
1

Monochromatic and Bichromatic Reverse
Top-k Queries

Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, and Kjetil Nørvåg

✦

Abstract —Nowadays, most applications return to the user a limited
set of ranked results based on the individual user’s preferences,
which are commonly expressed through top-k queries. From the per-
spective of a manufacturer, it is imperative that her products appear
in the highest ranked positions for many different user preferences,
otherwise the product is not visible to potential customers. In this
paper, we define a novel query type, namely the reverse top-k query,
that covers this requirement: ”Given a potential product, which are
the user preferences that make this product belong to the top-k query
result set?”. Reverse top-k queries are essential for manufacturers
to assess the impact of their products in the market based on the
competition. We formally define reverse top-k queries and introduce
two versions of the query, monochromatic and bichromatic. First, we
provide a geometric interpretation of the monochromatic reverse top-
k query to acquire an intuition of the solution space. Then, we study
in detail the case of bichromatic reverse top-k query, and we propose
two techniques for query processing, namely an efficient threshold-
based algorithm and an algorithm based on materialized reverse top-
k views. Our experimental evaluation demonstrates the efficiency of
our techniques.

Index Terms —reverse top-k query, top-k query, user preferences

1 INTRODUCTION

Recently, the support for rank-aware query processing
has attracted much attention in the database research
community. Top-k queries retrieve only a ranked set
of k objects that best match the user preferences, thus
avoiding overwhelming result sets. Since most appli-
cations return to the user only a limited set of ranked
results based on the individual user’s preferences, it
is imperative for a manufacturer that her products
appear in the highest ranked positions for many
different user preferences, otherwise the product is
not visible to potential customers. In this paper, we
assume that users express their preferences through
linear top-k queries, which are defined by assigning a

• A. Vlachou, C. Doulkeridis and K. Nørvåg are with the Department of
Computer Science, Norwegian University of Science and Technology,
Norway.
E-mails: {vlachou, cdoulk, noervaag}@idi.ntnu.no

• Y. Kotidis is with the Department of Informatics, Athens University
of Economics and Business, Greece.
E-mail: kotidis@aueb.gr

weight to each of the scoring attributes, indicating the
importance of each attribute to the user. This model
is in agreement with the notion of preference [1], [2]
and is widely adopted in related work.

In this paper, we define a novel query type, namely
the reverse top-k query, which can be expressed as
follows: ”Given a potential product, which are the
user preferences for which this product is in the
top-k query result set?”. We formally define re-
verse top-k queries and study two versions of the
query: monochromatic and bichromatic reverse top-k
queries. In the former, there is no knowledge of user
preferences and the aim is to estimate the impact of a
potential product in the market. In the latter, a dataset
with user preferences is given and a reverse top-k
query returns those preferences that rank a potential
product highly. To the best of our knowledge, this is
the first work that addresses this problem.
Contributions. First, we introduce and formally
define a novel query type called reverse top-k
query (Section 3) and present two versions, namely
monochromatic and bichromatic. We analyze the ge-
ometrical properties for the 2-dimensional case of the
monochromatic reverse top-k query and provide an
algorithmic solution (Section 4). Furthermore, we dis-
cuss the geometric interpretation of the solution space
for higher dimensionality. Then, we study in detail the
case of bichromatic reverse top-k query. Such a query,
if computed in a straightforward manner, requires
evaluating a top-k query for each user preference in
the database, which is prohibitively expensive even
for moderate datasets. Instead, we propose an efficient
and progressive threshold-based algorithm, called
RTA, for processing bichromatic reverse top-k queries
for arbitrary data dimensionality (Section 5). RTA
eagerly discards candidate user preferences, without
processing the respective top-k queries. In addition,
we present an indexing structure based on space
partitioning, which materializes reverse top-k views,
in order to further improve reverse top-k query pro-
cessing (Section 6). We discuss the construction, usage
and maintenance of the index based on materialized
reverse top-k views. We conduct a thorough exper-
imental evaluation that demonstrates the efficiency

2

of our algorithms (Section 7). It is noteworthy that
our algorithms consistently outperform a brute force
algorithm by 1 to 3 orders of magnitude in terms of
required number of top-k evaluations. Finally, Sec-
tion 8 reviews the related work and we conclude in
Section 9.

This paper extends our preliminary work [3] and
provides a more thorough study of the problem. Fur-
thermore, we present new experimental results that
lead to interesting findings and conclusions.

2 PRELIMINARIES

Given a data space D defined by a set of d dimensions
{d1, ..., dd} and a dataset S on D with cardinality |S|,
an object p ∈ S can be represented as a d-dimensional
point p = {p[1], . . . , p[d]} where p[i] is a value on
dimension di. We assume that each dimension rep-
resents a numerical scoring attribute, therefore the
values p[i] in any dimension di are numerical non-
negative values. Furthermore, without loss of gen-
erality, we assume that smaller scoring values are
preferable.

Top-k queries are defined based on a scoring func-
tion f that aggregates the individual scores into an
overall scoring value, that in turn enables the ranking
(ordering) of the data points. The most important
and commonly used case of scoring functions is the
weighted sum function, also called linear. Each di-
mension di has an associated query-dependent weight
w[i] indicating di’s relative importance for the query.
The aggregated score fw(p) for data point p is de-
fined as a weighted sum of the individual scores:

fw(p) =
∑d

i=1 w[i]×p[i], where w[i] ≥ 0 (1 ≤ i ≤ d), ∃j
such that w[j] > 0. The weights represent the relative
importance between different dimensions, and with-

out loss of generality we assume that
∑d

i=1 w[i] = 1.
The weights indicate the user preferences, because
they alter the ranking of the data points and therefore
the top-k result set. A linear top-k query can be
represented by a vector w and the result of a top-k
query is a ranked list of the k points with the best
scoring values fw.

Definition 1: (Top-k query) Given a positive integer
k and a user-defined weighting vector w, the result
set TOPk(w) of the top-k query is a set of points such
that TOPk(w) ⊆ S, |TOPk(w)| = k and ∀p1, p2 : p1 ∈
TOPk(w), p2 ∈ S − TOPk(w) it holds that fw(p1) ≤
fw(p2).

In a d-dimensional Euclidean space, there exists
a one-to-one correspondence between a weighting
vector w and a hyperplane ℓ which is perpendicular
to w. We call the (d-1)-dimensional hyperplane, which
is perpendicular to vector w and contains a point
p as the query plane of w crossing p, and denote it
as ℓw(p). All points lying on the query plane ℓw(p),
have the same scoring value equal to the score fw(p)
of point p. Fig. 1 (left) depicts an example, where

1

1

2 3 4 5 6 7 8 910

2
3
4
5
6
7
8
9

10

price

age

p1
p9

p2

p4

p7

p8

p10

p3

p6

p5

user preferences

user w[price] w[age]
Bob
Tom

0.9

Max

0.1
0.80.2

0.5 0.5

top-1(score)
p1 (2.5)
p2 (2.2)
p2 (2.5)

w[price]

w[age]

5/61/7

1

1

Bob

Tom

Max
Hw(p2)

fw(p2)
w = [0.5,0.5]

Fig. 1. Example of reverse top-k query.

the query plane (equivalent to a query line in 2d) is
perpendicular to the weighting vector w = [0.5, 0.5].
All points pi lying on the query line have a score
value fw(pi) = fw(p2) = 2.5. Furthermore, the rank
of a point p based on a weighting vector w is equal
to the number of the points enclosed in the half-
space defined by ℓw(p) that contains the origin of the
data space. Hence, p2 is the top-1 result for the query
0.5 × x + 0.5 × y. In the rest of the paper, we refer
to this half-space as query space of w defined by p and
denote it as Hw(p).

3 REVERSING TOP-k QUERIES

In this section, we introduce the concept of the reverse
top-k query through an example and point out the
differences to existing query types.

3.1 Example of Reverse Top- k Query

Given a database of products, a reverse top-k query
returns those users (represented by weighting vec-
tors) that rank a potential product highly. Consider
for example a database containing information about
different cars, depicted in Fig. 1 (left). For each car,
the price and the age are recorded and minimum
values on each dimension are preferable. Different
users have different preferences about a potential car
and Fig. 1 (right) also depicts a set of user preferences.
For example, Bob prefers a cheap car, and does not
care much about the age of the car. Therefore, the
best choice (top-1) for Bob is the car p1 which has
the minimum score (namely 2.5) for the particular
weights. On the other hand, Tom prefers a newer car
rather than a cheap car. Nevertheless, for both Tom
and Max the best choice would be car p2.

A reverse top-k query (RTOPk) is defined by a user-
specified product p and returns the weighting vectors
w for which p is in the top-k result set. There exist
two different versions of the reverse top-k query: the
monochromatic, which does not require any knowl-
edge of user preferences, and the bichromatic, which
assumes that a dataset of preferences is given. In
our example, the bichromatic reverse top-1 result set
of p1 contains the weighting vector (0.9, 0.1) defined

3

1

1

2 3 4 5 6 7 8 910

2
3
4
5
6
7
8
9

10

price

age

p1
p9

p2

p4
p7

p8

p10

p3

p6

p5

q

(a) RNN vs RTOPk.

1

1

2 3 4 5 6 7 8 910

2
3
4
5
6
7
8
9

10

price

age

p1
p9

p2

p4
p7

p8

p10

p3

p6

p5

q

(b) RSKY vs RTOPk.

Fig. 2. Differences to existing query types.

by Bob. Notice that for p2, two weighting vectors
belong to the bichromatic reverse top-1 result set
{(0.5, 0.5), (0.2, 0.8)}, namely the preferences of Tom
and Max. In fact, all weighting vectors with w[price]
in the range of [17 , 5

6] belong to the bichromatic reverse
top-1 result set of p2. This segment of line w[price] +
w[age] = 1 is the result set of the monochromatic
reverse top-k query for the query point p=p2.

Conceptually, the solution space of reverse top-k
queries is the space defined by the weights w[price]
and w[age]. Monochromatic reverse top-k queries re-
turn partitions of the solution space and are useful
for estimating the impact of a product when no user
preferences are given, but the distribution of them is
known. In our example, under assumption of uniform
distribution of user preferences, the impact of p2 in
the market can be estimated as (5

6 −
1
7)×100% = 69%.

On the other hand, bichromatic reverse top-k queries
have even wider applicability, as they identify users
that are interested in a particular product, given a
known set of user preferences. For instance, the best
strategy for a profile-based marketing service would
be to advertise car p1 to Bob and car p2 to Tom and
Max. Notice that an empty result set for a product
(i.e., car p3) indicates that it is not interesting for any
customer based on her preferences. Summarizing, for
the bichromatic version of the reverse top-k query,
the result set contains a finite number of weighting
vectors, while the monochromatic version identifies
the partitions of the solution space that satisfy the
query.

3.2 Differences to Existing Query Types

The reverse nearest neighbor query (RNN) [4] and the
reverse skyline query (RSKY) [5] have been proposed
for supporting decision making. In the following, we
point out the differences between these query types
and RTOPk queries.

Reverse top-k queries differ from reverse nearest
neighbor queries [4]. Given a query point q the
monochromatic RNN query retrieves all data points
which have q as nearest neighbor. In the case of the
car database, this is equivalent to finding all cars
that are closer to the query point than to any other

point of the dataset. For example, in Fig. 2(a), a
RNN query returns p2 (assuming Euclidean distance),
while the result set of RTOPk query for k = 1 is
defined by the line segment [17 , 5

6] in the space of
the weighting vectors. The bichromatic versions of
these query types are also different. In our running
example, the bichromatic RTOPk query returns all
weighting vectors w ∈ W such that w[price] ∈ [17 , 5

6].
On the other hand, the bichromatic RNN is defined
based on two datasets A, B, and returns all points
that belong to A, that are closer to q than any point
of B. Thus, while a monochromatic/bichromatic RNN
query retrieves a set of points that are closer to the
query point than any other data point, the RTOPk
query retrieves a set of weighting vectors or partitions
of the solution space defined by the weights w[i].
An alternative definition of RTOPk query is, given a
query point q, find the distance functions (in terms
of weighting vectors) for which q belongs to the k-
nearest neighbors of the point positioned at the origin
of the data space.

The reverse skyline query [5], [6] has been proposed
to explore the dominance relationships between prod-
ucts relatively to the user preferences. The user prefer-
ences are described by a data point that represents the
ideal (non-existing) product for the user. In contrast,
the RTOPk query assumes that the user preferences
are expressed as weights that define the relative im-
portance of each dimension. Given a query point, the
RSKY query retrieves all data points for which the
query point belongs to their dynamic skyline result
set1. Thus, the RSKY query retrieves the data points
that are at least in one dimension more similar (in
terms of absolute difference of attribute values) to q
than all other data points. For example, in Fig. 2(b),
the dynamic skyline of p2 is depicted (gray square
points). Since the dynamic skyline query is defined by
absolute differences, q belongs to the dynamic skyline
of p2, if and only if only p2 and no other data point
is enclosed in the depicted rectangle. As q belongs
to the dynamic skyline, p2 is in the result set of the
reverse skyline of q. In the case of bichromatic reverse
skyline, two datasets A, B are given, each of them
containing data points sharing the same attributes (in
our example price and age). Then, given a query point
q, the goal is to find all points belonging to A that
are more similar in at least one dimension to q than
any point of B. Both monochromatic and bichromatic
RSKY queries differ from RTOPk queries, since in the
former the result set is a set of data points to which q
is more similar than all other points in at least one
dimension, while in the latter user preferences are
returned that define linear scoring functions for which
q is highly ranked.

1. A point pi dynamically dominates p′
i

based on point q, if ∀dj ∈
D: |pi[j] − q[j]| ≤ |p′

i
[j] − q[j]|, and on at least one dimension

dj ∈ D: |pi[j] − q[j]| < |p′
i
[j] − q[j]|.

4

4 MONOCHROMATIC RTOPk QUERIES

We commence by providing a formal definition of
monochromatic reverse top-k for a query point q and
an integer k.

Definition 2: (Monochromatic Reverse top-k) Given a
point q and a positive number k, as well as a dataset
S, the result set of the monochromatic reverse top-
k query (mRTOPk(q)) of point q is the locus2, i.e.,
a collection of d-dimensional vectors {wi}, for which
∃p ∈ TOPk(wi) such that fwi

(q) ≤ fwi
(p).

Let us assume that W denotes the set of all valid
assignments of w. Fig. 3 shows the data and solution
space of a 2-dimensional monochromatic reverse top-

k query. All valid weighting vectors (
∑d

i=1 w[i] = 1
and w[i] ∈ [0, 1]) of the reverse top-k query form the
line w[1] + w[2] = 1 in the 2-dimensional solution
space that is defined by the axis w[1] and w[2]. Since
the number of possible vectors w is infinite, it is
not possible to enumerate all possible assignments of
w ∈ W . On the other hand, the solution space W can
be split into a finite set of partitions Wi (

⋃

Wi = W ,
⋂

Wi = ∅), such that the query point q has the same
ranking position for all weighting vectors w ∈ Wi.
For the 2-dimensional case, each partition Wi is a line
segment of the line w[1] + w[2] = 1. Then, the result
set of the monochromatic reverse top-k is a set of
partitions Wi of the solution space W :

mRTOPk(q) = {Wi : ∃wj ∈ Wi ∧ q ∈ TOPk(wj)}
For the sake of brevity, in the rest of this paper we
denote a query point q ∈ TOPk(wi), instead of ∃p ∈
TOPk(wi) such that fwi

(q) ≤ fwi
(p).

In this paper, we assume that any Wi,Wj ∈
mRTOPk(q) are non-adjacent partitions, therefore a
partition Wi is the maximum partition of the solution
space in which the rank of q does not change. The
main topic of this section is to identify the parti-
tions that form the result set of a monochromatic
reverse top-k query. We first present an algorithm
for computing the mRTOPk(q) in the 2-dimensional
case. Then, we discuss the case of datasets of higher
dimensionality.

4.1 Monochromatic RTOP k Query for 2d

Properties of monochromatic RTOPk query. In the
following, we present some useful properties of
RTOPk queries and discuss how the boundaries of the
partitions Wi can be determined. We assume that the
an ordering w1, . . . , w|W | of the weighting vectors of
|W |, such that a weighting vector wi precedes another
vector wj , if wi[1] < wj [1]. Thus, the weighting vectors
wi are ordered based on increasing angle of wi with
the y-axis.

Lemma 1: Given two points p and q such that
fw1

(q) ≤ fw1
(p), there exists at most one weighting

2. In mathematics, locus is the set of points satisfying a particular
condition, often forming a curve of some sort.

1

1

2 3 4 5 6 7 8 910

2
3
4
5
6
7
8
9

10

x

y

wpq

wqr

p3

p2

r

p7

p4

p1

q

p6

p5
p

(a) Data space

mRTOP1(q)

w[1]

w[2]

wpq[2]

wqr[2]

w
qr

[1] w
pq

[1]

1

1

(b) Solution space.

Fig. 3. Monochromatic reverse top-k query.

vector w such that fwi
(q) < fwi

(p) for wi < w, and
fwi

(q) > fwi
(p) for wi > w.

Based on the above lemma, the relative order of p
and q changes for weighting vectors with smaller and
larger angles than w. If p had a lower rank than q
for vectors with smaller angle than w, then p has a
higher rank for vectors with larger angle than w. If
there exists such a weighting vector, then we denote
it as wpq and refer to it as the weighting vector for which
the relative order of q and p changes.

Lemma 2: Given two points p and q, if there exists
a weighting vector wpq for which the relative order of
p and q changes, then it holds that fwpq

(q) = fwpq
(p).

Equivalently, wpq is the weighting vector that is
perpendicular to the line segment pq, with wpq[1] =

λpq

λpq−1 , where λpq = q[2]−p[2]
q[1]−p[1] is the slope of line

segment pq. The above equation is derived by the
property that wpq ⊥ pq.

The boundaries of any partition Wi are defined by
weighting vectors wpq for which the relative order of
q and points p ∈ S changes (additionally, the first and
last partition are defined by the weighting vectors
[0, 1] and [1, 0] respectively). Intuitively, as long as
the relative order between any two points does not
change, the top-k result is not affected and thus the
rank of q remains the same.

Lemma 3: There exists at most one partition Wi,
such that for all the weighting vectors w ∈ Wi it holds
that q ∈ TOP1(w).

Since the relative order between q and any data
point p changes only once, if the rank of p becomes
higher than q, then it cannot change again for the next
vectors. Thus, q cannot be in the top-1 result set for
any w > wpq. Therefore, the result set mRTOP1(q)
contains at most one partition Wi of W .
Example of mRTOPk(q) for k=1. Consider for exam-
ple the dataset depicted in Fig. 3(a). Since the only
points that belong to the convex hull [7] are p, q
and r, we conclude that (1) only these points belong
to the top-1 result set for any weighting vector, and
(2) there exists at least one weighting vector wi for
which q ∈ TOP1(wi), and based on Lemma 3 exactly
one partition Wi ∈ mRTOP1(q). The boundaries of
the partition Wi are defined by the weighting vectors

5

1

1

2 3 4 5 6 7 8 9 10

2
3
4
5
6
7
8
9
10

p
2

q

x

y

p
1

l
w1
(q)

l
w2
(q)

l
w3
(q)

(a) Multiple partitions.

1

1

2 3 4 5 6 7 8 9 10

2
3
4
5
6
7
8
9
10

p
4

q

x

y

p
2

p
1

p
5

p
6

p
3

w
4

w
3

w
2

w
1

(b) mRTOPk(q) algorithm.

Fig. 4. Examples of mRTOPk(q) queries.

wpq , wqr for which the relative order between q and
p or r changes. All weighting vectors w for which
the following inequality holds are in the reverse top-
1 result set of q: wqr[1] ≤ w[1] ≤ wpq[1]. The result
set of mRTOP1(q) is a segment (partition) of the line
w[1] + w[2] = 1 in the 2-dimensional solution space
defined by wpq and wqr, as shown in Fig. 3(b).

Even though the result set mRTOPk for k = 1
contains at most one partition, for a reverse top-k
query with k > 1, the result set may contain more
than one partitions Wi. Consider for example the
three data points in Fig. 4(a) and assume we are
interested to compute the mRTOPk(q) for k=2. Query
point q is in the top-2 result set for both weighting
vectors w1 and w3. However, when weighting vector
w2 is considered, with angle between w1 and w3, it is
obvious that q no longer belongs to the top-2. Thus, in
this small example, the monochromatic reverse top-k
query would return two partitions Wi.

Monochromatic RTOPk algorithm. Algorithm 1 de-
scribes the monochromatic reverse top-k algorithm for
the 2-dimensional case. Data points that are domi-
nated3 by q are always ranked after q for any weight-
ing vector w, while points that dominate q are ranked
before q for any weighting vector w. For example in
Fig. 4(b), p5 is worse (ranked lower) than q, whereas
p6 is better (ranked higher) than q for any w. Points
of the dataset that are neither dominated by nor dom-
inate q are ranked higher than q for some weighting
vectors and lower than q for other vectors. Thus, our
algorithm examines4 only such incomparable points
{pi} to q (line 5), because they alter the rank of q. The
boundaries of the partitions of mRTOPk are defined
by a subset of the weighting vectors wi = wpiq,
therefore we keep them in list W ′ (line 7). Then, we
identify the partitions for which q belongs to the top-
k, by processing W ′, as explained in the following
example.

In Fig. 4(b), after the sorting by increasing value
of wi[1] (line 10) the set W ′ is {w1, w2, w3, w4} cor-

3. A point p dominates q (p ≺ q) , if ∀di ∈ D, p[i] ≤ q[i]; and on
at least one dimension dj ∈ D, p[j] < q[j].

4. This is similar to the approach in [2], which is used to compute
a robust layered index.

Algorithm 1 Monochromatic RTOPk Algorithm.

1: Input: S, q
2: Output: mRTOPk(q)
3: W ′ ← ∅, R← ∅, RES ← ∅
4: for (∀pi ∈ S) do
5: if (q 6≺ pi and pi 6≺ q) then

6: wi[1]←
λpiq

λpiq−1
, wi[2]← 1− wi[1]

7: W ′ ←W ′ ∪ {wi}
8: end if
9: end for

10: sort W ′ based on increasing value of wi[1]
11: w0 ← [0, 1], w|W ′|+1 ← [1, 0]
12: R← {p : p lies in Hw0

(q)}
13: kw ← |R| //number of points in R
14: for (∀wi ∈W ′) do
15: if (kw ≤ k) then
16: RES ← RES ∪ {(wi, wi+1)}
17: end if
18: if (pi+1 ∈ R) then
19: kw ← kw − 1
20: else
21: kw ← kw + 1
22: end if
23: end for
24: return RES

responding to the lines p1q, p2q, p3q, p4q respectively.
Then, vectors w0 and w5 are added to W ′. For the first
weighting vector w0 all data points that lie in Hw0

(q)
are retrieved (line 12). Recall that the rank kw of q with
respect to w0 is determined by the number of points
contained in Hw0

(q) (line 13). In our example, the set
R is {p4, p6, p1} and therefore the rank of q is 4. The
rank of q cannot change before w1. If we assume that
k=3, then for the first partition W0=[w0, w1] the rank
of q is higher than k and the partition W0 can be safely
discarded. Then, the next partition is W1 = [w1, w2].
Since p1 ∈ R (line 18), this means that the relative
order of the points p1 and q changes in W1, and
now the rank of q is 3. Therefore, W1 is added to
mRTOP3(q) (line 16). Similarly, we can compute the
rank of q for all Wi. In our example, W1 is the only
partition that qualifies for the mRTOP3(q) result set.
Notice that adjacent partitions can be easily detected
and merged into one partition.

Given a query point q, let I ⊂ S be the set of
incomparable points to q. Then, Algorithm 1 produces
at most |I| + 1 partitions. Since adjacent partitions
are merged, in worst case every second partition
will be in the result set of mRTOPk(q). Thus, the
maximum number of partitions in mRTOPk(q) is
⌈

|I|+1
2

⌉

. If all data points are incomparable to q then

|I| = |S|, which leads to an upper bound for the
number of partitions. Notice that the expected number
of incomparable points is much smaller. For example,
assuming uniform data distribution and given that
0 ≤ p[i] ≤ 1,∀p ∈ S and 1 ≤ i ≤ 2, the expected
number of incomparable points |I| is equal to the
aggregate area of the upper left quadrant and lower
right quadrant defined by q multiplied with |S|:

6

1 1

1

w
WA

WB

WC

W[2]

W[3]W[1]

(a) Partitioning for S1.

WB
WC

1 1

1W[2]

WA

W[3]W[1]

w

(b) Partitioning for S2.

Fig. 5. Solution space for 3-dimensional data.

|I| = |S| − |S| · q[1] · q[2] − |S| · (1 − q[1]) · (1 − q[2])
= |S| · (q[1] + q[2] − 2 · q[1] · q[2])

4.2 Higher Dimensional Data

In higher dimensions (d>2), all valid weighting vec-
tors of the RTOPk query form a (d-1)-dimensional
hyperplane that contains the points wi[j]=0 ∀j 6= i
and wi[j]=1 for j=i and 1 ≤ i ≤ d. A monochro-
matic RTOPk query returns the partitions Wi of the
hyperplane, for which the query point q is in the
TOPk(w),∀w ∈ Wi. In the following, we provide an
example for finding the partitions for d>2.

Let us consider a 3-dimensional dataset S1 con-
taining only three points A=[1, 0, 0], B=[0, 1, 0] and
C=[0, 0, 1]. We denote as WA, WB and WC the par-
titions for which A, B and C are the top-1 data point
respectively. Similar to the 2-dimensional case, the
borders of the partitions are defined by the weighting
vectors for which the relative order between two
points changes. To define the borders of the partitions
WA and WB , we need to examine the locus of weights
w′ for which fw′(A)=fw′(B). From this equation, we
derive that w′=[1−c

2 , 1−c
2 , c] where c ∈ [0, 1]. The vec-

tors w′ form a line that divides the solution space into
two partitions.

Furthermore, we seek only the weighting vectors
for which fw′(A)=fw′(B)<fw′(C), since otherwise C
is the top-1 point. Thus, if we take also into con-
sideration that fw′(A) < fw′(C), then an additional
constraint is formed, namely c > 1

3 . Therefore, the
border between the partitions WA and WB is the
line segment defined by the points [1/3, 1/3, 1/3] and
[1/2, 1/2, 0]. By repeating the same procedure for the
other pairs of points, the result is the partitioning
depicted in Fig. 5(a). Notice that there exists a single
weighting vector w=[1/3, 1/3, 1/3] for which all three
data points have the same score for the dataset S1.

Fig. 5(b) depicts the partitions of the solution
space for another dataset S2 containing the points
A=[1/2, 0, 1/2], B=[1/2, 1/2, 0] and C=[0, 1/2, 1/2]. For
dataset S2, in order to detect the border between WA

and WB , only the constraint changes to c < 1
3 , there-

fore the border between the partitions WA and WB

is defined as the line segment defined by the points
[1/3, 1/3, 1/3] and [1, 0, 0]. This discussion shows that
obtaining the partition boundaries in higher dimen-
sions is a complicated process that goes far beyond

Algorithm 2 RTA: RTOPk Threshold Algorithm.

1: Input: S, W , q, k
2: Output: bRTOPk(q)
3: W ′ ← ∅, buffer ← ∅
4: τ ←∞
5: for (each wi ∈W) do
6: if (fwi

(q) ≤ τ) then
7: buffer ← TOPk(wi)
8: if (fwi

(q) ≤ τwi
(buffer)) then

9: W ′ ←W ′ ∪ {wi}
10: end if
11: end if
12: τ ← τwi+1

(buffer)
13: end for
14: return W ′

the task of identifying the weighting vectors for which
the relative order changes.

Algorithm 1 can be extended for higher dimensions,
similarly to the approach in [2] for traditional top-k
query processing. The main difference is that in higher
dimensions, in each repetition (line 4), each pair of
points define a (d-2)-dimensional hyperplane in the
solution space. The remaining challenge is to define
the boundaries of the partitions. The details of such
a generalization are very interesting and we plan to
study them further in our future work.

5 B ICHROMATIC RTOPk QUERIES

Definition 3: (Bichromatic Reverse top-k) Given a
point q and a positive number k, as well as two
datasets S and W , where S represents data points and
W is a dataset containing different weighting vectors,
a weighting vector wi ∈ W belongs to the bichromatic
reverse top-k result set (bRTOPk(q)) of q, if and only
if ∃p ∈ TOPk(wi) such that fwi

(q) ≤ fwi
(p).

For a bichromatic reverse top-k query, two datasets
S and W are given, where S contains the data
points and W the different weighting vectors that
represent user preferences. Then, the aim is to find
all weighting vectors wi ∈ W such that the query
point q ∈ TOPk(wi). A brute force (naive) approach
is to process a top-k query for each wi ∈ W and
test whether q belongs to TOPk(wi). Obviously, the
brute force approach is prohibitively expensive and
does not scale with the number of weighting vectors
wi in the dataset W which may be high (compara-
ble to the size |S| of the dataset S). In the sequel,
we present a threshold-based algorithm, called RTA
(Reverse top-k Threshold Algorithm), which discards
weighting vectors that cannot contribute to the result
set bRTOPk(q), without evaluating the corresponding
top-k queries.

5.1 Threshold-based Algorithm (RTA)

RTA aims to reduce the number of top-k query eval-
uations, based on the observation that top-k queries

7

defined by similar weighting vectors5 return similar
result sets [1]. Hence, RTA exploits already computed
top-k result sets to avoid evaluating weighting vectors
that cannot be in the reverse top-k result set. There-
fore, in each repetition a threshold is set based on
the previously computed top-k result set P . Given a
set of points P , we denote as τwi

(P) ≡ max{fwi
(P)}

the maximum of all scoring values fwi
(pj), pj ∈ P ,

which means that ∀pj ∈ P : τwi
(P) ≥ fwi

(pj), and
∃pj ∈ P : τwi

(P) = fwi
(pj). The maximum value

τwi
(P) corresponds to the worst scoring value for

any point in the set P based on wi and is used as
a threshold during the reverse top-k evaluation.

Algorithm 2 formally describes the RTA algorithm
for processing a bichromatic RTOPk query. Initially,
RTA computes the top-k result TOPk(wi) for the
first weighting vector (line 7). Notice that in the first
iteration we cannot avoid evaluating a top-k query,
as the threshold τ cannot be set yet. The k data
points that belong to the result set TOPk(wi) are
kept in a main-memory buffer. The score fwi

(q) of
query point q based on vector wi is computed and
compared against τwi

(buffer) (line 8) and if it is not
greater than τwi

(buffer), then wi is added to the result
set (line 9). Before the next iteration, we take the next
weighting vector (wi+1) and we set the threshold τ
equal to τwi+1

(buffer) (line 12). Then, the condition
of line 6 is tested, and if the score fwi

(q) is higher
than the threshold τ , then wi can be safely discarded.
If wi cannot be discarded, we pose again a top-k
query on dataset S and we update the buffer with
the new result set TOPk(wi). In each iteration, the
k points of the previously processed top-k query are
kept in the buffer. The algorithm terminates when all
weighting vectors have been evaluated or discarded.
Notice that the size of the buffer is always bound by k,
and queries with small k values are commonly used
in practice. Furthermore, we assume that the buffer
contains k points, which always holds if k < |S|.

Theorem 1: (Correctness of the algorithm) RTA always
returns the correct and the complete result set.

Proof: Equivalently, the theorem states that RTA
reports a weighting vector w as result, if and only if
it belongs to the result set bRTOPk(q). We prove –
by contradiction – that w is never falsely reported as
result and that w is never falsely discarded.

(1) Let w be a weighting vector that is falsely
added to the bRTOPk(q) set, i.e., w /∈ bRTOPk(q)
and fw(q) ≤ τw(buffer). Based on line 7 fw(q) ≤
τw(TOPk(w)). Thus, ∃p ∈ TOPk(w) such that fw(q) ≤
τw(TOPk(w)) = fw(p). Then, by definition w ∈
bRTOPk(q), which is a contradiction.

(2) Let w ∈ bRTOPk(q) be a weighting vector that
is falsely discarded. Then, based on the definition of
the reverse top-k query, ∃p ∈ TOPk(w) such that

5. We address the issue of accessing similar weighting vectors in
Section 5.2.

fw(q) ≤ fw(p). Since RTA discarded w, there exists a
set of k points pi (1 ≤ i ≤ k) in the buffer that have a
better scoring value than q based on the threshold,
i.e., ∀pi: fw(pi) < fw(q) ≤ fw(p). This means that
p /∈ TOPk(w), which leads to a contradiction.

In the worst case, RTA needs to process |W | top-
k queries, hence the algorithm degenerates to the
brute force algorithm. However, in the average case,
RTA returns the correct result by evaluating much
fewer than |W | top-k queries, which is verified also
in the experimental evaluation. On the other hand,
RTA needs to evaluate at least |bRTOPk(q)| top-k
queries, since no weighting vector wi can be added
with certainty to the result set without evaluating the
respective top-k query.

5.2 Sorted Access to Weighting Vectors

In each repetition, RTA sets a threshold exploiting
previously computed top-k result sets, in order to
discard weighting vectors that cannot be in the query
result set. The effectiveness of the threshold depends
on the k data objects in the buffer. Top-k queries
defined by similar weighting vectors return similar
result sets [1]. Thus, if the buffered result set was
obtained by a similar weighting vector w′ with the
currently processed w, then the probability that the
threshold can discard w is high. As a result, the order
in which the weighting vectors are examined influ-
ences the performance of RTA, and it is beneficial to
access similar weighting vectors in consecutive steps.
Consequently, the weighting vectors W are sorted
based on their pairwise similarity.

Given a similarity function sim(wi, wj) between wi

and wj , and an ordering of the weighting vectors
e = w1, ..., w|W |, the overall similarity is defined as

sim(e) =
∑|W |−1

i=1 sim(wi, wi+1). The goal is to find the
optimal ordering ê in terms of similarity, defined as
ê = argmax∀e(sim(e)), that maximizes the similarity
of all consecutive pairs of weighting vectors. In the
following, we define the Vector Ordering Problem
(VOP) formally.

Definition 4: (Vector Ordering Problem) Given a real
number c and a set of vectors W with nonnegative
cost function sim(wi, wj) associated with each pair of
vectors wi and wj , the problem is whether there exists
an ordering of the weighting vectors e = w1, ..., w|W |,

such that
∑|W |−1

i=1 sim(wi, wi+1) ≥ c.

Lemma 4: The VOP problem is NP-complete.

Proof: We first show that VOP belongs to NP.
Given an instance of VOP and a candidate solution,
the verification algorithm checks that the ordering
contains each vector exactly once, sums up the cost
values, and checks whether the sum is at least c. This
process can be done in polynomial time. To prove
that VOP is NP-complete, we show that the Traveling

8

Salesman Problem6 (TSP) is polynomial-time reducible
to the sorting problem (TSP ≤P sorting problem). Let
〈G(V,E), d, c〉 be an instance of TSP. We construct an
instance of VOP as follows. We form the set of vectors
W by adding a vector wi for each vi ∈ V and define
the cost function sim as sim(wi, wj) = sim(wj , wi) =
d(vi, vj). Then, the instance of VOP is 〈W, sim, c〉,
which can be created easily in polynomial time. We
now show that there exists a Hamiltonian cycle with
at least cost c for TSP, if and only if there exists an
ordering with at least cost c for VOP. Suppose that
graph G is a Hamiltonian cycle represented by the
sequence v1, v2, . . . , v|V |, v1 with at least cost c, then
the vector ordering w1, w2, . . . , w|V | has at least cost
c, since sim(wi, wj) = d(vi, vj). Conversely, suppose
that a vector ordering w1, w2, . . . , w|W | has at least
cost c. Then, the cycle represented by the sequence
v1, v2, . . . , v|V |, v1 is a Hamiltonian cycle and has at
least cost c. Thus, we conclude that VOP is NP-
complete.

The problem of finding the optimal ordering ê in
terms of similarity is the maximization problem of
VOP. Since VOP is NP-complete, the optimization
problem is NP-hard. Any algorithm proposed for
solving the TSP problem can be used for finding an
approximate solution of our optimization problem,
if we consider a fully connected graph where each
weighting vector corresponds to a vertex and the
weights of the edges correspond to the similarity of
the weighting vectors. More accurately, the algorithm
must solve the non-metric TSP problem, since the
weights on graph edges do not necessarily satisfy
the triangle inequality. We employ a greedy algo-
rithm that is known as nearest neighbor algorithm for
TSP [8] to obtain an ordering of the set W with low
computational overhead. We select as first weighting
vector w1 the most similar vector to the diagonal
vector of the space. Then, each time, the most similar
weighting vector wi+1 to the previous vector wi is
selected.

We employ the cosine similarity as the similarity
function sim(wi, wj) between two vectors. Notice that
this sorting of the weighting vectors takes place in
a preprocessing phase, since it is independent of the
query point. Thus, W is stored sorted and it is given
as input to RTA.

5.3 RTA Example

Consider a dataset S consisting of the points pi,
a dataset W = {w1, w2, w3} with w1 = [0.4, 0.6],
w2 = [0.6, 0.4], and w3 = [0.8, 0.2], as well as the query
point q, depicted in Fig. 6. Let us assume that k=2 and
the first examined weighting vector is w1. Then, RTA
evaluates a top-2 query (TOP2(w1)) and retrieves the

6. Given a complete graph G = (V, E), a cost function d(vi, vj),
and a nonnegative integer c, check whether G has a Hamiltonian
cycle with cost at least c.

1

1

2 3 4 5 6 7 8 9 10

2
3
4
5
6
7
8
9
10

x

y

p
1

p
9

p
2

p
4

p
7

p
8

p
10

p
3

p
6

p
5

q

H
w1
(p
1
)

query point

l
w1
(p
1
)

(a) Query evaluation of w1.

1

1

2 3 4 5 6 7 8 9 10

2
3
4
5
6
7
8
9
10

x

y

p
1

p
9

p
2

p
4

p
7

p
8

p
10

p
3

p
6

p
5

q

l
w3
(p
1
)

l
w2
(p
1
)

(b) Processing w2 and w3.

Fig. 6. Example of bichromatic algorithm (RTA).

data points p1 and p2 that are placed in the buffer
{p2, p1}. As depicted in Fig. 6(a), points p1 and p2 are
enclosed in the query space Hw1

(p1) (depicted as gray
triangle). Since q is not enclosed in Hw1

(p1), at least
two data points have a better score than q and w1 does
not belong to the bRTOP2(q). This is detected by RTA
in line 6, where the scoring value fwi

(q) is compared
to the threshold.

In the next step (Fig. 6(b)), w2 is examined and
the threshold is set based on the query line lw2

(p1).
Notice that the threshold is set equal to the maximum
scoring value of points p1 and p2 in the buffer. Since q
has a higher scoring value fw2

(q) than the threshold,
the weighting vector w2 is discarded without further
processing. As depicted in Fig. 6(b), Hw2

(p1) contains
at least 2 data points (in this example: {p1,p2,p3}), and
this verifies that w2 can be safely discarded.

When the next vector w3 is considered, the thresh-
old is set based on point p1, which has the highest
score for w3 among the data points in the buffer.
Then, q is enclosed in Hw3

(p1), therefore the result
set TOP2(w3) has to be retrieved, and the buffer now
contains {p3, p2}. The score value of q is better than
the score value of p2, which is the top-2 data point for
this query, so w3 is added to the reverse top-2 result
set of q. Then, RTA terminates and returns w3 as the
result of bRTOP2(q).

5.4 Incremental Threshold Refinement

In principle, RTA is independent of the algorithm
used for the underlying top-k evaluation. Neverthe-
less, if the top-k algorithm is incremental (as in the
case of the branch-and-bound algorithm that uses
an R-tree), then RTA can be adapted, so that the
threshold is refined after each retrieved data object.
Instead of retrieving the entire top-k result set and
updating the buffer afterwards (line 7), RTA may
retrieve incrementally the k data objects. Each time
a data object is retrieved, it is added to the buffer
by keeping the k objects with the lowest scores. The
threshold is updated and RTA tests if the weighting
vector wi can be discarded, before retrieving the next
result. Therefore, fewer than k retrieved data objects
may suffice to discard wi.

9

1

1

2 3 4 5 6 7 8 9 10

2
3
4
5
6
7
8
9
10

x

y

p
1

p
2

p
4

p
7

p
8

p
10

p
3

CU
i

p
5

CL
i

C
i

(a) Grid partitioning.

1

1

2 3 4 5 6 7 8 9 10

2
3
4
5
6
7
8
9
10

x

y

C
i
L

q

w
z

C
i
U

(b) Cell example.

Fig. 7. Example of grid-based algorithm.

The incremental refinement of the threshold may
require fewer than k retrieved data objects per top-
k evaluation to discard a weighting vector. On the
other hand, when this occurs, fewer than k points in
the buffer are updated, and the threshold for the next
weighting vector is less accurate. This may cause a
top-k evaluation for the next weighting vector, that
could be avoided if all the k elements were retrieved.
We study this effect in our experimental evaluation.

6 MATERIALIZED RTOPK VIEWS

In this section, we present an indexing structure
(RTOP -Grid) based on space partitioning, which ma-
terializes reverse top-k views for efficient processing
of bichromatic RTOPk queries. First, we define the in-
dexing structure and present the properties of RTOP-
Grid that improve the performance of RTOPk queries.
Afterwards, we present the RTOPk algorithm that
uses the RTOP-Grid and the construction algorithm
of RTOP-Grid that takes into account the gain in
computational cost during query processing. Finally,
we generalize our approach for arbitrary k values and
discuss updates.

6.1 Definitions and Properties

Let us assume a grid-based space partitioning of the
data space. The grid consists of disjoint data space
partitions, also called cells (Fig. 7(a)). Each cell Ci

is defined by its lower left corner CL
i and upper right

corner CU
i . Given a cell Ci and a value k, a reverse

top-k query for each corner CL
i and CU

i is evalu-
ated and the result set is stored. More particularly,
each grid corner is considered as a query point and
the query is evaluated (using Algorithm 2) against
the dataset S, ignoring the remaining grid corners.
The resulting weighting vectors wz are maintained
in a list associated with the corresponding corner,
for example for the lower left corner CL

i we define
as LL

i = {wz ∈ bRTOPk(CL
i)}. Analogously, LU

i is
defined. Henceforth, we refer to the lists of weighting
vectors of a cell as materialized views.

During query processing we exploit the material-
ized views of the cells, in order to restrict the number

Algorithm 3 GRTA: Grid-based RTOPk Algorithm.

1: Input: S, q, k
2: Output: bRTOPk(q)
3: W ′ ← ∅, W ′′ ← ∅, Wcand ← ∅
4: Find cell Ci that encloses q
5: for (∀wz ∈ LL

i) do
6: if (wz ∈ LU

i) then
7: W ′ ←W ′ ∪ {wz}
8: else
9: Wcand ←Wcand ∪ {wz}

10: end if
11: end for
12: W ′′ ← RTA(S,Wcand,q,k)
13: return {W ′ ∪W ′′}

of candidate weighting vectors that need to be exam-
ined by RTA algorithm. Given a query point q, the cell
Ci which encloses query point q is determined. Based
on the following theorem the materialized views can
be used for restricting the computational cost of the
RTOPk query.

Theorem 2: Given a query point q and a cell Ci that
encloses q, it holds that:

(1) If a weighting vector w ∈ W does not exist in
the materialized view w /∈ LL

i , then w cannot be in
the reverse top-k result set of q: w /∈ bRTOPk(q).

(2) If a weighting vector w ∈ W belongs to the
materialized view w ∈ LU

i , then w is in the reverse
top-k result set of q: w ∈ bRTOPk(q).

Proof: It holds that CL
i [i] ≤ q[i] ≤ CU

i [i] for 1 ≤ i ≤
d. Thus, for any w ∈ W it holds that fw(CL

i) ≤ fw(q) ≤
fw(CU

i) due to the monotonicity of fw. Therefore, if
w /∈ LL

i then w /∈ bRTOPk(q), whereas if w ∈ LU
i then

w ∈ bRTOPk(q).
As an example, in Fig. 7(b), for any weighting

vector wz , the query space Hwz
(CU

i) contains the
query space Hwz

(q), which in turn contains the query
space Hwz

(CL
i). If wz /∈ LL

i , then the query space
Hwz

(CL
i) contains more than k data points, which

means that Hwz
(q) contains also more than k data

points (q /∈ TOPk(wz)). On the other hand, if wz ∈ LU
i

then fewer than k data points exist in the query space
Hwz

(CU
i). Therefore, since q is enclosed in Ci, then it

is also in the top-k result, independently of q’s exact
position in the cell. Notice that a weighting vector wz

that belongs to LU
i , also belongs to LL

i .
Only for weighting vectors wz that are in LL

i but
not in LU

i we need to examine if q belongs to the
TOPk(wz) result set. Essentially, this restricts the in-
put of Algorithm 2 to weighting vectors only from the
set LL

i − LU
i , rather than W .

6.2 Grid-based RTOP k Algorithm (GRTA)

Algorithm 3 formally describes the evaluation of
an RTOPk query using the grid-based materialized
views. Initially, the cell Ci that encloses q is deter-
mined (line 4). Then, each weighting vector wz ∈ LL

i

is further examined (line 5). If wz belongs also to LU
i

10

(line 6), then based on Theorem 2 we are certain that
wz belongs to the bRTOPk(q) result set and wz is
added to list W ′ (line 7). If wz does not belong to
LU

i , then wz is added (line 9) to the set of candidate
weighting vectors Wcand that need to be evaluated.
Finally, we invoke Algorithm 2 on the set of candidate
weighting vectors Wcand (line 12) and some of them
are returned as results denoted as W ′′. The weighting
vectors that belong to the union of W ′ and W ′′

constitute the results of the GRTA algorithm (line 13).
An important improvement of the grid-based ma-

terialization compared to the RTA algorithm is that
some weighting vectors are added to the result set
without evaluating the top-k query. Furthermore, the
number of weighting vectors that need to be ex-
amined in order to retrieve the RTOPk result set is
restricted, since Algorithm 2 takes as input a limited
set of weighting vectors Wcand, instead of the entire
set W . In particular, the upper bound of top-k eval-
uations for different weighting vectors is |LL

i | − |LU
i |.

Of course, RTA reduces even more this number, by
discarding weighting vectors based on already com-
puted results. The exact savings in terms of discarded
weighting vectors also depend on the construction
algorithm and the quality of the resulting grid, as will
be shown presently.

6.3 RTOP-Grid Construction

In this section, we discuss the construction algorithm
of RTOP-Grid. In our approach, the grid-based space
partitioning occurs recursively, starting by a single cell
that covers the entire universe. We take into consider-
ation three different subproblems. First, we develop
a cost-based heuristic for deciding which cell Ci to
split. Secondly, we accomplish efficient computation
of the views LL

i and LU
i , by using a results sharing

approach. Finally, we propose different strategies for
establishing the stopping condition of the cell division
process.

Given a cell Ci and a query point q enclosed in Ci,
the performance of RTOPk query depends mainly on
the number of evaluated top-k queries, which in turn
depends on the number of weighting vectors in the
views LL

i and LU
i . Therefore, it is very important that

the splitting strategy of the construction algorithm
splits first the most costly cells, i.e., the cells that may
lead to many top-k evaluations. We define the cost
for a cell Ci as the probability that a query point is
enclosed in a cell multiplied by the number of top-k
query evaluations necessary for processing the query
in Ci. Assume that f(q[1], q[2], ..., q[d]) ≡ f(q) denotes
the density function describing the distribution of the
d variables corresponding to the dimensions of the
query points. Then, the expected cost of a cell Ci can
be estimated as:

COSTCi
= (|LL

i | − |LU
i |)

∫

Ci

f(q) (1)

Algorithm 4 Construction of RTOP-Grid.

1: Input: S, W , k , Limit
2: Output: RTOP-Grid
3: Create cell C0 that covers the universe
4: LL

0 ← RTA(S,W ,CL
0 ,k)

5: LU
0 ← RTA(S,W ,CU

0 ,k)
6: RES ← {C0}
7: cntCells← 1
8: while (cntCells < Limit) do
9: Find cell Ci with maximum COSTCi

10: Split Ci into C1 and C2 based on dj

11: LL
1 ← LL

i

12: LU
1 ← GRTA(S,CU

1 ,k)
13: LL

2 ← GRTA(S,CL
2 ,k)

14: LU
2 ← LU

i

15: RES ← RES − {Ci}
16: RES ← RES ∪ {C1, C2}
17: cntCells← cntCells + 1
18: end while
19: return RES

In the case of uniform query distribution, the integral
of Equation 1 can be replaced by the fraction of the
volume of the space D covered by the cell (normalized

volume V (Ci)
VD

).
Given a RTOP-Grid index, we define the average

number of top-k query evaluations that are necessary
for processing a reverse top-k query as a quality
measure of RTOP-Grid, which can be expressed as the
sum of the costs of all cells:

COSTRTOP−Grid =
∑

∀i

COSTCi
(2)

The cost function implies that the cost of a par-
ticular cell adds up to the total cost of the grid,
only if a query point is actually enclosed in the cell.
Equation 2 is the average cost of processing a reverse
top-k query, in terms of top-k evaluations for a given
RTOP-Grid, because it contains the probability that a
query is enclosed in a cell. Furthermore, the estimated
cost is an upper bound of the actual cost, since RTA
needs even fewer top-k evaluations than |LL

i | − |LU
i |.

The splitting employed in the RTOP-Grid construction
algorithm aims at minimizing the aforementioned cost
function and picks in each iteration the cell with the
maximum COSTCi

value.
Algorithm 4 describes the construction of RTOP-

Grid. Assuming initially a single cell C0 covering the
entire universe (line 3), the algorithm starts by com-
puting the materialized views of the lower and upper
corner of the universe (lines 4,5). In order to process
the RTOPk query for each cell’s corners efficiently,
the RTA algorithm is employed. In each iteration, the
algorithm picks a cell Ci to be split, which is the
cell Ci with the maximum COSTCi

, according to our
splitting strategy (line 9). Then, two new cells C1 and
C2 are created (line 10) by selecting a dimension in a
round robin fashion, which is used to divide the cell
in two parts. Consequently, the materialized views of

11

the new cells C1 and C2 are computed. Our algorithm
employs result sharing in two ways. First, it is obvious
that LL

1 and LU
2 equals to LL

i and LU
i respectively

(lines 11,14), and these materialized views do not have
to be recomputed. Secondly, whenever a reverse top-
k query for each cell’s corners needs to be computed,
GRTA is employed (lines 12,13) on the currently con-
structed RTOP-Grid. Therefore, the algorithm takes
into account the views of the existing cells to restrict
the weighting vectors that need to be examined. Then,
cell Ci is removed from the RTOP-Grid, whereas cells
C1 and C2 that cover the removed cell are added
(lines 15,16). The algorithm continues to iterate, until
the stopping condition that ceases splitting of cells is
satisfied (line 8).

As regards the stopping condition, two different
strategies are used, each controlling the cost of a
different parameter, namely storage requirements and
query processing performance. Hence, two different
strategies are employed:

• Space-bounded: In order to restrict the construction
and storage cost, the algorithm stops when a
specific number of grid cells (given as input) are
created. Algorithm 4 describes this strategy (line
8).

• Guaranteed cost: This strategy focuses on query
processing cost, rather than construction cost, and
aims at setting a bound on the average number
of required top-k evaluations. Cells are split as
long as the quality of the RTOP-Grid, has not
reached the bound (given as input). The quality
is measured by means of Equation 2. Therefore,
the condition of Algorithm 4 (line 8) is modified
as follows: COSTRTOP−Grid>Limit.

In our experimental evaluation, we also examine a
straightforward approach, namely UNIFORM, where
the algorithm decides to split the cell that has the
largest volume, without using the cost function. The
stopping condition follows the space-bounded strat-
egy, i.e., splitting stops when a specified number of
cells are created.

6.4 Supporting Arbitrary k Values

In this section, we generalize our approach to support
reverse top-k queries for arbitrary values of k, using
a common RTOP-Grid. Given an upper limit Kmax,
the RTOP-Grid is constructed for Kmax and additional
information is stored that enables processing queries
for any k value (k ≤ Kmax). For each weighting vector
wz , the rank of the cell corner, i.e., the minimum
k for which the corner is in the top-k result set of
wz , is additionally maintained. Thus, the material-
ized view can be described as LL

i = {(wz, k
L
z)} and

LU
i = {(wz, k

U
z)}.

Algorithm 3 can be adjusted to process reverse
top-k queries over a grid constructed for arbitrary
k ≤ Kmax. First, the cell Ci that encloses q is

determined. Then, the weighting vectors that are
contained in LL

i are examined, while weighting
vectors that are not in LL

i cannot contribute to the
reverse top-k result set of q. For any wz ∈ LL

i , the
following cases are distinguished (the following code
replaces lines 6-10 of Algorithm 3):

IF (kL
z ≤ k) THEN

IF (wz ∈ LU
i and kU

z ≤ k)

THEN

W ′ ←W ′ ∪ {wz}

ELSE

Wcand ←Wcand ∪ {wz}

6.5 Updates

Updates that occur either in W or S affect the ma-
terialized RTOPk views, therefore they should be
supported efficiently. In case of insertion of a new
weighting vector wins, we need to progressively ex-
amine the corners of the grid, starting from the origin
of the data space. If a corner CL

i (CU
i) does not qualify

as top-k object for wins, then we can safely discard all
corners dominated by CL

i (CU
i). Deletion of an existing

weighting vector wdel is simple, as it requires removal
of wdel from the lists of any corner of the grid.

Insertion of a data point pins is more costly, since
only grid corners that dominate pins are discarded.
For the remaining corners, we cannot avoid com-
puting the reverse top-k query. However, GRTA can
be used and only weighting vectors that belong to
the materialized views of the cell corner have to be
evaluated, since no weighting vectors can be added,
but only some of them may be removed from the
materialized view. Similarly a data point pdel that
is removed from the dataset probably influences all
non-dominating cell corners, therefore we need to
recompute the materialized views for them, since new
weighting vectors may have to be added.

7 EXPERIMENTAL EVALUATION

In this section, we present an extensive experimental
evaluation of reverse top-k queries. All algorithms are
implemented in Java and the experiments run on a
3GHz Dual Core AMD processor equipped with 2GB
RAM. The block size is 8KB.

As far as the dataset S is concerned, both real
and synthetic data collections, namely uniform (UN),
correlated (CO) and anticorrelated (AC), are used. For
the uniform dataset, all attribute values are gener-
ated independently using a uniform distribution. The
correlated and anticorrelated datasets are generated
as described in [9]. We also use two real datasets:
NBA (17265 tuples, d=5) and HOUSE (127930 tuples,
d=6) [3]. For the dataset W , two different data dis-
tributions are examined, namely uniform (UN) and
clustered (CL). For the clustered dataset W , first CW

12

 10

 100

 1000

 10000

 100000

 2 3 4 5

T
im

e
(m

se
c)

Dimensionality (d)

UN
AC
CO

(a) Average time.

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 2 3 4 5

I/O
s

Dimensionality (d)

UN
AC
CO

(b) I/Os.

 1

 10

 100

 1000

 10000

 100000

 1e+006

 2 3 4 5

#T
op

-k
 E

va
lu

at
io

ns

Dimensionality (d)

UN
AC
CO

(c) Number of top-k evaluations.

Fig. 8. Performance of RTA for varying d [naive (outer bar) vs. RTA (inner bar)].

 10

 100

 1000

 10000

 100000

 2 3 4 5

T
im

e
(m

se
c)

Dimensionality (d)

UN
AC
CO

(a) Average time.

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 2 3 4 5

I/O
s

Dimensionality (d)

UN
AC
CO

(b) I/Os.

 1

 10

 100

 1000

 10000

 100000

 1e+006

 2 3 4 5

#T
op

-k
 E

va
lu

at
io

ns

Dimensionality (d)

UN
AC
CO

(c) Number of top-k evaluations.

Fig. 9. Performance of RTA for varying d for k-skyband queries [naive (outer bar) vs. RTA (inner bar)].

cluster centroids that belong to the (d-1)-dimensional
hyperplane defined by

∑

wi = 1 are selected ran-
domly. Then, each coordinate is generated on the
(d-1)-dimensional hyperplane by following a normal
distribution on each axis with variance σ2

W , and a
mean equal to the corresponding coordinate of the
centroid.

We evaluate the performance of RTA against an
alternative technique (referred as naive) that evaluates
a top-k query for each weight in the dataset W .
In particular, both for RTA and naive, the dataset
S is indexed by an R-tree and top-k processing is
performed using a state-of-the-art branch-and-bound
algorithm. Our metrics include: a) the time (wall-
clock time), b) the I/Os, and c) the number of top-k
evaluations required by each algorithm. We present
average values over the 1000 queries in all cases.
Notice that we do not measure the I/Os that occur
by reading W , since this cost is the same for every
method.

7.1 Performance Evaluation of RTA

In Fig. 8, we study the behavior of RTA for increasing
dimensionality d, for various distributions (UN, AC,
CO) of dataset S and uniform weights W . We use
|S|=10K, |W |=10K, top-k=10 and 1000 random queries
that follow the data distribution. Notice that the y-axis
is in logarithmic scale. In the bar charts, each of the
three bars (for a specific dimensionality) represents
a dataset: UN, AC, and CO respectively. The total
length of the bar represents the performance of naive,
while the inner bar depicts the performance of RTA.
Regarding time, RTA is 2 orders of magnitude better

than naive, in all examined data distributions. In
terms of I/Os, again RTA outperforms naive by 1
to 3 orders of magnitude, while larger savings are
obtained for datasets UN and CO. The reason behind
RTA’s superiority is clearly demonstrated in Fig. 8(c),
where the number of top-k evaluations necessary for
computing an RTOPk query is shown. The threshold
employed by RTA reduces significantly the number
of top-k evaluations, saving around 1.5 to 3 orders
of magnitude compared to naive. Notice that naive
requires |W | (=10K) top-k evaluations in all cases.

An interesting observation is that only a small
percentage (around 2%) of the queries actually return
non-empty result sets. Since the queries are generated
following the data distribution, many queries are not
in the top-k result for any weighting vector. Reverse
top-k queries with empty result sets are also very in-
formative for a product manufacturer, since they indi-
cate that the particular product is not popular for any
customer, compared to their competitors’ products.
On the other hand, RTA processes RTOPk queries
that have a small or empty result set efficiently by
often requiring only one top-k evaluation, because the
threshold employed eliminates candidate weighting
vectors that do not belong to the result set. In contrast,
naive does not have this ability and always com-
putes |W | top-k queries. In order to generate a more
challenging query workload for RTA, we increase the
probability that a query point belongs to a top-k
result, by selecting random query points from the k-
skyband7 of the dataset. Obviously, these query points

7. A k-skyband query returns the set of points which are domi-
nated by at most k-1 other points.

13

are more likely to produce non-empty reverse top-k
results. This query workload corresponds to queries
about products that seem popular to customers, and
manufacturers are expected to pose such queries with
high probability.

Fig. 9 depicts the results obtained by using k-
skyband queries for the same experimental setup
depicted in Fig. 8. Although we witness a small
deterioration in the results of RTA, our algorithm con-
sistently outperforms naive by 1 to 2 orders of mag-
nitude. Some interesting observations can be made
by studying Fig. 9(c). First, we notice that the cor-
related dataset requires more top-k evaluations. The
reason is that the k-skyband of a correlated dataset
contains few points that are close to the origin of the
data space, and therefore such points are in the top-
k for many weighting vectors. Second, we observe
a decreasing tendency as dimensionality increases,
which seems counterintuitive at first. However, this is
because again the cardinality of bRTOPk(q) decreases
as the dimensionality increases. For the rest of our
experiments, we use k-skyband queries and we do not
show the results of naive, as it performs consistently
worse than RTA by few orders of magnitude.

Thereafter, we perform a scalability study of RTA in
Fig. 10. We use as metric the number of top-k evalua-
tions, as it is the dominant factor for the performance
of RTA. First, we increase the cardinality of W using
different data distributions of S (Fig. 10(a)). We fix the
remaining parameters to |S|=10K, d=5 and top-k=10.
We observe that RTA is highly efficient, especially
for the costly CO dataset. For instance, for |W |=5K,
RTA needs on average 544 top-k evaluations, while
the average mandatory cost is 459 (this is the number
of queries that cannot be avoided, also equal to the
average size of the result set). Thus, RTA needs only
544 (10.88%) out of 5000 query evaluations (100%),
which is just marginally more than the mandatory 459
(9.18%), and therefore RTA saves 89.12% of the cost.

In Fig. 10(b), we set |W |=10K and gradually increase
the cardinality of S to 100K. For the CO dataset, we
observe that fewer top-k evaluations are necessary
with increasing |S|. The main reason is that the data
space has more data points, thus becomes denser,
and k-skyband queries lead to result sets with fewer
weighting vectors, hence smaller processing cost. In
Fig. 10(c), we use |S|=10K and |W |=10K, and study
how the value of k affects the performance of RTA.
It is clear that RTA is highly efficient for UN and
AC datasets, and its performance is affected only
for CO. Higher values of k increase the probability
that a query point belongs to top-k for some weight-
ing vector, and therefore the average cardinality of
bRTOPk(q) increases, leading to more top-k evalua-
tions.

We also study the performance of RTA for a clus-
tered dataset W , using CW =5 clusters of weighting
vectors. A clustered dataset W simulates the case

where user preferences are not independent, but there
exist some groups of common user preferences. In
this experiment, we use the default setup and vary
the dimensionality. Thus, Fig. 11(a) is analogous and
also comparable to Fig. 9(c) which was for a uniform
dataset W . The results show that, in the case of
clustered dataset W , RTA performs better than for
uniform W for all data distributions, nevertheless
the general trends remain the same as dimensionality
increases. In Fig. 11(b), we assess RTA using the NBA
dataset. The performance of RTA is in accordance with
the case of synthetic data. We try both a uniform and
clustered dataset W and the results show again that
fewer top-k evaluations are required for the clustered
dataset W . In Fig. 11(c), a similar experiment is con-
ducted using the HOUSE dataset.

7.2 Performance Evaluation of RTOP-Grid

In the sequel, we evaluate the performance of RTOP-
Grid in Fig. 12. Unless mentioned explicitly, we use
|S|=10K, |W |=10K, d=5 and top-k=10. First, we pro-
vide a comparison of the RTOP-Grid space-bounded
strategy to the UNIFORM approach and to RTA
(Fig. 12(a)), for increasing number of cells. RTOP-
Grid performs consistently better than UNIFORM,
demonstrating the advantages of using the cost-based
splitting strategy, instead of splitting the cell with
the maximum volume. RTOP-Grid also provides an
improvement to RTA, in terms of the required number
of top-k evaluations as expected, and in this setup
it achieves a reduction of top-k evaluations between
18.5% (100 cells) and 26.3% (1000 cells).

In Fig. 12(b), we test the RTOP-Grid guaranteed
cost strategy versus RTA, with increasing cost bound,
for top-k={10, 20}. The chart shows that RTOP-Grid
reduces the number of top-k evaluations compared
to RTA by 30%, when the cost bound is set to 100.
As expected, when the bound imposed on cost is
smaller, RTOP-Grid improves RTA more. Notice that
in most cases the actual number of top-k evaluations
is smaller than the bound set on average cost. This
is because the average cost is estimated based on the
number of weighting vectors in the views, and it does
not take into account the additional savings in top-k
query evaluations caused by the threshold mechanism
of RTA, employed also by RTOP-Grid. In Fig. 12(c),
we show the number of cells created by RTOP-Grid
for the same experiment. Clearly, the number of cells
increases rapidly when the cost bound is set too low.
However, similar improvements can be obtained by
relaxing the cost bound, i.e., notice that setting the
bound to 200 achieves similar performance to the
bound of 100, using much fewer cells. Furthermore,
we study the scalability of RTOP-Grid for varying val-
ues of |W |, |S| and top-k. Fig. 13(a) shows the results
obtained by increasing |W |. RTOP-Grid consistently
outperforms UNIFORM and improves RTA. Then, in

14

 0

 200

 400

 600

 800

 1000

 1200

 5000 10000 15000

#T
op

-k
 E

va
lu

at
io

ns

Cardinality |W|

RTA-UN
RTA-AC
RTA-CO

(a) Scalability with |W |.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 10000 50000 100000

#T
op

-k
 E

va
lu

at
io

ns

Cardinality |S|

RTA-UN
RTA-AC
RTA-CO

(b) Scalability with |S|.

 0

 500

 1000

 1500

 2000

 10 20 30 40 50

#T
op

-k
 E

va
lu

at
io

ns

top-k

RTA-UN
RTA-AC
RTA-CO

(c) Scalability with top-k.

Fig. 10. Scalability study of RTA.

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 3 4 5

#T
op

-k
 E

va
lu

at
io

ns

Dimensionality (d)

RTA-UN
RTA-AC
RTA-CO

(a) Clustered dataset W .

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50

#T
op

-k
 E

va
lu

at
io

ns

top-k

RTA/UN
RTA/CL

(b) Real dataset (NBA).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 20 30 40 50

#T
op

-k
 E

va
lu

at
io

ns

top-k

RTA/UN
RTA/CL

(c) Real dataset (HOUSE).

Fig. 11. Performance of RTA for clustered weights W and for real data (NBA and HOUSE).

 0

 50

 100

 150

 200

 100 500 1000

#T
op

-k
 E

va
lu

at
io

ns

Number of Cells

RTOP-Grid
UNIFORM

RTA

(a) Space-bounded strategy.

 0

 50

 100

 150

 200

 250

 300

 100 200 300 400 500

T

op
-k

 E
va

lu
at

io
ns

Cost bound

RTOP-Grid, top-10
RTA, top-10

RTOP-Grid, top-20
RTA, top-20

(b) Guaranteed cost strategy.

 0

 2000

 4000

 6000

 8000

 10000

 100 200 300 400 500

N
um

be
r

of
 C

on
st

ru
ct

ed
 C

el
ls

Cost bound

top-10
top-20

(c) Number of constructed cells.

Fig. 12. Performance evaluation of the strategies of RTOP-Grid.

Fig. 13(b), we set |W |=10K and increase |S|. Once
again, the gain of RTOP-Grid over RTA is sustained
in all setups. Finally, in Fig. 13(c), the chart shows
how the cost is affected by increasing k. RTOP-Grid
performs better than RTA and UNIFORM for all k
values and the benefit increases with k.

7.3 Monochromatic vs. Bichromatic Algorithm

In Fig. 14, we set d=2 and study the comparative per-
formance of RTA against the monochromatic RTOPk
algorithm. To this end, we apply the monochromatic
algorithm to identify the partitions of W that belong
to the solution set, and then retrieve the subset of
weighting vectors W that belong to these partitions.
The data distribution for both S and W is uniform,
denoted as UN/UN. The default values used are
|S|=10K, |W |=10K, and top-k=10.

In Fig. 14(a), we measure the time required by
each algorithm employing a logarithmic scale. We
observe that RTA scales better with |S|, compared to
the monochromatic algorithm. In Fig. 14(b), we vary

the cardinality of W , from 5K to 15K vectors. It turns
out that the monochromatic reverse top-k algorithm
scales better with |W |, because it is immune to the
actual cardinality of W , as it only needs to identify
the partitions of the space that provide solutions to
the query. The number of weighting vectors does
not affect significantly the time required to identify
the partitions. However, RTA needs to examine (and
potentially process) more top-k queries as the cardi-
nality of W increases, therefore its total time increases.
Similarly, in Fig. 14(c), RTA requires more time to
compute the result for increasing values of top-k.
Again, the monochromatic reverse top-k algorithm is
practically unaffected by the increased values of k.

All in all, RTA is more sensitive to higher values
of |W | and top-k, thus the monochromatic RTOPk al-
gorithm scales better. In contrast, the monochromatic
algorithm is sensitive to the cardinality of S, therefore
RTA performs better for increased values of |S|.

15

 50

 100

 150

 200

 5000 10000 15000

#T
op

-k
 E

va
lu

at
io

ns

Cardinality |W|

RTOP-Grid
UNIFORM

RTA

(a) Scalability with |W |.

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 10000 50000 100000

#T
op

-k
 E

va
lu

at
io

ns

Cardinality |S|

RTOP-Grid
UNIFORM

RTA

(b) Scalability with |S|.

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50

#T
op

-k
 E

va
lu

at
io

ns

top-k

RTOP-Grid
UNIFORM

RTA

(c) Scalability with top-k.

Fig. 13. Scalability study of RTOP-Grid for the space-bounded strategy.

 1

 10

 100

 1000

 10000

 100000

 10000 50000 100000

T
im

e
(m

se
c)

Cardinality |S|

MONO-UN/UN
RTA-UN/UN

(a) Scalability with |S|.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5000 10000 15000

T
im

e
(m

se
c)

Cardinality |W|

MONO-UN/UN
RTA-UN/UN

(b) Scalability with |W |.

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50

T
im

e
(m

se
c)

top-k

MONO-UN/UN
RTA-UN/UN

(c) Scalability with top-k.

Fig. 14. Performance of monochromatic algorithm vs. RTA.

 2

 4

 6

 8

 10

 12

 2 3 4 5

ev
al

ua
te

d
k

Dimensionality (d)

RTA
INC

(a) Evaluated value of k.

 1

 20000

 40000

 60000

 80000

 2 3 4 5

#T
op

-k
 E

va
lu

at
io

ns

Dimensionality (d)

RTA
INC

(b) Number of top-k evaluations.

Fig. 15. Incremental threshold refinement vs. RTA.

 1

 10

 100

 1000

 10000

 100000

 2 3 4 5

#T
op

-k
 E

va
lu

at
io

ns

Dimensionality (d)

RTA-NoSort/UN
RTA-Simple/UN

RTA/UN

Fig. 16. Effect of sorting W .

7.4 RTA with Incremental Threshold Refinement

In the next experiment (Fig. 15), we study the vari-
ant of RTA algorithm that incrementally refines the
threshold during each top-k evaluation, as discussed
in Section 5.4. We denote this variant of RTA as INC.
We use the default setup of uniform data distribution
for S and W , |S|=10K, |W |=10K, top-k=10 and we
vary the dimensionality from 2 to 5. In Fig. 15(a),
the average value of k used for the top-k queries is
shown. RTA always issues top-k queries with k=10.
In contrast, INC results in retrieving in each top-k
evaluation significantly fewer objects than k. On the
other hand, this leads to an increased number of top-
k query evaluations performed by INC (Fig. 15(b)).
By retrieving fewer than k data objects, the buffer
is partially updated, leading to an inaccurate thresh-
old, which in turn triggers more top-k evaluations.
Concluding, INC requires a higher number of top-k
query evaluations, however retrieving fewer than k
data objects on average.

7.5 Effect of Sorted Weighting Vectors

In Fig. 16, we examine the improvement of the per-
formance of RTA caused by the sorting of W based
on pairwise similarity. We compare RTA against a
version that does not employ sorting (RTA-NoSort)
and accesses the vectors in a random order. In ad-
dition, we test the performance of sorting based on
similarity to a predetermined vector (RTA-Simple),
namely the diagonal vector of the space. We evaluate
all approaches with weighting vectors that follow
a uniform data distribution. The results show that
depending on the dimensionality RTA requires up
to one order of magnitude fewer top-k evaluations
than RTA-NoSort. Furthermore, the performance of
RTA using pairwise similarity is clearly much better
than RTA-Simple, while the latter is only slightly
better than RTA-NoSort. This experiment verifies that
our proposed sorting based on pairwise similarity
is appropriate for the RTA algorithm. Nevertheless,
all variants perform much better than naive, which
evaluates |W |=10K top-k queries.

16

8 RELATED WORK

As reverse top-k queries are inherently related to
top-k query processing, we summarize some repre-
sentative work here. One family of algorithms are
those based on preprocessing techniques. Onion [7]
precomputes and stores the convex hulls of data
points in layers. Then, the evaluation of a linear top-
k query is accomplished by processing the layers
inwards, starting from the outmost hull. Prefer [1]
uses materialized views of top-k result sets, accord-
ing to arbitrary scoring functions. Onion and Pre-
fer are mostly appropriate for static data, due to
the high cost of preprocessing. Efficient maintenance
of materialized views for top-k queries is discussed
in [10]. The robust index [2] is a sequential indexing
approach that improves the performance of Onion [7]
and Prefer [1]. The main idea is that a tuple should
be placed at the deepest layer possible, to reduce
the probability of accessing it at query processing
time, without compromising the correctness of the
result. Later, in [11], the dominant graph is proposed
as a structure that captures dominance relationships
between points. Another family of algorithms focuses
on computing the top-k queries over multiple sources,
where each source provides a ranking of a subset of
attributes only. Fagin et al. [12] introduce TA and NRA
algorithms. Variations of them have been proposed
leading to various threshold-based algorithms [13],
[14], [15], [16].

Reverse nearest neighbor (RNN) queries were orig-
inally proposed in [4]. An RNN query finds the
set of points that have the query point as their
nearest neighbor. Recently, reverse furthest neighbor
queries [17] are introduced, that are similar to RNN
queries. The reverse skyline query [5], [6] identifies
customers that would be interested in a product
based on the dominance of the competitors products.
DADA [18] aims to help manufactures position their
products in the market, based on three types of dom-
inance relationship analysis queries. Creating com-
petitive products has been recently studied in [19].
Nevertheless in these approaches, user preferences
are expressed as data points that represent preferable
products, whereas reverse top-k queries examine user
preferences in terms of weighting vectors. Miah et
al. [20] study a different problem, again from the
perspective of manufacturers. The authors propose
an algorithm that selects the subset of attributes that
increases the visibility of a new product. Finding the
most influential products with reverse top-k queries
has been studied in [21].

9 CONCLUSIONS

In this paper, we introduce the reverse top-k query
which retrieves all weighting vectors for which the
query point belongs to the top-k result set. The pro-
posed query type is important for market analysis

and for estimating the impact of a product based on
the user preferences and the competitors products. We
study two versions of reverse top-k queries, namely
monochromatic and bichromatic. For the monochro-
matic reverse top-k query only a dataset of products
is given, while for the bichromatic reverse top-k a
set of weighting vectors is also available. The exper-
imental evaluation demonstrates the efficiency of the
proposed algorithms.

REFERENCES

[1] V. Hristidis, N. Koudas, and Y. Papakonstantinou, “Prefer: A
system for the efficient execution of multi-parametric ranked
queries,” in SIGMOD, 2001, pp. 259–270.

[2] D. Xin, C. Chen, and J. Han, “Towards robust indexing for
ranked queries,” in VLDB, 2006, pp. 235–246.

[3] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg, “Re-
verse top-k queries,” in ICDE, 2010, pp. 365–376.

[4] F. Korn and S. Muthukrishnan, “Influence sets based on
reverse nearest neighbor queries,” in SIGMOD, 2000, pp. 201–
212.

[5] E. Dellis and B. Seeger, “Efficient computation of reverse
skyline queries,” in VLDB, 2007, pp. 291–302.

[6] X. Lian and L. Chen, “Monochromatic and bichromatic reverse
skyline search over uncertain databases,” in SIGMOD, 2008,
pp. 213–226.

[7] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo,
and J. R. Smith, “The onion technique: Indexing for linear
optimization queries,” in SIGMOD, 2000, pp. 391–402.

[8] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II, “An anal-
ysis of several heuristics for the traveling salesman problem,”
SIAM Journal on Computing, vol. 6, no. 3, pp. 563–581, 1977.

[9] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline
operator.” in ICDE, 2001, pp. 421–430.

[10] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen, “Efficient mainte-
nance of materialized top-k views,” in ICDE, 2003, pp. 189–
200.

[11] L. Zou and L. Chen, “Dominant graph: An efficient indexing
structure to answer top-k queries,” in ICDE, 2008, pp. 536–545.

[12] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algo-
rithms for middleware.” in PODS, 2001, pp. 102–113.

[13] R. Akbarinia, E. Pacitti, and P. Valduriez, “Best position algo-
rithms for top-k queries,” in VLDB, 2007, pp. 495–506.

[14] S. Chaudhuri and L. Gravano, “Evaluating top-k selection
queries.” in VLDB, 1999, pp. 397–410.

[15] U. Güntzer, W.-T. Balke, and W. Kießling, “Optimizing multi-
feature queries for image databases.” in VLDB, 2000, pp. 419–
428.

[16] A. Marian, N. Bruno, and L. Gravano, “Evaluating top-k
queries over web-accessible databases.” ACM Transactions on
Database Systems, vol. 29, no. 2, pp. 319–362, 2004.

[17] B. Yao, F. Li, and P. Kumar, “Reverse furthest neighbors in
spatial databases,” in ICDE, 2009.

[18] C. Li, B. C. Ooi, A. K. H. Tung, and S. Wang, “Dada: a data
cube for dominant relationship analysis,” in SIGMOD, 2006,
pp. 659–670.

[19] Q. Wan, R. C.-W. Wong, I. F. Ilyas, M. T. Özsu, and Y. Peng,
“Creating competitive products,” PVLDB, vol. 2, no. 1, pp.
898–909, 2009.

[20] M. Miah, G. Das, V. Hristidis, and H. Mannila, “Standing out
in a crowd: Selecting attributes for maximum visibility,” in
ICDE, 2008, pp. 356–365.

[21] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis, “Iden-
tifying the Most Influential Data Objects with Reverse top-k
queries,” in PVLDB, vol. 3, no. 1, pp. 364–372, 2010.

	Introduction
	Preliminaries
	Reversing Top-k Queries
	Example of Reverse Top-k Query
	Differences to Existing Query Types

	Monochromatic RTOPk Queries
	Monochromatic RTOPk Query for 2d
	Higher Dimensional Data

	Bichromatic RTOPk Queries
	Threshold-based Algorithm (RTA)
	Sorted Access to Weighting Vectors
	RTA Example
	Incremental Threshold Refinement

	Materialized RTOPk Views
	Definitions and Properties
	Grid-based RTOPk Algorithm (GRTA)
	RTOP-Grid Construction
	Supporting Arbitrary k Values
	Updates

	Experimental Evaluation
	Performance Evaluation of RTA
	Performance Evaluation of RTOP-Grid
	Monochromatic vs. Bichromatic Algorithm
	RTA with Incremental Threshold Refinement
	Effect of Sorted Weighting Vectors

	Related Work
	Conclusions
	References

