries. To this end,
we propose a mapping of pairs of data and feature objects to atial location, but on the quality of the feature object. Such quality
distance-score space, which in turn allows us to identify and ma- values can be obtained by a rating provider (e.g. www.zagat.com).
terialize the minimal subset of pairs that is sufficient to answer any ~ For example, Figure 1 presents a spatial area containing data ob-
spatial preference query. Furthermore, we present a novel algo-jectsp (hotels) together with feature objeatgrestaurants) and
rithm that improves query processing performance by avoiding ex- (cas) with their respective scores (e.g. rating). Consider a tourist
amining the spatial neighborhood of the data objects during query interested in hotels with good restaurants an@satf their spatial
execution. In addition, we propose an efficient algorithm for mate- neighborhood. The tourist specifies a spatial constraint (in the fig-
rialization and we describe useful properties that reduce the cost ofure depicted as a range around each hotel) to restrict the distance
maintenance. We show through extensive experiments that our ap-0f the eligible feature objects for each hotel. Thus, if the tourist
proach significantly reduces the number of I/Os and execution time wants to rank the hotels based on the score of restaurants, the top-
compared to the state-of-the-art algorithms for different setups.  hotel isp3(0.8) whose score 0.8 is determined by However, if
the tourist wants to rank the hotels based o@sathe top-1 hotel is
p1(0.9) determined by-. Finally, if the tourist is interested in both
1. INTRODUCTION restaurants and dag (e.g. summing the scores), the top-1 hotel is
With the popularization of geotagging information, there has beenp,(1.2).
an increasing number of Web information systems specialized in  Top-k spatial preference queries are intuitive and comprise a use-
providing interesting results through location-based queries. How- ful tool for novel location-based applications. Unfortunately, pro-
ever, most of the existing systems are limited to plain spatial queries cessing topk spatial preference queries is complex, because it may
that return the objects present in a given region of the space. In thisrequire searching the spatial neighborhood of all data objects be-
paper, we study a more sophisticated query that returns the best spafore reporting the toge. Due to this complexity, existing solutions
tial objects based on the features (facilities) in their spatial neigh- are costly in terms of both 1/Os and execution time [16, 17].
borhood [16, 17]. Given a set of data objects of interestpek In this paper, we propose a novel approach for processing spa-
spatial preference quemeturns a ranked set of tliebest data ob- tial preference queries efficiently. The main difference compared
jects. The score of a data object is defined based on the non-spatiato traditional topk queries is that the score of each data object is
score (quality) of feature objects in its spatial neighborhood. On the defined by the feature objects that satisfy a spatial constraint (for
other hand, the score of a feature object does not depend on its spaexample range constraint). Therefore, pairs of data and feature ob-
jects need to be examined to determine the score of an object. Our
*On leave from the Universidade Estadual de Feira de Santanaapproach relies on mapping of pairs of data and feature objects to a
(UEFS). distance-score space, which in turn allows us to identify the mini-
mal subset of pairs that is sufficient to answer all spatial preference
queries. Capitalizing on the materialization of this subset of pairs,
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the distance-score space that enables pruning of feature ob- 1
jects that do not affect the score of any data object.

e \We prove that there exists a minimal subset of pairs thatis s
sufficient to answer all top-spatial preference queries.

©0.2
e We propose an efficient algorithm for processing koppa- L
tial preference queries that exploits the materialized subset 5 10 )
of points. (a) Range. (b) Nearest neighbor.  (c) Influence.

e In addition, we propose an effective algorithm for material-  Figure 2: Examples of partial scores and spatial constraints.
ization, and we identify useful properties for cost-efficient ] ) ) )
maintenance of the materialized information. aim is to find data objects having the corresponding feature com-

bination with high score in their spatial neighborhood. A more
e We show through an extensive experimental evaluation that detailed description of the algorithms can be found in Appendix A.
our algorithm outperforms the state-of-the-art algorithms in  In this paper, we study the problem that was originally proposed
terms of both 1/0Os and execution time. in [16]. Differently than [16,17], we propose a materialization tech-
nique that leads to significant savings in both computational and 1/O
The rest of this paper is organized as follows: In Section 2, we cost during query processing.
present an overview of the related work. In Section 3, we pro-
vide the necessary preliminaries and definitions. In Section 4, we 3. PRELIMINARIES
describe the distance-score space and define the minimal set of rel- " i )
evant data and feature objects. Our algorithm for processing spatial  Given anobjectdataseO and a set of featuredataset4 F; | i €
preference queries is presented in Section 5. In Section 6, we de-[1; ¢|}, the top-k spatial preference query [16, 17] returnsitdata
scribe the process of materialization and discuss how maintenance??i€cts{p1, . .., i} from O with the highest score. The score of a
is performed. Finally, in Section 7, we present the experimental data objecp & O is defined by the scores of feature objects I
evaluation and we conclude in Section 8. inits spatla_ll neighborhood. I_anh feature obyestassouateql with
anon-spatial scoreu(t) that indicates the goodness (quality)tof
and its domain of values is the ranfe1].
2. RELATED WORK The scorer(p) of a data objecp is determined by aggregating
Several approaches have been proposed for ranking spatial datahe partial scoresr! (p) with respect tmeighborhood conditiod
objects. The reverse nearest neighbor (RNN) query was first pro- and thei-th feature datasef;: 7(p) = agg{Tf(p) | i€ [1,d}.
posed by Korn and Muthukrishnan [8]. Then, Xigal. studiedthe  The aggregate functiomgg can be any monotone function (such
problem of retrieving the to-most influential spatial objects [15], assum, max, min), but we usesum in the following discussion
where the score of each spatial data objestdefined as the sum of  for ease of presentation. The partial scefép) of p is determined
the scores of all feature objects that hawas their nearest neighbor. by feature objects that belong to tih feature datasef; only,
Yanget al. studied the problem of finding an optimal location [4].  and in addition satisfy the user-specified spatial consttaiMore
The main difference compared to [15] is that the optimal location specifically, the partial scoref (p) is defined by the non-spatial
can be any point in the data space and not necessarily an object okcorew(t*) of a single feature obje¢t € F;. This feature object
the dataset, while the score is computed in a similar way to [15].  ¢* is the feature object with highest score that satisfies the neighbor-
The aforementioned approaches define the score of a spatial datsood conditior. The following list provides intuitive definitions
objectp based on the scores of feature objects that heae their of partial score for different neighborhood conditighgvhered()
nearest neighbor and are limited to a single feature set. Differently, denotes the distance function):
Yiu et al. first considered computing the score of a data ohject
based on feature objects in its spatial neighborhood from multiple e Therange (rng)score ofp, given a radius:
feature sets [16,17]. To this end, three different spatial scores wer g
defined: range, nearest neighbor, and influence score; and diffe 7, (p) = maz{w(t) [t € F; : d(p,t) < r}
ent algorithms were developed to compute togpatial preference
queries for these scores.
The algorithms developed by Yiet al. assume that the data " (p) = maz{w(t) | t € F;,Yv € F; : d(p,t) < d(p,v)}
objects are stored in an R-tree [6] based on spatial attributes, while
the feature objects of each feature set are stored in a separate aggre- o Theinfluence (infjscore ofp, given a radius::
gate R-tree (aR-tree) [11]. The proposed algorithms can be divided
into three categories. The first category is composed by probing T;"f' (p) = maz{w(t) -2~
algorithms, namely Simple (SP) and Group (GP) probing. These
algorithms need to compute the score of all data objects before re- EXAMPLE 1. Figure 2 depicts an example of a set of spatial
porting the topk result set. The second category is composed by data objects. The points of feature datasetsand F» are repre-
Branch and Bound (BB) and Branch and Bound Star (BB*) algo- sented with white and black dots respectively, while the data ob-
rithms. These algorithms avoid computing the score of some dataject p € O is represented with a cross mark. We assume that
objects. The idea is computing an upper bound for each entry of d() is the Euclidean distance without loss of generality, i.e., any
the R-tree of the data objects, and prune the entries whose uppemwother distance function can be applied. In Figure 2(a), for each
bound is smaller or equal to the score of th¢h data object al- F;, the range score gf is the maximum non-spatial scorgt) of
ready found. The third category comprises the feature join (FJ) the feature objects within distanegfrom p. Thus,7 ™9 (p) = 0.7,
algorithm. FJ performs a multi-way spatial join on the feature sets 7, (p) = 0.8, and the score gfis 7(p) = >, 7"/ (p) = 1.5.

to obtain combinations of feature objects of high scores. Then, the In Figure 2(b), for a given datasdf;, the nearest neighbor score

e Thenearest neighbor (nrgcore ofp:
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of p is the non-spatial score of the nearest feature objeetF; to
p. Thus,7/""(p) = 0.2, 75" (p) = 0.8, and7(p) = 1.0. In Fig-
ure 2(c), the influence score pfis the maximum influence score
of all feature objects irf’;. The influence score is computed taking
into account the non-spatial scoreiathat is reduced depending on
the distance betweegrandp. The radius- controls how rapidly the
score decreases with distance and in our example we setl.7.
Thus, 7"/ (p)= maz{0.2 - 2-T7,0.7- 217,04 - 2717 ,0.9 -
2.2 4.2 4.5

2717} = 0.28, 72" (p)= max{0.8-27 17, 0.6:2717,0.227 17 }

= 0.33, and7(p) = 0.61.

4. MAPPING TO DISTANCE-SCORE SPACE

Top-k spatial preference queries return a ranked set of spatial

data objects. The main difference to traditional fopueries is
that the score of each data objecte O is obtained by the fea-

ture objects in its spatial neighborhood. Thus, determining the par-

tial score of a data objegt based on the feature sét requires
that thepairs of objects(p, t) with ¢ € F; need to be examined.
Consequently, theearch spac¢hat needs to be explored to de-
termine the partial score is the Cartesian product betweemd

F;. As the total number of pairs with respect to all feature datasets

(>"5_, |O||Fi]) is significantly larger than the cardinalit@)| of
datasetOD, processing tog spatial preference queries is particu-
larly challenging.

In this section, we formally define the search space of thestop-

spatial preference queries by defining a mapping of the data objects

O and any feature datasg} to adistance-score spateThen, we
prove that only a subset of the pafgs ¢), wherep € O andt € F;,
are sufficient to answer all top-spatial preference queries. This
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Figure 3: Mapping to the distance-score spacé.

Theskyline setS? is the set of pointé € M} which are not dom-
inated by any other poirt’ € M?.

ExAMPLE 2. Figure 3(a) depicts the spatial neighborhood of
data objectsp; and pa, as well as the featurd; (black dots),
while Figure 3(b) depicts the mapping to the distance-score space
M. In particular, the sefV/’* consists of pairgp1,1) ... (p1,t4)
and is depicted with circles, whereas the 8ét2 consists of pairs
(p2,t1) - .. (p2, ts) and is depicted with black squares. Notice that
smaller values are preferable for the distan{g, ¢), while higher
values are preferable for the non-spatial scarét). Therefore,
the skyline sets qf; andp. with respect taF; are SP'={(p1, t1),
(p1,t2), (p1,ta)} and SP2={(p2, t1), (p2,t3)} respectively. Also
notice that pairs that belong to different objects, ig:., p2, are
incomparable.

Theoretical Properties. We proceed with the theorems that

drastically reduces the search space for any given query, therebyproye thats? is sufficient to obtain the partial score pind more-
saving computational costs significantly. In addition, we prove that oyer thatSp comprises the minimal set with this property. The

this subset of pairs is the minimal subset of pairs necessary.

In a preprocessing step, the subset of pairs is computed and
stored using a multi-dimensional index. As a result, we avoid com-
puting pairs of the Cartesian product on-the-fly during query pro-

cessing, leading to an efficient algorithm for processingit@pa-
tial preference queries.

Definitions. We map a pail(p,t), wherep € O andt € F;,
to a2-dimensional spacé (calleddistance-score spafeefined
by the axesi(p,t) andw(t). Each pair(p,t) is represented by a
2-dimensional point in the distance-score spaAde

Definition 1. (Mapping ofD based onF;) The mappingV/; of
O based onF; to the distance-score spagdd is the set of pairs
M; ={(pit) | p € O,t € Fi}.

To simplify notation, we denote any padir(p, t) € M;, d(h)=d(p,t)
andw(h)=w(t). Since a point: in the distance-score spadel
represents a paip, t), we use these two terms interchangeably.

Definition 2. (Mapping ofp based onF;) Given a data object
p € O, the mappingM? of p based onF; to M is the subset of
M; (M? C M;), such thatM? = {(p,t) | t € F;}.

In the following, we define the subset of pairsidf’ that consti-
tute the skyline set [2] oM, denoted a$? = SKY (M)).

Definition 3. (Dominance r¢) A pointh € M? is said todom-
inate another pointy’ € MY, denoted as <z B/, if d(h) <
d(h') andw(h) > w(h'); or w(h) > w(h') andd(h) < d(h').

IMappings of data points in score-time space have been proposed

for processing continuous tdp-[10] and nearest neighbor [1]
queries.

proofs of the following theorems can be found in Appendix B.

THEOREM 1. For any spatial preference query, the sgt is
sufficient to determine the partial scoré(p) of a data objecp €
0.

THEOREM 2. S? is the minimal set that is sufficient to com-
pute the partial score (p) of a data objecp € O for all spatial
preference queries.

We also define the sy’ = Uvpeo S¢- From Theorem 1, we

derive that the sef? is sufficient to determine the partial score
of any pointp € O with respect to featuré;. Thus, maintaining
the setsS? for all featuresF; is sufficient to answer any spatial
preference query. Therefore, in a preprocessing phase, wgutem
each setS? and then indexS? using an R-treek?, in order to
maintainSC efficiently. Notice that eactk? is a 2-dimensional
R-tree on the distance-score space.

Furthermore, we present a theoretical estimation of the number
of pairs in M, that satisfy the range constraint of a spatial prefer-
ence range query, assuming uniform distribution of objpctsO
andt € F; and uniform distribution of scores(t). Even though
the data and feature objects are uniformly distributed, the Euclidean
distances of objects in tHzdimensional distance-score spak¢
are approximately? distributed [13]. Let the random variabé
denote the values @f(p, t), then its probability density function is
fx(x) = mx*”e*z/? We can estimate the numbgr
of pairs inM; that satisfy the range constraint with radiugecall
that the total number of points if; is |O| - | F|):

\Fl/ fx(@)da = OL ‘F|/ T2 g



Algorithm 1 NextObject(MaxHeap H)

1. INPUT: Max-heapH with entries in descending order of non-spatial
score and radius.
2: OUTPUT: The next data object i with highest partial score.
3: Entrye « remove entry from top of/
4: while e is not a data pointlo
for eachentrye’ that is child ofe do
if d(e’) < rthen
inserte’ into H
: end if
9: endfor
10: e < remove entry from top off
11: end while
12: return e

5:
6:
7.
8

w(t)
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Figure 4: Example showing the contents oRY .

Notice that the range constraint is posed only to the distance in-
dependently of the score of the feature objects. The number o

pairs E is an upper bound of the objects that are accessed during
¢ of pin F; (by a bit1-if nearest neighbor)-otherwise). Similarly,

an entrye of R? is flagged, if at least one of its children entries

a spatial preference range query, assuming uniform distribution o

the data and the feature objects. In practice, our approach indexe

only the setS?, which is a subset al/;, and our algorithm takes

into account the score of the feature objects to reduce the numbe

of accessed pairs even further. The details on efficient materializa-
tion and maintenance & are presented in Section 6, while in
the sequel we present the proposed kogpatial preference query
processing algorithm.

5. QUERY PROCESSING

In this section, we present ttf&kyline Feature Algorithm (SFA)
for processing togk spatial preference queries. First, we present an

H (line 7) the children entries of whose distance is smaller or
equal to the radius (line 6). When the next entry is a data point,
it is returned as the data point with the highest partial sef(¢in
59,

EXAMPLE 3. Figure 4(a) shows the R-treR{ that indexes the
set SO of the feature objects € F; depicted in Figure 1. The
entriese; of R are represented by Minimum Bounding Rectangles
(MBRs). For example, the root contains two entr{es, e2}, and
e1 contains three data point§(ps, t4), (p2,t1), (p1,t3)}. Both
the distancel(e) (lower bound) and the score(e) (upper bound)
of an entrye are defined by the upper-left corner of the MBR, for
exampled(e1) = 1 andw(e;) = 0.8. Consider a query with
range constraint- = 2. The algorithm prunes the enteg, since
it does not satisfy the range constraint, and placesn H. Then,
e1 is expanded and the data poir{yss, t4) and (p2, t1) are added
in H, while (p1, t3) is pruned. Finally,(ps, t4) is removed front{
with score0.8, and since it is a data poings is returned. The heap
H maintains its state for providing access to the next point.

NextObject can be adapted with minor modifications for the in-
fluence and nearest neighbor scores. For influence score, the rad
is only used to compute the score, therefore even feature objects
whose distance from a data object is larger thanay contribute
to the result set. Thus, line 6 of the algorithm has to be removed
for influence score. Notice thdf maintains the node entries in
descending order of partial scar(), which in this case is defined
by the influence score. For nearest neighbor score, NextObject has
to be modified to prune pair®,t) such thatt is not the nearest

¢ neighbor ofp. For this purpose, during the construction B,

such data points are flagged to indicate i§ the nearest neighbor

is flagged. This enables efficient processing, as entries that do not

jcontain a nearest neighbor are immediately pruned. Then, lines 6-8

of Algorithm 1 are modified to first check if the child entey is

a nearest neighbor entry, and only the€ris inserted inH. Af-

ter these modifications, NextObject is readily employed for range,
nearest neighbor and influence score.

The SFA Algorithm. SFA (Algorithm 2) computes the top-
spatial preference data objects progressively, by aggregating the
partial scores of the data objects retrieved from each RRfées-
ing NextObject algorithm. We useum as the aggregate function
in the following description and in the pseudocode.

algorithm that exploits the distance-score space and returns the data Each time NextObject is invoked, the data objeetith highest
objects in descending order of their partial scores. Then, we presentpartial scorer? (p) is retrieved fromR?, thus any unseen data ob-

the algorithmic details of SFA, which produces the result of the

jectp’ in RY has a smaller partial score thar(={ (p') < ¢ (p)).

top- spatial preference query by coordinating access to the partial Therefore, we can compute an upper bound on the screof

scores of data objects. For ease of presentation, in the following,

we refer to a paifp, t), wherep € O andt € F;, as adata point
indexed byR¢ .

Access to Partial Scores.During query processing, the data
points inRY are retrieved sorted in descending order of their partial
scores. Furthermore, only node entries of the R-REethat satisfy

any data objech based on the highest partial scordgp) of seen
data objects in eacR? .

SFA employs an upper bourld; on the score of any unseen
object in each heafl;. Also, for eachH;, a list L, of seen objects
is maintained. Moreover, each time an objgds retrieved from
H, for the first time p’s lower bound on scorep(") can be updated

the spatial constraint are processed. First, we present in details outusing the aggregate function (in this cagen). In addition, SFA
algorithm for retrieving data points sorted based on the range scoremaintains a listC' of candidate data objects that may eventually

(Algorithm 1). Then, we describe the necessary modifications for
supporting the influence and nearest neighbor scores.
NextObjectakes as input the radiughat defines the range con-
straint and a hea that contains node entries and data points in
descending order of partial scorg(). Initially, the heapH con-
tains the root ofR. Each time, the entry at the top of the heap
H, i.e., with maximum partial score, is retrieved (lines 3,10). As
long ase is not a data point (line 4), NextObject inserts in the heap

become topk results.C is sorted based on descending lower bound
on score.

In each iteration (line 6), SFA selects one hddp (line 7) to
retrieve the next data objegt (line 8). The upper bound’; on
the score ofH; is set (line 9) based op’s partial scorer! (p).
Then, if p has not been seen before ify, its lower boundp™ is
updated based on the partial scofép) andp is added td.; (lines
10-13). Notice that although may be retrieved again frorf;,



Algorithm 2 SFA(MaxHeapH, ..., H.)

: INPUT: HeapsH; containing the root oRR$.

: OUTPUT: Top-k spatial preference objects.

:C — (0 IIList of seen objects sorted by lower bound on scope
L —0 /I List of seen objects from heapH;
U; — o0 /I Upper bound on score for each heaf
. while 3H; such thatH; # () do

challenge is to compute efficiently and materialize the%2in a
preprocessing phase and to maint&ff when updates occur. The
proofs of the theorems and the lemmas of this section can be found
in Appendix B.

Materialization. The straightforward approach for computing
the setS is to combine each data objecte O with each feature

N RPRRRRPRRPRRE
S0 XNOURWNRPOQRNRTRONE

1« index of the next input

(p,t) < NextObject(H;) /I Next unseen object &f;

object¢ € F; to produce pairgp, ¢), and then execute a skyline
algorithm to compute the s&t”. This approach is equivalent to

U; — 72(p) first computing the entire set/? and then computing its skyline,

if p & L; then which is prohibitively expensive for large datasets. An alternative
P~ —p +77(p) approach is for each data object O andF; to execute a dynamic

enj;"f‘_ LiUp skyline query [12] on the dynamic coordinaié, t) andw(t), in

if p & C then order to computes?. For each fjata o_bject, some fe_ature (_)bjects
C—CuUp can be pruned, but one dynamic skyline query is still required for

end if each data object. Hence, this approach also has a high 1/O cost,

q — C.peek() I/ Object with the best lower bound  especially when the cardinality| of the object dataset is high.

Max — Madypec,prqe(® + ZVj:pgzLj U;) Il Upper bound
while ¢g— > max do

q « C.pop()

Nevertheless, data objects that are close in space, i.e., their dis-
tance is small, have similar distances to any feature object. There-
fore, the skyline sets of such objects are also similar with high prob-

21: reportq as next top-k, halt i objects have been reported e ; : ;
2o g — C.peek() 11 Object with the best lower bound ablllty. In order to reduce the number of requ[red dynamic skyllng
. _ _ queries (and, in consequence, the 1/O cost induced by accessing
23: Max — MatvpeC,ptqe(P~ + 2y ipEL; U;) . o . .
24°  end while JPELI Fy), the data objects are partitioned into groymo that the dis-
25: end while tances of data objects that are in the same group are small. Then,
26: while fewer thank objects have been reportdd for each group of data points, dynamic region skyline querig
27:  q+« C.pop() posed (that will be defined in the following) and we will show that
gg: reportq as next top-k the result set is a superset of all skyline sets of data points that be-
: end while

the maximumr? (p) is encountered at the first time, becaugg
is accessed in descending order of score. In additismadded to

the listC' of candidate objects (lines 14-16). Then, the upper bound
(denoted asnax) on the score of any object is computed in line 18.

We can safely report as next tdpresult, any objecy in the top of
the list C' whose lower bound™ is greater than or equal t@aax
(lines 19-24). SFA continues in the same fashion, untibjects
have been reported, or until all heaps are exhausted. In the latteriectt’ € F; based on regio, if max Dist(X,t) < minDist(),t")
case, if fewer thark objects have been reported, the object€’in

are returned based on the sorting(@f(because the lower bound

now equals to the real score), until we havebjects (lines 26-29).

long to the group.

Let us assume a group of points and let the regidn@ the mini-
mum bounding rectangle that encloses all data points of the group.
We denote asnaxDist(A,t) andminDist(A,t) the maximum
and the minimum distance betweeand any data object enclosed
in A respectively. For the case thas enclosed im\, the minimum
distance is zero.

Definition 4. (Dynamic dominance based on reglgi\ feature
objectt € F; is said todynamically dominatanother feature ob-

andw(t) > w(t'), or if mazDist(\,t) < minDist(\,t') and
w(t) > w(t'). Thedynamic region skyline s@ RS;' of F; is the
set of feature objectse F; which are not dynamically dominated
by any other feature obje¢t € F; based on region.

EXAMPLE 4. Assume a top- spatial preference range query
with radius »r=2 posed on the indexes of Figure 4 and a plain
round-robin strategy for accessing the heaps. At the first itera-
tions, ps andp, are retrieved fromH; and H» respectively, with
lower bounds on scorg; =0.8 andp; =0.9, andC = {p1,ps}.
Sincep; < mazx =1.7, SFA retrieveg, from Hy, andp, =0.6,

THEOREM 3. For any data pointp € O enclosed in regior
and for anyt € F;, it holds that if(p, ) € S? thent € DRS;.

Any skyline algorithm that supports dynamic skyline queries can
be easily adapted in order to compute the dynamic region skyline
! DRS? by modifying the dominance relationship. Thus, instead of
C = {p1,p3, p2} andmaxz=1.5. Next, SFA retrieveg, from Hy, computing the sef? for each data objegt individually, we first
py =1.2 (which is also its real score) and’ = {p2, p1,ps}. Now compute the seDRS; for a region\. Thereafter, for each data
the heaps are empty, because no other object satisfies the ranggpjectp enclosed i\, the setS? is computed by using only the
constraintr < 2. Thus, SFA reportp, as the topt object, since feature objects iMRS}. The éain is that we compute the sky-
p2 is located at the top of’ (has the highest lower bound on score).  |ine setsS? of all data objects enclosed ik with a single query

L . ) on F;, thus reducing 1/O cost of;. Subsequently, the pai(g, t)

The problem of combining partial scores for tbspatial pref- in S” are inserted in the R-treBY; each of them representing a
erence queries is similar to the problem of aggregating ranked in- 5_gimensional point with valued(p, t) andw(t). During the in-
puts [5, 9]. For ease of presentation, we omitted from Algorithm 2 sertion, the paifp, ) in S with the smallest distancé(p, ¢) is
impleme.ntation. details that result in reducing the. number of data flagged, indicating thatis tlhe nearest neighbor pf The interme-
objects in the listC' and, therefore, also the required number of iate entries 0R? that contain a nearest neighbor are also flagged
comparisons (see [9]). accordingly.

Even though any dynamic skyline algorithm and any grouping of
the data object® are applicable for the computation 8§, in our

6. MATERIALIZATION AND MAINTENANCE

SFA processes top-spatial preference queries efficiently, when
each set of point$? is stored in an R-tre®®". The remaining

2The grouping of data objects can be performed by applying any
space partitioning technique [14] or spatial clustering algorithm [7].



implementation we use an adaptation of BBS [12] for the dynamic  In the following, we drop the assumption of distinct values in
region skyline query. Moreover, we partition the data objéristo the scores of feature objects. Let us assume a set of feature objects
groups based on the leaf node of the R-tree they belong to. The R-{t;} € F; that have the same scort}). If the score of one of
tree is built on the spatial coordinates, thus the objects belonging tothem (denoted a§ changes, we assume that the relative order of
the same leaf node tend to be close each other in the space. ¢ with all other feature objects; has changed, therefore we apply

In the following, we discuss the cost of the materialization. In[12], repeatedly the basic update operation on the{&gt Similarly, if
the number of node accesses of BBS in worst-case is reported to behe updated score of a feature objettecomes equal to the score

s - h, wheres is the number of skyline pointsndh the height of of another feature objec¢t, we assume that the relative ordertof

the R-tree. The theoretical worst-case cost of our materialization is andt’ changed, and again apply the basic update operation.
|O|-s;-h (for the basic approach) ¢X|-s;-h (where|\| denotes the Finally, the remaining challenge is to support efficiently inser-
number of regions for the region skyline apndthe average size of  tions and deletions of feature objects. Both operations can be sup-
S? for p € O). The space required by our materializatios igO| ported by using the feature score update functionality. For the dele-
for each feature dataset, and it is always boundedy- |O]. tion of feature object, first the score is updated and the new score

However, our experiments both with real and synthetic data clearly is set equal to 0. Afterwards, all remaining tuplesifi that con-
demonstrate that these costs are significantly smaller in practice. taint are deleted from the R-tree. Notice that these tuples cannot
Maintenance. In the following, we discuss the issue of index dominate any other tuple dff; and therefore, the resultingf’ set
maintenance in the presence of insertions, deletions and updates ofs valid. Similarly, for the insertion of a feature objegctthe fea-
data or feature objects. Insertions and deletions of a data objectture object is first inserted with a minimum value of score equal to

p € O are relatively straightforward and cost-efficient. Wheis 0. Then,t is in the skyline set only for data objects that haws
inserted inD, each indexk? must be updated by inserting the sky-  the nearest feature object, compared to any other existing feature
line pointsS? of the mappingV/? of p based orF;. If pis deleted, object. In order to determine these data objects, a reverse nearest

any occurrence gf in an indexR{ must also be deleted. Updates neighbor query [8] on the indexes built on the spatial coordinates
of the spatial location of are handled as a deletion followed by an  can be performed. Alternatively, tH& index can be used in order
insertion. to retrieve all pairs that are flagged as nearest neighbor pairs. Then,
The most frequent maintenance operation is update of the scorethe distance between the data object and its nearest neighbor fea-
of a feature object. Usually, the score of feature objects (e.g. userture object is compared against the distance t6the distance to
ratings) change dynamically, in comparison to the spatial location ¢ is smaller than the distance to the nearest feature object, then the
of a feature object which is more static. In practice, such updates new pair is inserted and has to be flagged as nearest neighbor pair,
of score are expected to occur more often than updates of the geowhereas the flag of the previous pair must be removed.
graphic location. The challenge of handling updates of the score of

afeature object € F; is that such an update can potentially affect 7. EXPERIMENTAL STUDY
all materialized skyline setS’iO. However, we show that we can

exploit useful properties of the mapping to distance-score space toWe compare SFA against the algorithms developed byeial,

drastically reduce the CO.St OfUpd.ates' .. [16,17], denoted a&P, BB, BB*, andFJ. All algorithms were
For ease of presentation, we first assume that all feature objects: - X
S . - o implemented in Java and executed on a PC with 3GHz Dual Core

t € F; have distinct score values. We will drop this restriction later.

. . - AMD Processor with 2GB RAM. The datasets were indexed by an
We define a total ordering of the feature objects € F; based on ) j . .
their scoresw(t), such thatt precedes’ if w(t) > w(t'). The R-tree (aR-tree for [16, 17]) with block size of 4KB. We used an

> ; ... LRU memory buffer with a fixed size of 0.2% of the size of the
following lemmas determine when an update of a feature object’s ; ;
o . total number of objects stored @ and F;. We report the average
score causes an update to the materialized skyline sets and, hence | f . di h ) I
10 the indexi® Values of 20 experiments, and in each experiment we recreate a
v datasets and indexes to factor out the effects of randomization. In
LEMMA 1. Lett € F, denote a feature object whose score all experiments, we measured the total execution time (referred to

w(t) is updated. If the ordering of feature objects is not altered, ~ as response time) and number of I/Os. All charts are plotted using

In this section, we evaluate our proposed algoritt8R4 and

all materialized skylines” are validVp € O. a logarithmic scale on the y-axis.

LEMMA 2. Lett € F; denote a feature object whose score 7.1 EXperimental Settings
w(t) is updated, and let’ € F; denote the only feature object We conduct experiments using both synthetic and real datasets.
whose relative order witlt changes in the ordering of feature First, we perform experiments using uniform distribution (UN) for
objects. Thenyp € O such that(p,t) ¢ S? and(p,t") ¢ S?, the the spatial locations of data and feature objects and for the score
skyline setS? is still valid after the update. of the feature objects (within the ranf 1]). We also generate

a synthetic dataset (CN) that resembles the real world: (1) there
exist multiple city centers (centroids) with higher occurrences of
data objects, (2) there exists a higher probability of finding fea-
ture objects nearby the city centers (centroids). Appendix C.1 pro-
vides a detailed description of CN including a plot of a generated

. dataset. We use the synthetic dataset (CN) as our default dataset.
P / P
objectp such thai(p,t) € 57 or (p,t') € S before the update, g "qota it the non-spatial score of the feature objects is a uni-

has to be examined and testeditt) € S and (p,t') € S¥ L ”
after the update. Then, an arbitrary update of the score of afea’[ureformIy generated value within the rang@ 1]. In addition, we

objectt can be supported by applying repeatedly the basic update evaluate also score values that follow the exponential distribution
operation to consecutive feature objects in the ordefingntil the (Appendix C.3). In Appendix C, we provide a table that contains

correct ordering is obtained the parameters and values used in the experimental evaluation, the
9 ) description and more experimental results of the real dataset, and
SWe refer to [3, 18] for estimation models of skyline cardinality. we evaluate the cost of materialization.

A direct consequence of Lemma 2 is that an update of a feature
object’'st score only affects a limited number of points (pairs) in
SC. We call abasic update operatiothe update ofRY based
on score of feature whose relative order changes only with one
feature object’ in 7. For this basic update operation, any data
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Figure 5: Effect of different data distributions {UN,CN,RL} on I/O and response time (range score).

7.2 Query Processing Performance o e ————
FJ = BBY

Range Scoreln Figure 5, we use our default setup and study the ™
number of I/Os and the response time for all datasets, while vary- 100K
ing k. Figure 5(a) presents the 1/O cost using the UN dataset. The 2 '™
performance of GP is stable because it always computes the score 1
of all data objects. FJ requires a much higher number of I/Os, as

Time (s)

100

10 0.001 | ¥

it needs to access many leaf entries of the feature R-trees in order T 2 3 4 s 1T 2 s 4 s
to report the correct tog-result set. The branch-and-bound algo- Number offeature datasets (c) Number offeature daiasets ()
rithms (BB and BB*) perform slightly better than GP for this setup. (a) 1o. (b) Response time.

However, SFA results in one order of magnitude fewer 1/0Os than the
best of its competitors. In Figure 5(b), we plot the number of I/Os  Figure 6: Effect of ¢ on I/O and response time (range score).
for the CN dataset. BB* performs better than GP, BB, and FJ due
to the employed pruning. However, SFA reduces even further the other algorithms, irrespective of the value of radius. Notice that FJ
number of required I/Os compared to BB* and scales better than and BB* perform worse for small radius and improve their perfor-
BB* for increasing value of. In Figure 5(c), the I/O cost for the ~ mance with increasing radius until a certain point, because for very
real dataset (RL) is presented. Again, SFA outperforms all other al- small radius many objects (or combinations of feature objects) have
gorithms (in terms of 1/0s) by at least one order of magnitude. This to be examined in order to identify an object with non-zero score,
experiment indicates that SFA performs efficiently for a wide range which can then be used for pruning. This is because most objects
of different datasets. Figures 5(d), 5(e) and 5(f) depict the resspo ~ have zero score as there exist no feature objects in their neighbor-
time for the same experimental setups respectively. In general, wehood. Next, we study the scalability of SFA by varying the cardi-
observe that the gain of SFA compared to the other algorithms in nality of the feature datasets;| (Figure 7(b)) and the cardinality
terms of response time is even higher than the gain in 1/Os (be- of the object datasdD| (Figure 7(c)). In Figure 7(b), we notice
tween one and two orders of magnitude). The fast response time ofthat increasingF;| affects the performance of all algorithms, but
SFA indicates that SFA is suitable for applications involving Web not SFA. The main reason is that increasing the sizggfhas a
information systems, where the main challenge is to minimize the small impact on the cardinality of skyline sef§. Since SFA ma-
response time for the user. terializes pairs that are not dominated, the number of such pairs is
In the next experiment, we vary the number of featuremd not affected significantly by increasiri@;|. In Figure 7(c), SFA
evaluate the performance of our algorithm. SFA outperforms all outperforms all algorithms, even though FJ is more stable with in-
other algorithms both in terms of 1/Os (Figure 6(a)) and response creasingO| than SFA. This is mainly because FJ is sensitive to the
time (Figure 6(b)). For a single feature dataset, SFA requires only cardinality of F; and not to the size ap.
few I/Os in order to retrieve the top-10 objects. Also, notice that  Influence Score In the following, we evaluate the performance
SFA results in very small response time (under one second) evenof SFA for processing queries with influence score (Figure 8). We
in the case of=5 feature datasets. On the other hand, FJ does not compare our approach against BB and BB*, which support queries
scale with increasing values ofand has the worst performance of ~ with influence score. In Figure 8(a), we vary the number of features
all algorithms for higher values ef In the following, due to space  ¢. Notice that computing queries with influence score is very costly
limitations, we report only the response time, however we observed for BB and BB*. The main reason is that the influence score lim-
that the relative trends in I/Os are similar. its the pruning capabilities of BB and BB*, therefore they have to
In Figure 7, we vary different parameters and evaluate the re- search a large area of the space for computing the score of the data
sponse time of queries with range score. Figure 7(a) depicts theobjects. SFA, on the contrary, accesses the data objects in decreas-
response time with varying radius SFA is always faster than all  ing order of influence score, without any significant additional cost
compared to the range score. Thus, SFA is more than two orders of
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Figure 7: Response time varying different parameters using the CNlataset (range score).

magnitude faster than its competitors. In Figure 8(b), we evaluate nitude compared to the state-of-the-art algorithms in most of the
the effect of varyingc. All algorithms show stable performance for

varying k and SFA always performs best.
Nearest Neighbor Score In Figure 9, we compare our ap-

setups.
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APPENDIX M? such thatw(t')=maz{w(t) | t € F; : d(p,t) < r} and
(p,t') ¢ SP. Thus,3(p,t) € S? such thatp,t) < (p,t’). This

A. STATE-OF-THE-ART ALGORITHMS is equivalent tal(p, t) < d(p,t') < r andw(t) > w(t’). Hencet

The state-of-the-art algorithms [16, 17] assume that the data ob-fulfills the range constraint, and sine€t’) is the maximum score,
jectsp € O are indexed in an R-treR® based on spatial attributes. it means thatw(t)=w(t'). This contradicts our assumption that
The feature objects of each feature set are stored in a separate agf(p, t) € S such thatw(t)=maz{w(t) | t € F; : d(p,t) < r}.
gregate R-tree (aR-treeR!” also based on spatial attributes, and in Nearest neighbor scord_et us assume that(p,t) € S? such
addition each entry ai RY stores the maximum non-spatial score that w(t)=maz{w(t) | t € F;,Yv € F; : d(p,t) < d(p,v)}.
among all features in its sub-tree. The aggregate R-tree enables Then,3(p,t') € M? such thatw(t')=maz{w(t) | t € F;,Yv €
efficient computation of the partial score of a data objdzased on F; : d(p,t) < d(p,v)} and(p,t’) ¢ SP. Thus,3(p,t) € SP
F;. In the sequel, we present a summary of the existing competitor sych thatp,t) <am (p,t'). This means thai(p, t) < d(p,t’) and
algorithms. sinceVv € F; : d(p,t') < d(p,v) it means thati(p, t)=d(p,t').

Simple (SP) and Group (GP) Probing Algorithms The Sim- Then, based on the dominance definitiar{t) > w(t') and since
ple Probing (SP) algorithm computes the score of each data objecty;(t') is the maximum score, it is a contradiction to the assumption
p and maintains thé data objects with highest score ina heap. The that#(p,t) € S? such thato(t)=maz{w(t) | t € F;,Yv € F; :
Group Probing (GP) algorithm shares the same principles with SP, d(p, t) < d(p, v)}.

but instead of computing the score of every data ohjeeparately, Influence scorel et us assume tha(p, t) € S? such thatv(t)=

it computes the score of a set of objektconcurrently. The sét’ ~d(p,t) , »

is composed by all data objects that are in the same leaf-entry of ™az{w(t) - 27— [ < I;}‘}' Then,3(p, ") € M such

RO°. GP reduces /O by traversirg only once for computing the  that w(t')=maz{w(t) - 2~ & | t € F;} and(p,t') ¢ SP.

score of the set of objecis. However, GP still requires computing  Thus,3(p,t) € S? such that(p,t) <ax (p,t'). This is equiv-

the score of all objects € O before reporting the tog-objects. alent tod(p,t) < d(p,t') andw(t) > w(t'). We derive that
Branch and Bound Algorithms (BB and BB*). The Branch d(p;t) d(p.t)

w(t)-27 "7 > w(t') 27"+ . Sincet’ has the maximum

and Bound algorithm (BB) avoids computing the score of all ob- influence score, it means that the influence scoresasfdt’ are

ject b ti -bound of th f h ; : ;
hon-lealentry. of 0, Given an ety of 6. the upper bound of | ©AUal- Tis contradits our assumpion . ) € S’ such that
. ’ _ d(p,
the score based aoff; is computed by finding the level-1 entrie’s w(t)=maz{w(t) - 27+ |[te i} O
of aRF that satisfy the spatial constraint, and assigning as an upper
bound the highest score of theentries. The entries whose upper-
bound is smaller than the score of theh object already found
are pruned. The optimized Branch and Bound algorithm (BB*) im-
proves BB by computing tighter upper-bounds of the scores. BB* . . X
relies on the observation that the unknown partial score of an ob- S]f,rt]here exists at least one query for which tr|1e partial scf(e)
ject can be estimated more accurately by using the score of non-leaf©! the data osz)ecp is not computed correctly. Let us assume
entries ofaR} . Therefore, the feature tree®! are accessed in thft (I.” t) € 57 denotes appalr that can be safely orr)|tted from
a round-robin fashion, resulting in concurrent traversal of.&lf". 57 Since(p, f) b:elongs tas7, Lhinﬂ(“t/) such thatlp, ') <
The entries of each feature tre®! are accessed in descending or- (p, t). Equivalent yj_H(p,t ) suchthati(p, t') < d(p, t) anduw(t') >
der of non-spatial score. Thus, BB* computes tighter upper-bounds w(lﬂ- Thenr,%ssumlfng a rangelquery with rad'gd(fqu’ t), the_par-
of the score and identifies earlier than BB whether a data object cantid scorer; €P) ofp IS equa tow(?), becausc_e t e/re exists no
be pruned. feature object that.satlsfles the range cons/traalr@p,t ) <r=
Feature Join Algorithm (FJ). The Feature Join (FJ) algorithm d|(qp7 t) and hasl a:jhlghher non-spatial sc%vet ) f>| w(t). th(?r;t.
performs a multi-way spatial join on the feature tre@¥" to obtain Tpus, we conclude that no palp, t) can be safely omitted from
combinations of feature points in the neighborhood of some object *: -

Proof of Theorem 2 S? is the minimal set that is sufficient to
compute the partial score! (p) of a data objectp € O for all
spatial preference queries.

PrROOF It suffices to show that if any pafp, ¢) is omitted from

O

p € O. The feature combinations are examined in descending order prgof of Theorem 3 For any data poinp € O enclosed in region
of their score and then data objegtss O are retrieved that have ) and for anyt € F;, it holds that if(p, t) € SP thent € DRS?.
the corresponding feature combination in their neighborhood. In ’

order to compute efficiently feature combinations with high score, ¢ ¢ DRS?. Then,3¢' € F, that dynamically dominatesbased

FJ co_mbmes non-le_af entries of the featurt_a tieBs and prunes on region . By definition, this means that it holds:
combinations that either have a score that is smaller than the score

i ; ; . 77 (1) maz Dist(A t') < minDist(\t) andw(t') > w(t), or (2)
of the k_ th data object already_found or _fa_ll to sat_lsfy the spatial mazDist(\ 1) < minDist(),t) andw(t') > w(t). We know
constraint (e.g. for range queries, the minimum distaheenong

. N . ’
the entries isi < 2r). If all entries of the highest score combi- thatmaxDist(), ') is an upper bound for any distandép, '),

; . A aasvine o .
nation are leaf-entries, then the data objects O in their spatial henced(p,t’) < maxzDist(A,t"). Similarly, minDist(),t) is

. ' : . a lower bound of any distanc#(p, t), henceminDist(A,t) <
neighborhood are retrieved, otherwise the non-leaf entry with the ) ) ’ . >
highest score is expanded. d(p,t). Thus, incase (1J(p,t") < d(p,t) andincase (2J(p,t') <

d(p,t). In both cases, we derive that, t') < (p,t), which con-
tradicts to the assumptiqp, t) € S?. O

PROOF Assume thaBit € F; such that(p,t) € S? and that

B. PROOFS Proof of Lemma 1: Lett € F; denote a feature object whose score
Proof of Theorem 1 For any spatial preference query, the sgt w(t) is updated. If the ordering™ of feature objects is not altered,
is sufficient to determine the partial scoré(p) of a data object all materialized skylines? are validvp € O.

peO. PrROOF Given any objecp € O and a feature object # ¢,
PROOF. Range score Let us assume that(p,t) € S? such the distanced(p, t) andd(p, ¢') do not change due to the score up-
thatw(t)=maz{w(t) | t € F; : d(p,t) < r}. Then,3(p,t') € date. In addition, the order between scougg) andw(t') does
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Figure 10: CN data distribution.

not change, because the orderifigof the feature objects does
not change. Hence, the domination relationship between any pair
(p,t') and (p, ) cannot change, thus all materialized skyline sets
S? arevalidvp € 0. O

Proof of Lemma 2 Lett € F; denote a feature object whose score
w(t) is updated, and let’ € F; denote the only feature object
whose relative order withh changes in the ordering of feature
objects. Thenyp € O such that(p, t) ¢ S? and(p,t’) ¢ S?, the
skyline setS? is still valid after the update.

3

PROOF. Letp denote a data objec§; its skyline with respect
to featureF; before the update, ang,t) ¢ S? and(p,t’) ¢ S?.
The proof will show that after the update, no pgirt) is added to
S? and that no pair is removed froff. SinceS? does not contain
(p, 1), there exists a pair i8? that dominatedp, t') before and
still dominates(p, ') after the update (because the update difi
not influence their scores nor distances from Also, asS? does
not contain(p, ), it follows that there existed a paip,t:1) € S?
before the update of that dominatedp, t). If the scorew(t) of
t decreased, then obvious{y, ¢1) still dominates(p,¢). On the
other hand, ifw(t) increased, we know that it is now higher than
w(t") only, since only the ordering efandt’ changed ir7". Hence,
the relative order of; andt in 7 does not change (neither do their
distances fronp), thus the dominance relationship @f,¢) and
(p, t1) does not change. As a resulp, t1) still dominates(p, t).
This proves that no paifp, t) is added taS?. Consequently, we
derive that no existing pair i8? can be removed. This concludes
the proof. [

C. DATASET DESCRIPTION AND MORE
EXPERIMENTAL RESULTS

Table 1 contains the parameters and values used in the exper
mental evaluation. The default values are presented in bold.

Values

UN, CN, RL

50K, 100K, 200K, 400K, 800K, 1600K]
50K, 100K, 200K, 400K, 800K, 1600K]
10, 20, 30, 40, 50

1,2,3,4,5

10,40, 160, 640, 2560

Parameter

Data distribution
Cardinality ofO (JO])
Cardinality of F; (F;[)
Number of resultsk)
Number of featuresc)
Query rangex)

Table 1: Parameters and values used in the experiments.

C.1 Synthetic Dataset (CN)
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Figure 11: Response time for different query types on the real
dataset (RL).

n (ng,ny) by a factor ofg € [0,1]. Thus, the spatial location of

s is updated ta(sz+(ng-5z)*(1-9), sy+(ny-sy)*(1-g)). A new
value of g is produced for each spatial object The valueg is
obtained through the following formulg=min(|v|, 1), wherey is

a randomly generated number that follows a Gaussian distribution
(#=0.0 ands?=0.2). Figure 10 depicts an example of a dataset that
follows the CN data distribution. The data objec¢¥sare repre-
sented by a cross mark, while the feature dataBetand F, are
represented by white and black dots respectively.

C.2 Results on Real Data

The real dataset (RL) contains information obtained by a travel
portal website [17]. The object datag@tcontains 11399 camp-
ing locations; the feature dataset contains 30921 hotels, where
the non-spatial score is the room price; and the feature dafaset
contains 3848 Wal-Mart stores, where the non-spatial score is the
gasoline supply. The points were normalize@tol0K] x [0, 10K],
and the non-spatial scores are normalizefjr].

In Figure 11, we evaluate the comparative performance of SFA
on the real dataset (RL). Figure 11(a) presents the response time for
varying the radius and queries using range score. SFA performs
efficiently and is one order of magnitude faster than the other ap-
proaches. Figure 11(b) depicts the response time for varying the
number of resultg using the influence score. BB* performs better
than BB and terminates faster, due to its improved pruning. How-
ever, SFA outperforms BB and BB* by more than one order of
magnitude. Figure 11(c) shows the response time for varying num-
ber of resultsk using the nearest neighbor score. SFA processes
efficiently nearest neighbor queries and is two orders of magnitude
better than BB and GP.

C.3 Using Skewed Non-spatial Score Values
In the next experiment, instead of generating the score values

The synthetic dataset (CN) is generated to resemble the real worldf the feature objects using a uniform distribution, we employ an

First, we define a number of centroids (using 5 as default), where
the first centroid is positioned in the middle of the space and the
others are randomly positioned[ily 10K] x [0, 10K]. We generate

the coordinates of a spatial objects., s,) using random uniform
values, and reduce the distance betweamd its nearest centroid

exponential distribution to evaluate the impact of the score distri-
bution on the performance of SFA. The exponential distribution of
scores captures the fact that in several applications the score distri-
bution is usually skewed. In this case, only few feature objects have
high scores, while many feature objects have low score values. In



10M 10K Dataset |O‘ ‘FZ| a‘Sﬂ d‘Sﬂ
wl B e T wl B E T Wal-Mart (WM) | 11399 | 3848 | 198 | 0.58
ook 100 Hotels (HT) 11399 | 30921 | 4.82 | 1.17
o 2 1 CN 100000 | 100000 11.26 | 2.97
= E 1 UN 100000 | 100000 12.04 | 0.22
K 0.1
100 0.01
* oo Table 2: Size of the sets? for different datasets
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Distributions Distributions

(a) I/Os for accessings;. (b) Time for computingS?.

(a|S?|) and the standard deviatiod|5?|) of the dynamic skyline
Figure 13: Cost of computing theS? set. set for different datasets. The size of the skyline set depends on
the data distribution and, as shown in Table 2, its average size is
always small compared to the size5f. The average skyline size
this experiment, we vary thate parameteof the exponential dis- is smaller for CN than UN, because more feature objects with high
tribution from 0.5 to 2.5. Low values of the rate parameter (i.e., 0.5) score values tend to be positioned near the centroids, which leads
indicate that many feature objects have high score values. In con-to more dominated feature objects and reduces the average size of
trast, for higher values of the rate parameter, fewer feature objectsthe dynamic skyline set. In the case of the real datasets Wal-Mart
have high score values. (WM) and Hotels (HT), the size of the skyline is influenced basi-
In Figure 12, we plot the I/Os and response time of all algo- cally by the domain of the non-spatial score. Since the real dataset
rithms for the skewed score distribution. First, in Figure 12(a), we has fewer discrete values, the dynamic skyline size is smaller.
present the values of I/Os. Comparing to the results of Figure 5(b),  In the next experiment (Figure 14), we examine the space over-
which correspond to uniform distribution, we observe that the use head and the overall construction time of SFA compared to the
of skewed non-spatial scores reduces the I/O cost of SFA and BB*. materialization cost of the competitor algorithms that require ag-
However, SFA constantly outperforms all algorithms. In terms of gregate R-trees (aR-tree). Figure 14(a) compares the size of the
response time, in Figure 12(b), SFA is more than one order of mag- indexes for different data distributions. For the synthetic dataset,
nitude better than all other algorithms independently of the skew- We usec=3 features, while the real dataset hag features, WM
ness of the score distribution. In general, we observe that only and HT. The number of indexed objects for the SFA algorithm is
FJ improves slightly its response time for high values of the rate Y ;_; |O| - a|SY], thus it depends on the cardinality of data ob-
parameter¥ 2.0), while all other algorithms show similar perfor-  jects|O| and the average skyline siz¢S?|. On the other hand,

mance for all values of skewness. the number of indexed objects for the competitor algorithms is
o |O| + >-5_, |Fi|. Figure 14(a) shows that in the case of the real
C.4 Cost of Materialization datasets, the space overhead of SFA is very small in practice. In

In this section, we evaluate the cost of materialization. First, the case of the synthetic datasets, the additional required space is
we evaluate the efficiency of the proposed dynamic region skyline higher, however the significant performance gains of SFA at query
query for computing th& set. In Figure 13, we compare the cost Processing time clearly outweigh its space overhead. Figure 14(b)
of materialization using one dynamic skyline query for each data depicts the overall time to construct the indexes required by each
object against the cost of using the dynamic region skyline query @lgorithm. In the case of SFA, the construction time includes the
(denotecRegion skyling The dataset® andF; are indexed by R-  construction of the indexes (R-trees) that are required to process
trees and the implementation of the dynamic (region) skyline query the dynamic skyline queries, the computation time for thesiet
relies on BBS [12]. Region skyline executes one dynamic region &nd the insertion time of,” in the R-tree?;”. The competitor ap-
skyline querys; for each leaf-entryX) of the R-tree orO and proaches (aR-tree) require only the insertion of the data points in
then, usess; for computing the skyline se¥? of any data object theFobjgct R-tree and the feature objects to the aggregate R-trees
p enclosed in\. Figure 13(a) depicts the 1/Os for accessifig aR;". Figure 14(b) shows that the construction time for SFA is in-
(the 1/0s for accessing are identical for both approaches). Re- creased compared to aR-tree, but the construction of SFA is still
gion skyline reduces the 1/Os by more than one order of magnitude fast in practice. More importantly, the index construction cost is a
compared to Basic. In Figure 13(b), we compare the time for com- One-time cost, and is expected to be amortized quickly, when the
putingS©. Region skyline is faster than Basic, which demonstrates attained gain in the performance of query processing is considered.
the efficiency of the employed dynamic region skyline query. .

Then, we study the size of séf that needs to be indexed in C.5 Cost of Maintenance
order to apply the SFA algorithm. Table 2 presents the average size In the following, we evaluate the maintenance of thg in-



Figure 15: Cost of inserting data objects in different datasets.

0.001

(a) Score update time.

100

aR-tree C—1

UN.

CN.
Distributions

(a) Time.

SFA

RL.

aR-tree ——

0.5

1 15 2
Rate parameter

SFA

25

aR-tree

SFA

Relative query/update ratio

Relative query/update ratio

(b) RQUR for score update.

UN.

CN.
Distributions

(b) RQUR.

RL.

0

2

0.5

1

15

2

Rate parameter

25

parameter lead to more feature objects with high changes of the
score.

In Figure 16(a), we depict the average update time for feature
objects. In general, updates of feature objects are more expensive
than insertions of data objects. However, as shown in Figure 16(b)
where RQUR is depicted, fewer than two queries per update suffice
to amortize the update cost of one feature object, even if the score
increases rapidly (rate parameter = 0.5). Thus, we conclude that
the additional cost for updating the score of feature objects is neg-
ligible, compared to the performance gain achieved during query
processing with SFA.

Finally, we evaluate the cost of insertion of new feature objects.
The spatial location and the score of the new feature objects follow
the initial data distribution of each dataset. Figure 16(c) depicts the
insertion time of a new feature object for different datasets. Again,
it is clear from Figure 16(d) that when the ratio of queries to up-
dates in the query workload is higher than two, SFA is more prof-
itable to employ than BB*. We conclude that the additional cost
of insertions for SFA is amortized fast over few queries, due to the
high efficiency of query processing of SFA. Notice that the inser-
tion time in our experiments is comparable to the update time, even
though it is expected that the insertion time is higher, since during
the insertion first the nearest neighbor tuples are retrieved and then
an update is performed. Nevertheless, in our experiments the scores
of the new feature objects are smaller than the updated score, thus
resulting in smaller update time.

Time (s)
Relative query/update ratio
-

0.001 0
UN. CN. WM. HT. UN. CN. WM HT.

Distributions Distributions

(c) Insertion time. (d) RQUR for insertion.

Figure 16: Cost of updating the non-spatial score and inserting
feature objects.

dexes caused by insertions and updates of both data and feature
objects. We provide a comparison of the maintenance cost of SFA
to the competitor algorithms (aR-tree). To this end, we measure
the time required for performing the update, as well agéfaive
query/update ratio (RQURhat shows when the cost of our algo-
rithm is amortized compared to BBRQUR defined as’w

takes into account the maintenance cost of SE»%Xand of BB*
(mz), as well as the query time of SFA4) and BB* (gg). We

use spatial preference range queries for computing the query cost.
RQUR shows the number of queries per update operation after
which SFA is faster than BB*. For instance, if RQUR is equatto

this means that when the query workload has more thgueries

per update, then it is more cost-efficient to use SFA.

In Figure 15, we evaluate the cost for inserting new data objects.
The insertion time is higher for SFA, as shown in Figure 15(a), but
it requires always less than one second. However, in Figure 15(b),
RQUR is always less than one, showing that even if the query work-
load has only one query per update, SFA is faster than BB* for all
datasets. Thus, even one query per update suffices to amortize the
cost of insertion of data objects.

Thereatfter, in Figure 16, we evaluate the maintenance cost caused
by updates or insertions of feature objects. For the updates of fea-
ture objects, we update only the non-spatial score. In more details,
the new score is the old score increased by a random value that fol-
lows an exponential distribution. We vary the rate parameter of the
exponential distribution from 0.5 to 2.5. Small values of the rate



