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Abstract— Rank-aware query processing has become essential
for many applications that return to the user only the top-k
objects based on the individual user’s preferences. Top-k queries
have been mainly studied from the perspective of the user,
focusing primarily on efficient query processing. In this work,
for the first time, we study top-k queries from the perspective
of the product manufacturer. Given a potential product, which
are the user preferences for which this product is in the top-
k query result set? We identify a novel query type, namely
reverse top-k query, that is essential for manufacturers to assess
the potential market and impact of their products based on
the competition. We formally define reverse top-k queries and
introduce two versions of the query, namely monochromatic and
bichromatic. We first provide a geometric interpretation of the
monochromatic reverse top-k query in the solution space that
helps to understand the reverse top-k query conceptually. Then,
we study in more details the case of bichromatic reverse top-
k query, which is more interesting for practical applications.
Such a query, if computed in a straightforward manner, requires
evaluating a top-k query for each user preference in the database,
which is prohibitively expensive even for moderate datasets. In
this paper, we present an efficient threshold-based algorithm that
eliminates candidate user preferences, without processing the
respective top-k queries. Furthermore, we introduce an indexing
structure based on materialized reverse top-k views in order to
speed up the computation of reverse top-k queries. Materialized
reverse top-k views trade preprocessing cost for query speed up in
a controllable manner. Our experimental evaluation demonstrates
the efficiency of our techniques, which reduce the required
number of top-k computations by 1 to 3 orders of magnitude.

I. I NTRODUCTION

Recently, the support of rank-aware query processing, has
attracted much attention in the database research community.
Top-k queries [1]–[10] retrieve only thek objects that best
match the user preferences, thus avoiding huge and over-
whelming result sets. Nowadays, most applications return to
the user only a limited set of data points that are interesting
for the user, therefore it is very important for a manufacturer
that its products are returned in the highest ranked positions
for as many different user preferences as possible. However,
existing work studies only top-k queries from the perspective
of customers that seek products matching their preferences.
In this paper, we study top-k queries for business analysis,
i.e. from the perspective of manufacturers who are interested
in the impact of their products to customers, compared to
their competitors existing products. The question that arises
is ”given a potential product, which are the user preferences
for which this product is in the top-k query result set?”. To
this end, we proposereverse top-k queries and study two

different versions: monochromatic and bichromatic reverse
top-k queries. In the former, there is no knowledge of user
preferences and a manufacturer aims to estimate the impact
a potential product would have on the market. In the latter,
a dataset with user preferences is given and a reverse top-k
query returns those preferences that rank a potential product
highly. To the best of our knowledge, this is the first work that
addresses this problem.
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Fig. 1. Example of reverse top-k query.

A linear top-k query is defined by assigning a weightw[i]
to each of the attributes, expressing the importance of each
attribute to the user. Without loss of generality, we assumethat
weights are normalized in [0,1] and

∑
wi = 1. This model

is in agreement with the notion of preference [6], [8] and is
widely adopted in related work. In the example of Figure 1,
a database containing information about different cars is
depicted. For each car, the price and the age are recorded and
minimum values on each dimension are preferable. Different
users have different preferences about a potential car and
Figure 1 depicts also such a database of user preferences. For
example, Bob prefers a cheap car, and does not care much
about the age of the car. Therefore, the best choice (top-
1) for Bob is the carp1 which has the minimum score for
the particular weights (namely2.5). On the other hand, Tom
prefers a newer car rather than a cheap car. Nevertheless, for
both Tom and Max the best choice would be carp2.

A reverse top-k query is defined by a given productp and
returns the weighting vectorsw for which p is in the top-k
set. For example in Figure 1, the reverse top-1 result set of
p1 contains the weights(0.9, 0.1) defined by Bob. Notice that
for the carp2, two weighting vectors belong to the reverse
top-1 result set, namely the preferences of Tom and Max. In
fact, all weighting vectors withw[price] in the range of[ 17 , 5
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belong to the reverse top-1 result set ofp2. This segment of
line w[price] + w[age] = 1 corresponds to the result set of
the monochromatic reverse top-1 query (for p=p2), whereas
the set{(0.5, 0.5), (0.2, 0.8)} is the result of the bichromatic
reverse top-1 query for the given dataset of user preferences.

Conceptually, the solution space of reverse top-k queries
is the space defined by the weightsw[price] and w[age].
Monochromatic reverse top-k queries return partitions of the
solution space and are useful for business analysis and more
particularly to estimate the impact of a product when no user
preferences are given, but the distribution of them is known.
In our example, under assumption of uniform distribution of
user preferences, the impact in the market of the potential
productp2 can be estimated as( 5

6 − 1
7 ) × 100% = 69%. On

the other hand, bichromatic reverse top-k queries have even
wider applicability, as they identify users that are interested
in a particular product, given a known set of user preferences.
For instance, the best strategy for a profile-based marketing
service would be to advertise carp1 to Bob and carp2 to
Tom and Max. Notice that an empty result set for a product
(i.e. carp3) indicates that it is not interesting for customers
based on their preferences. In practice, the bichromatic reverse
top-k query can be used in practical applications and is easier
to incorporate into a database management system, whereas
the monochromatic mainly provides a geometric interpretation
and helps to intuitively understand the problem.

Reverse top-k queries differ from reverse nearest neighbor
(RNN) queries [11]. An RNN query retrieves the set of points
having the query point as their nearest neighbor and there
exists a monochromatic and a bichromatic version. In contrast
to RNN queries, the reverse top-k query q finds the distance
functions (in terms of weights) for whichq would qualify
as ak-nearest neighbor of the point positioned at the origin
of the data space. Therefore, existing reverse nearest neighbor
algorithms cannot be applied for reverse top-k queries. Reverse
skyline queries [12] aim at identifying customers that are
interested in a product, based on the dominance relationship.
Nevertheless, user preferences are expressed as points with the
same attributes as the products. In our case, user preferences
are modeled in a more generic way (only in terms of weights)
and they do not need to be uniquely mapped to a point in the
data space.

To summarize, the main contributions of this paper are:

• We introduce a novel query type called reverse top-k
query and present two versions, namely monochromatic
and bichromatic. To the best of our knowledge, this is
the first time that such queries are proposed.

• We analyze the geometrical properties for the two dimen-
sional case of the monochromatic reverse top-k query and
provide an algorithmic solution.

• We present an efficient and progressive threshold-
based algorithm for computing bichromatic reverse top-
k queries, which eagerly discards candidate user prefer-
ences, without the need to evaluate the associated top-k
queries. Our algorithm consistently outperforms the brute
force algorithm by 1 to 3 orders of magnitude.

• We present an indexing structure based on space parti-

tioning, which materializes reverse top-k views, in order
to further improve reverse top-k query processing. The
use of our index bounds the average cost of processing
a bichromatic reverse top-k query in a straightforward
manner.

• We conduct a thorough experimental evaluation that
demonstrates the efficiency of our algorithms.

The rest of this paper is organized as follows: in Section II
we formally define reverse top-k queries after providing the
necessary preliminaries. In Section III, we study the geo-
metrical properties of the two dimensional result set and
propose an algorithm for monochromatic reverse top-k queries.
Thereafter, in Section IV we present an efficient threshold-
based algorithm for processing bichromatic reverse top-k
queries for arbitrary data dimensionality. We introduce an
indexing approach, based on materialized reverse top-k views
in Section V, and discuss construction, usage and maintenance.
The experimental evaluation is presented in Section VI. Then,
Section VII reviews the related work and finally, in Sec-
tion VIII, we conclude and discuss future research directions.

II. PROBLEM STATEMENT

In this section, we present the basics regarding top-k queries
and then we proceed to define our problem statement.

A. Preliminaries

Given a data spaceD defined by a set ofd dimensions
{d1, ..., dd} and a datasetS on D with cardinality |S|, a
point p ∈ S can be represented asp = {p[1], . . . , p[d]}
where p[i] is a value on dimensiondi. We assume that
each dimension represents a numerical scoring attribute and
therefore, the valuesp[i] in any dimensiondi are numerical
non-negative values that evaluate certain features of database
objects. Furthermore, without loss of generality, we assume
that smaller score values are preferable.

Top-k queries are defined based on a scoring functionf that
aggregates the individual scores into an overall scoring value,
that in turn enables the ranking (ordering) of the data points.
The most important and commonly used case of scoring
functions is the weighted sum function, also called linear.Each
dimensiondi has an associated query-dependent weightw[i]
indicating di’s relative importance for the query. The aggre-
gated scorefw(p) for data pointp is defined as a weighted
sum of the individual scores:fw(p) =

∑d

i=1 w[i]×p[i], where
w[i] ≥ 0 (1 ≤ i ≤ d) and∃j such thatw[j] > 0. The linear
weighting function is increasingly monotone and it conveys
the meaning that whenever the score of all dimensions of the
point p is at least as good as another pointp′, then we expect
that the overall score ofp is at least as good asp′. Notice that
assigning a zero weight to some dimensions leads to a top-k
query referring only to a subset of the available features.

The result of a top-k query is a ranked list of thek objects
with the best scoring valuesfw. The weights indicate the user
preferences and influence the ordering of the data objects and
therefore the top-k result set. Consider for example the dataset
depicted in Figure 2. By assigning a high weight to dimension
x, point p1 is the top-1 object, while if a low weight is used,
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Fig. 2. Top-k query.

point p3 becomes the top-1 object. A linear top-k query takes
two parameters and can be expressed asTOPk(w), wherew
is a d-dimensional vectorw = {w[1], ...w[d]} that represents
preference values.

Definition (Top-k query): Given a positive integerk and a
user-defined weighting vectorw, the result setTOPk(w) of
the top-k query, is a set of points such thatTOPk(w) ⊆ S,
|TOPk(w)| = k and ∀p1, p2 : p1 ∈ TOPk(w), p2 ∈ S −
TOPk(w) it holds thatfw(p1) ≤ fw(p2).

In the Euclidean space a linear top-k query can be repre-
sented by a vectorw. As discussed in [13] the magnitude of
the query vector does not influence the query result, as long
as the direction remains the same, i.e. representing the relative
importance between different dimensions. Therefore, we make
the assumption that

∑d

i=1 w[i] = 1.
There is a one-to-one correspondence between any weight-

ing vectorw and a hyperplaneℓ that crosses a pointp. In a d-
dimensional space, we call the (d-1)-dimensional hyperplane,
which is perpendicular to vectorw and contains a pointp as
the query plane ofw crossingp, and denote it asℓw(p). All
points lying on the query planeℓw(p), have the same scoring
value equal to the scorefw(p) of point p. Figure 2 depicts an
example, where the query plane (equivalent to a query line in
2d) is perpendicular to the weighting vectorw = [0.5, 0.5].
All points pi lying on the query line have a score value
fw(pi) = fw(p2) = 4.5. Furthermore, pointp2 is the top-2
object for the query0.5×x + 0.5× y. The ranking of a point
p based on a weighting vectorw is equal to the number of the
points enclosed in the half-space defined by the query line (or
(d-1)-dimensional query plane) that contains the origin of the
data space. In the rest of the paper, we refer to this half-space
asquery space ofw defined byp and denote it asHw(p).

B. Definition of Reverse Top-k Queries

In this section, we formally define the monochromatic and
the bichromatic reverse top-k query.

Definition (Monochromatic Reverse top-k): Given a pointq
and a positive numberk, as well as a datasetS, the result set
of the monochromatic reverse top-k (mRTOPk(q)) query of
point q is the locus1, i.e. a collection ofd-dimensional points
wi, for which ∃p ∈ TOPk(wi) such thatfwi

(q) ≤ fwi
(p).

Definition (Bichromatic Reverse top-k): Given a pointq and a
positive numberk, as well as two datasetsS andW , whereS

1In mathematics, locus is the set of points satisfying a particular condition,
often forming a curve of some sort.
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Fig. 3. Monochromatic reverse top-k query.

represents data points andW is a data set containing different
weighting vectors, a weighting vectorwi ∈ W belongs to the
bichromatic reverse top-k (bRTOPk(q)) result set ofq, if and
only if ∃p ∈ TOPk(wi) such thatfwi

(q) ≤ fwi
(p).

For the sake of brevity, in the rest of this paper we denote
a query pointq ∈ TOPk(wi), instead of∃p ∈ TOPk(wi)
such thatfwi

(q) ≤ fwi
(p). Consider for example the dataset

depicted in Figure 2. For a query pointq=p2, the weighting
vector w belongs to the reverse top-k, if the query space
Hw(p2) of w defined byp2 (depicted as shadowed triangle)
contains less thank points. The challenge is to find all
the weighting vectorswi that define query spacesHwi

(q)
containing less thank points. For the bichromatic version of
the reverse top-k query, the result set contains a finite number
of weighting vectors, while the monochromatic version aimsto
describe the parts of the solution space that satisfy the query.

III. M ONOCHROMATIC REVERSETOP-K QUERIES

Given a datasetS, a monochromatic reverse top-k query
returns all weighting vectorsw, for which query pointq ∈
TOPk(w). Let us assume thatW denotes the set of all
valid assignments ofw. Figure 3 shows the data and solution
space of a 2d monochromatic reverse top-k query. Since∑d

i=1 w[i] = 1 andw[i] ∈ [0, 1], all valid weighting vectors of
the reverse top-k query form the linew[1]+w[2] = 1 in the 2d
solution space that is defined by the axisw[1] andw[2]. Notice
that it is not possible to enumerate all possible assignments of
w ∈ W , since the number of possible vectorsw is infinite. On
the other hand, the solution spaceW can be split into a finite
set of partitionsWi (

⋃
Wi = W ,

⋂
Wi = ∅), such that query

point q has the same ranking position for all the weighting
vectorsw ∈ Wi. Then, the result set of the monochromatic
reverse top-k is a set of partitionsWi of the solution space
W :

mRTOPk(q) = {Wi : ∃wj ∈ Wi ∧ q ∈ TOPk(wj)}
The main topic of this section is finding the partitions

that form the result set of a monochromatic reverse top-k
query. In the following, we focus on the2-dimensional case.
First, an example is given in order to provide some intuition
about the problem. Then, we provide an algorithm for the
monochromatic reverse top-k query.

A. Interpretation of Solution Space

Consider for example the dataset depicted in Figure 3(a).
Only three pointsp, q and r belong to the top-1 result set
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Fig. 4. Examples ofmRTOPk(q) queries.

for any weighting vector, since these are the only points
that belong to the convex hull [2]. There exists at least one
weighting vectorwi for whichq ∈ TOP1(wi), and therefore at
least one partitionWi ∈ mRTOP1(q). In order to determine
the boundaries of the partitionWi, the line segmentspq and
qr have to be examined.

Let w1 be the weighting vector that is perpendicular to
pq, then it holds thatfw1

(p)=fw1
(q) and thereforep and q

have exactly the same rank for theTOP1(w1). Recall that
the lineℓw(p) that is perpendicular to the weighting vectorw
and crossesp, defines the value of the scoring function and
also the rank of pointp according tow. For weighting vectors
with smaller and larger angles thanw1, the relative order ofp
and q changes. Ifp had a lower rank thanq for vectors with
smaller angle thanw1, then for vectors with larger angle than
w1, pointp has a higher rank. Since the relative order between
p and q changes only once, there exists exactly one partition
Wi, such that for all the weighting vectorsw ∈ Wi it holds
that q ∈ TOP1(w).

The boundaries of the partitionWi are defined by the
weighting vectorsw1, w2 that are perpendicular to the line
segmentspq andqr respectively. All weighting vectorsw for
which the following inequality holds are in the reverse top-1
result set ofq:

λqr

λqr−1 ≤ w[1] ≤ λpq

λpq−1

whereλpq = q[2]−p[2]
q[1]−p[1] and λqr = r[2]−q[2]

r[1]−q[1] are the slopes of
linespq andqr respectively. The above inequalities are derived
by using the properties thatw1 ⊥ pq andw2 ⊥ qr. The result
set of the monochromatic reverse top-1 query mRTOP1(q)
is a segment (partition) of the linew[1] + w[2] = 1 in the 2-
dimensional solution space defined byw[1] andw[2], as shown
in Figure 3(b).

B. Monochromatic Reverse Top-k Algorithm

In our previous example, the result setmRTOP1(q) con-
tains at most one partitionWi of W . However, for a reverse
top-k query withk > 1, the result set may contain more than
one non-adjacent partitionsWi. Consider for example the three
data points in Figure 4(a) and assume we are interested to
compute themRTOPk(q) for k=2. Query pointq is in the top-
2 result set for both weighting vectorsw1 andw3. However,
when weighting vectorw2 is considered, with angle between
w1 andw3, it is obvious thatq no longer belongs to the top-2.
Thus, in this small example, the monochromatic top-k query
would return two non-adjacent partitionsWi.

Algorithm 1 Monochromatic Reverse top-k Algorithm.
1: Input: S, q
2: Output: mRTOPk(q)
3: W ′ ← {∅}, R← {∅}, RES ← {∅}
4: for (∀pi ∈ S) do
5: if (q 6≺ pi and pi 6≺ q) then
6: wi[1]←

λpiq

λpiq−1
, , wi[2]← 1− wi[1]

7: W ′ ←W ′ ∪ {wi}
8: end if
9: end for

10: sort W ′ based onwi[1]
11: w0 ← [0, 1], w|W ′|+1 ← [1, 0]
12: R← {p : p lies in Hw0

(q)}
13: kw ← |R| //number of points inR
14: for (∀wi ∈W ′) do
15: if (kw ≤ k) then
16: RES ← RES ∪ {(wi, wi+1)}
17: end if
18: if (pi+1 ∈ R) then
19: kw ← kw − 1
20: else
21: kw ← kw + 1
22: end if
23: end for
24: return RES

Algorithm 1 describes the monochromatic reverse top-k
algorithm. Data points that are dominated byq are always
ranked afterq for any weighting vectorw, while points that
dominateq are ranked beforeq for any weighting vectorw.
For example in Figure 4(b),p5 is worse (ranked lower) thanq,
whereasp6 is better (ranked higher) thanq for any w. Points
of the dataset that are neither dominated by nor dominate
q are ranked higher thanq for some weighting vectors and
lower thanq for other weighting vectors. Thus, our algorithm
examines only such incomparable points{pi} to q (line 5),
because they alter the rank ofq. Fortunately, the weighting
vector wi for which the rank betweenq and a data point
pi changes, can be easily determined as the vector that is
perpendicular to the lineqpi (lwi

(q)). Consequently, we have
to examine all lines2 that pass throughq and any other pointpi,
which is incomparable toq. These lines define the boundaries
of the partitionsWi, therefore the corresponding weighting
vectors are kept in a listW ′ (line 7). Then, we identify the
partitions for whichq belongs to the top-k, by processingW ′.

In Figure 4(b), after the sorting (line 10) the setW ′ is
{w1, w2, w3, w4} corresponding to the linesqp1, qp2, qp3,
qp4 respectively. Then, vectorsw0 and w5 are added toW ′.
For the first weighting vectorw0 all data points that lie in
Hw0

(q) are retrieved (line 12). Recall that the rankkw of
q with respect tow0 is determined by the number of points
contained inHwi

(q) (line 13). In our example, the setR is
{p4, p6, p1} and therefore the rank ofq is 4. The rank ofq
cannot change beforew1. If we assume thatk=3, than for
the first partitionW0=[w0, w1] the rank ofq is higher thank
and the partitionW0 can be safely discarded. Therefore, the
next partition isW1 = [w1, w2]. Sincep1 ∈ R (line 18), this

2This is similar to the approach in [8], which is used to compute arobust
layered index.



means that inW1 the relative ordering of the pointsp1 andq
changes and now the rank ofq is 3. Therefore,W1 is added
to mRTOP3(q) (line 16). Similarly, we can compute the rank
of q for all Wi. In our example,W1 is the only partition that
qualifies for themRTOP3(q) result set. Thus, Algorithm 1
returns the monochromatic reverse top-k result set for any two
dimensional dataset.

IV. B ICHROMATIC REVERSETOP-K QUERIES

For a bichromatic reverse top-k query, two datasetsS and
W are given, whereS contains the data points andW the
different weighting vectors that represent user preferences.
Then, the aim is to find all weighting vectorswi ∈ W such
that the query pointq ∈ TOPk(wi).

A brute force (naive) approach is to process a top-k
query for eachwi ∈ W and examine whetherq belongs to
TOPk(wi). Obviously, this approach induces high processing
cost, as it requires one top-k query evaluation for each weight-
ing vectorwi. As the number of potential weighting vectors
wi in the datasetW may be high (comparable to the size of
the dataset|S|), this approach is prohibitively expensive and
does not scale. In the sequel, we present a threshold-based al-
gorithm (called RTA,Reverse top-k ThresholdAlgorithm) for
bichromatic reverse top-k, which discards weighting vectors
that cannot contribute to the result setbRTOPk(q), without
evaluating the corresponding top-k queries.

A. Threshold-based Algorithm (RTA)

Our algorithm exploits already computed top-k results to
avoid evaluating weighting vectors that cannot be in the reverse
top-k result set. The goal is to reduce the number of top-k
query evaluations, based on the observation that top-k queries
defined by similar weighting vectors return similar result
sets [6]. Therefore, in each repetition a threshold is set based
on to previously computed top-k result sets, in order to discard
the next weighting vectors without top-k query evaluation.

As the aim is to examine similar weighting vectors in
consecutive steps, the weighting vectorsW are ordered based
on their pairwise similarity. We measure the similarity between
two vectors using the cosine similarity and the goal is to
maximize the cosine similarity of all consecutive weighting
vector pairs. To achieve an acceptable solution without over-
whelming computational overhead, the weighting vectors are
ordered based a simple strategy. The first weighting vector
w1 is the most similar vector to the diagonal vector of the
space. Thereafter, the most similar weighting vectorwi+1 to
the previous vectorwi is examined. Notice that the ordering
of the weighting vectors takes place during the initialization
phase of the algorithm, and is not affected by the query point.

Algorithm 2 formally describes the RTA algorithm for
processing a bichromatic reverse top-k query. Initially, RTA
computes the top-k result TOPk(wi) for the first weighting
vector (line 7). Notice that in the first iteration we cannot
avoid evaluating a top-k query, as the threshold cannot be
set yet. Thek data points that belong to the result set
TOPk(wi) are kept in a main memory buffer. Given a set of
points P , we denote asmax{fwi

(P )} the maximum value
of all score valuesfwi

(pj), pj ∈ P , which means that

Algorithm 2 RTA: Reverse Top-k Threshold Algorithm.
1: Input: S, W , q, k
2: Output: bRTOPk(q)
3: W ′ ← {∅}, buffer ← {∅}
4: threshold←∞
5: for (eachwi ∈W ) do
6: if (fwi

(q) ≤ threshold) then
7: buffer ← TOPk(wi)
8: if (fwi

(q) ≤ max{fwi
(buffer)}) then

9: W ′ ←W ′ ∪ {wi}
10: end if
11: end if
12: threshold← max{fwi+1

(buffer)}
13: end for
14: return W ′

max{fwi
(P )} ≥ fwi

(pj), ∀pj ∈ P . The scorefwi
(q) of

query pointq based on vectorwi is computed and compared
against the maximumfwi

value of all points in the buffer,
denoted asmax{fwi

(buffer)} (line 8). This maximum score
defines the threshold value. If the scorefwi

(q) is not greater
than max{fwi

(buffer)}, then wi is added to the result set
(line 9). Before the next iteration of the algorithm, we takethe
next weighting vector (wi+1) and we set as threshold value the
maximum score of any point in the buffer based on this new
vectorwi (line 12). Then the condition of line 7 is tested, so if
the scorefwi

(q) is larger than the threshold, then we can safely
discardwi. Otherwise, we have to evaluate the top-k query for
the vectorwi, in order to determine whetherwi belongs to the
reverse top-k result. Therefore, we pose again a top-k query
on datasetS and we update the main memory buffer with the
new result setTOPk(wi). In each iteration, thek points of the
previously processed top-k query are kept in the buffer. Notice
that the size of the buffer (k) is limited, since queries with
small k values are commonly used in practice. The algorithm
terminates when all weighting vectors have been evaluated or
discarded.
Correctness of the algorithm:Let w ∈ bRTOPk(q) be a
weighting vector that is falsely discarded without a top-k
evaluation. Then, based on the definition of the reverse top-
k query, ∃p ∈ TOPk(w) such thatfw(q) ≤ fw(p). Let pi,
1 ≤ i ≤ k be the points in the buffer, then based on the
threshold∀pi: fw(pi) < fw(q). Therefore,fw(pi) < fw(q) ≤
fw(p), ∀pi. This means thatp /∈ TOPk(w), which leads to a
contradiction.�

In worst case, the algorithm has to process|W | top-k
queries, hence the algorithm degenerates to the brute force
algorithm. However, in the average case the algorithm returns
the correct result by evaluating much less than|W | top-k
queries, which is verified also in the experimental evaluation.
On the other hand, RTA has to evaluate at least|bRTOPk(q)|
top-k queries, since no weighting vectorwi can be added in
the result set without evaluating the respective top-k query.

B. RTA Example

In order to provide an intuitive example of RTA, con-
sider the dataset consisting of pointspi, a datasetW =
{w1, w2, w3}, as well as two potential query pointsq andq′,
depicted in Figure 5. Let us assume thatk=2 and the first
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Fig. 5. Example of bichromatic algorithm (RTA).

examined weighting vector isw1. As depicted in Figure 5(a),
RTA computes the top-2 query (TOP2(w1)) and finds that the
top-2 data point forw1 is p1. Pointsp1 and p2 are enclosed
in the query spaceHw1

(p1) (depicted as gray triangle) and
those points are kept in the buffer{p2, p1}. If the query
point is q′, then it would be enclosed inHw1

(p1) and w1

would belong tobRTOPk(q′). Now consider that the query
is q, so it is not enclosed inHw1

(p1), thereforew1 does not
belong to thebRTOPk(q). In the next step (Figure 5(b)), the
most similar weighting vector tow1, namelyw2, is examined
and the threshold is set based on the query line ofw2

crossingp1, depicted as the gray triangle (Hw2
(p1)). Sinceq

is not enclosed inHw2
(p1), the weighting vectorw2 is safely

discarded, without further processing. Notice thatHw2
(p1)

contains at least2 data points (in this example 3), and this
explains whyw2 can be safely discarded. When the next vector
w3 is considered,q is enclosed inHw3

(p1), therefore the result
setTOP2(w3) has to be retrieved, and the buffer now contains
{p2, p3}. Notice that the score value ofq is not better than the
score value ofp3 that is the top-2 data point of this query,
so the weighting vectorw3 is not added to the reverse top-2
result set ofq. Thus, none of the 3 weighting vectors belongs
to the result ofbRTOP2(q).

V. M ATERIALIZED REVERSE TOP-K V IEWS

In this section, we present an indexing structure (RTOP -
Grid) based on space partitioning, which materializes reverse
top-k views for efficient processing of bichromatic reverse
top-k queries. First, we present an example that explains
how RTOP-Grid improves the performance of reverse top-
k queries, by further reducing the required number of top-
k query evaluations. Then, we describe in detail the reverse
top-k algorithm based on RTOP-Grid. Afterwards, we clarify
the details on how the construction of the RTOP-Grid can be
accomplished in an efficient manner. Finally, we generalize
our approach for arbitraryk values and discuss updates.

A. Motivating Example

Let us assume that we have a grid-based space partitioning
of the data space. The grid consists of disjoined data space
partitions, also calledcells. Each cellCi is defined by its
lower left cornerCL

i and upper right cornerCU
i . For each

cell Ci and a given valuek, a reverse top-k query for each
cornerCL

i and CU
i is evaluated and the result set is stored.

More particularly, the resulting weighting vectorswz are
maintained in a list associated with the corresponding corner,
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Fig. 6. Example of grid-based algorithm.

for example for the lower left cornerCL
i we define asLL

i =
{wz ∈ bRTOPk(CL

i )}. Analogously,LU
i is defined. During

the reverse top-k evaluation, each grid corner is considered as
a query point and the query is evaluated (using Algorithm 2)
against the datasetS, ignoring the remaining grid corners.
The list LL

i (LU
i ) associated with a cornerCL

i (CU
i ) of Ci is

considered as a materialized reverse top-k view, as it contains
all weighting vectors that would be the result of a query
bRTOPk(CL

i ) (bRTOPk(CU
i )). Henceforth, we refer to the

lists of weighting vectors of a cell as materialized views.
For example, consider the grid depicted in Figure 6(a). Dur-

ing query processing we can exploit the information associated
with the corners of the cells, in order to restrict the number
of weighting vectors that need to be examined by our reverse
top-k algorithm. Given a query pointq, the cell Ci which
encloses query pointq is determined. It is obvious that for
anywz that does not exist in materialized viewLL

i , wz cannot
be in the reverse top-k of q. This is becauseCL

i dominates
q, thus for anywz, query pointq has a higher score than the
cornerCL

i . Therefore, if the cornerCL
i does not qualify for

the top-k result set, neither can pointq. For example, consider
Figure 6(b). If wz /∈ LL

i , then the query spaceHwz
(CL

i )
defined by the query planeℓwz

(CL
i ), contains more thank data

points. Consequently, also the query spaceHwz
(q) contains

more thank points, and thereforeq /∈ TOPk(wz).
On the other hand, if a weighting vectorwz belongs to

materialized viewLU
i , thenwz is definitely in the reverse top-

k result ofq. To explain this better, consider Figure 6(b) and
that wz belongs to the reverse top-k result set ofCU

i , i.e.
wz ∈ LU

i . This means that less thank data points exist in the
query spaceHwz

(CU
i ). Therefore, sinceq is enclosed inCi,

then it is also in the top-k result, independently ofq’s exact
position in the cell. Notice that a weighting vectorwz that
belongs toLU

i , also belongs toLL
i .

Only for weighting vectors that are inLL
i but not inLU

i we
have to examine the exact ranking ofq based on its position.
Essentially, this restricts the input of Algorithm 2, which
is used to compute thebRTOPk(q), to consider weighting
vectors only from the setLL

i − LU
i , rather thanW .

B. Grid-based Reverse Top-k Algorithm (GRTA)

Algorithm 3 formally describes how a bichromatic reverse
top-k query is processed using the grid-based materialized
views. Initially, the cellCi that enclosesq is determined (line
4). Then, each weighting vectorwz ∈ LL

i is further examined
(line 5). If wz belongs also toLU

i (line 6), then we are certain



Algorithm 3 GRTA: Grid-based Reverse top-k Algorithm.
1: Input: S, q, k
2: Output: bRTOPk(q)
3: W ′ ← {∅}, W ′′ ← {∅}, Wcand ← {∅}
4: Find cell Ci that enclosesq
5: for (∀wz ∈ LL

i ) do
6: if (wz ∈ LU

i ) then
7: W ′ ←W ′ ∪ {wz}
8: else
9: Wcand ←Wcand ∪ {wz}

10: end if
11: end for
12: W ′′ ← RTA(S,Wcand,q,k)
13: return {W ′ ∪W ′′}

that wz belongs to the reverse top-k result of query pointq,
so we addwz to list W ′ (line 7) that contains the results.
If wz does not belong toLU

i , then wz is added (line 9) to
the set of candidate weighting vectorsWcand that need to
be evaluated. Finally, we invoke Algorithm 2 on the set of
candidate weighting vectorsWcand (line 12) and some of them
are returned as results denoted asW ′′. The weighting vectors
that belong to the union ofW ′ andW ′′ constitute the results
of the GRTA algorithm (line 13).

As already discussed, the cost of RTA (Algorithm 2) de-
pends mainly on the number of top-k evaluations. This number
is related to the cardinality of the datasetW , which is given
as an input to the algorithm. Therefore, by using the grid-
based materialization, the number of weighting vectors that
need to be examined in order to retrieve the reverse top-k
result is restricted, since Algorithm 2 takes as input a limited
set of weighting vectorsWcand, instead of the entire setW . In
particular, the upper bound of top-k evaluations for different
weighting vectors is|LL

i | − |LU
i |, which is the number of

evaluations required by the brute force algorithm. Of course,
RTA reduces even more this number, by discarding weighting
vectors based on already computed results. However, the exact
savings in terms of discarded weighting vectors also depend
on the construction algorithm and the quality of the resulting
grid, as will be shown presently.

C. RTOP-Grid Construction

In this section, we discuss the construction algorithm of
RTOP-Grid. In our approach, the grid-based space partitioning
occurs recursively, starting by a single cell that covers the
entire universe. We take into consideration three different
subproblems. First, we develop a cost-based heuristic for de-
ciding which cellCi to split. Secondly, we accomplish efficient
computation of the viewsLL

i and LU
i , by using a results

sharing approach. Finally, we propose different strategies for
establishing the stopping condition of the cell division process.

Given a cellCi and a query pointq enclosed inCi, the
performance of reverse top-k query depends mainly on the
number of evaluated top-k queries, which in turn depends on
the number of weighting vectors in the viewsLL

i and LU
i .

Therefore, it is very important that the splitting strategyof the
construction algorithm splits first the most costly cells, i.e. the
cells that may lead to many top-k evaluations. We define the

Algorithm 4 Construction of RTOP-Grid.
1: Input: S, W , k , Limit
2: Output: RTOP-Grid
3: Create cellC0 that covers the universe
4: LL

0 ← RTA(S,W ,CL
0 ,k)

5: LU
0 ← RTA(S,W ,CU

0 ,k)
6: RES ← {C0}
7: cntCells← 1
8: while (cntCells < Limit) do
9: Find cell Ci with maximumCOSTCi

10: Split Ci into C1 andC2 based ondj

11: LL
1 ← LL

i

12: LU
1 ← GRTA(S,CU

1 ,k)
13: LL

2 ← GRTA(S,CL
2 ,k)

14: LU
2 ← LU

i

15: RES ← RES − {Ci}
16: RES ← RES ∪ {C1, C2}
17: cntCells← cntCells + 1
18: end while
19: return RES

notion ofcostfor a cellCi as the probability that a query point
is enclosed in a cell multiplied by the number of top-k query
evaluations necessary for processing the query inCi. Assume
that f(q[1], q[2], ..., q[d]) ≡ f(q) denotes the density function
describing the distribution of thed variables corresponding to
the dimensions of the query points. Then, the expected cost
of a cell Ci can be estimated as:

COSTCi
= (|LL

i | − |LU
i |)

∫
Ci

f(q) (1)

In the case of uniform query distribution, the integral of
Equation 1 can be replaced by the fraction of the volume of
the space covered by the cell (normalized volumeV (Ci)

VD
).

Given a RTOP-Grid index, we define the average number
of top-k query evaluations that are necessary for processing a
reverse top-k query as a quality measure of RTOP-Grid, which
can be expressed as the sum of the costs of all cells:

COSTRTOP−Grid =
∑
∀i

COSTCi
(2)

The cost function insinuates that the cost of a particular cell
adds up to the total cost of the grid, only if a query point is
actually enclosed in the cell. Equation 2 is the average costof
processing a reverse top-k query, in terms of top-k evaluations
for a given RTOP-Grid, because it contains the probability that
a query is enclosed in a cell. Furthermore, the estimated cost is
an upper bound of the actual cost, since RTA needs even fewer
top-k evaluations than|LL

i |− |LU
i |. The splitting employed in

the RTOP-Grid construction algorithm aims at minimizing the
aforementioned cost function. Thus, the construction algorithm
splits the cell with the maximumCOSTCi

value.
Algorithm 4 describes the construction of RTOP-Grid. As-

suming initially a single cellC0 covering the entire universe
(line 3), the algorithm starts by computing the materialized
views of the lower and upper corner of the universe (lines
4,5). In order to process the reverse top-k query for each cell’s
corners efficiently, the RTA algorithm is employed. In each
iteration, the algorithm picks a cellCi to be split, which is



the cell Ci with the maximumCOSTCi
, according to our

splitting strategy (line 9). Then, two new cellsC1 and C2

are created (line 10) by selecting a dimension in a round
robin fashion, which is used to divide the cell in two parts.
Consequently, the materialized views of the new cellsC1 and
C2 are computed. Our algorithm employs result sharing in two
ways. First, it is obvious thatLL

1 and LU
2 equals toLL

i and
LU

i respectively (lines 11,14), and these materialized views
do not have to be recomputed. Whenever a reverse top-k
query for each cell’s corners needs to be computed, GRTA
is employed (lines 12,13) on the currently constructed RTOP-
Grid. Therefore, the algorithm takes into account the viewsof
the existing cells to restrict the weighting vectors that need to
be examined and the top-k queries that have to be evaluated.
This is the second way result sharing is used, namely to
efficiently compute the necessary materialized views. Finally,
cell Ci is removed from the RTOP-Grid, whereas cellsC1 and
C2 that cover the removed cell are added (lines 15,16). The
algorithm continues to iterate, until the stopping condition that
ceases splitting of cells is satisfied (line 8).

As regards the stopping condition, two different strategies
are used, each controlling the cost of a different parameter,
namely storage requirements and query processing perfor-
mance. Hence, two different strategies are employed:

• Space-bounded:In order to restrict the construction and
storage cost, the algorithm stops when a specific number
of grid cells (given as input) are created. Algorithm 4
describes this strategy (line 8).

• Guaranteed cost:This strategy focuses on query pro-
cessing cost, rather than construction cost, and aims at
setting a bound on the average number of required top-
k evaluations. Cells are split as long as the quality of
the RTOP-Grid, has not reached the bound (given as
input). The quality is measured by means of Equation 2.
Therefore, the stopping condition of Algorithm 4 (line 8)
is modified as follows:
COSTRTOP−Grid ≤ Limit.

In our experimental evaluation, we also examine a straight-
forward approach, namely UNIFORM, where the algorithm
decides to split the cell that has the largest volume, without
using the cost function. The stopping condition follows the
space-bounded strategy, i.e. splitting stops when a specified
number of cells are created.

D. Supporting Arbitrary k Values

In this section, we generalize our approach to support
reverse top-k queries for arbitrary values ofk, using a common
RTOP-Grid. Given an upper limitKmax, the RTOP-Grid is
constructed forKmax and additional information is stored that
enables processing queries for anyk value (k ≤ Kmax). For
each weighting vectorwz, the rank of the cell corner, i.e. the
minimum k for which the corner is in the top-k result set of
wz, is additionally maintained. Thus, the materialized view
can be described asLL

i = {(wz, k
L
z )} andLU

i = {(wz, k
U
z )}.

Algorithm 3 can be adjusted to process reverse top-k
queries over a grid constructed for arbitraryk ≤ Kmax.
First, the cellCi that enclosesq is determined. Then, the

weighting vectors that are contained inLL
i are examined,

while weighting vectors that are not inLL
i cannot contribute

to the reverse top-k result set ofq. For anywz ∈ LL
i , the

following cases are distinguished (the following code replaces
lines 6-10 of Algorithm 3):

IF (kL
z ≤ k) THEN
IF (wz ∈ LU

i and kU
z ≤ k)

THEN

W ′ ←W ′ ∪ {wz}

ELSE

Wcand ←Wcand ∪ {wz}

E. Updates

Updates that occur either inW or S affect the materialized
reverse top-k views, therefore they should be supported effi-
ciently. In case of insertion of a new weighting vectorwins, we
need to progressively examine the corners of the grid, starting
from the origin of the data space. If a cornerCL

i (CU
i ) does not

qualify as top-k object for wins, then we can safely discard
all corners dominated byCL

i (CU
i ). Deletion of an existing

weighting vectorwdel is simple, as it requires removal ofwdel

from the lists of any corner of the grid. Notice that again
the corners of the grid can be examined progressively, thus
avoiding processing of dominated corners.

Insertion of a data pointpins is more costly, since only grid
corners that dominatepins are discarded. For the remaining
corners, we cannot avoid computing the reverse top-k query.
However, GRTA can be used and only weighting vectors that
belong to the materialized views of the cell corner have to be
evaluated, since no weighting vectors can be added, but only
some of them may be removed from the materialized view.
Similarly a data pointpdel that is removed from the dataset
probably influences all dominated cell corners, therefore we
need to recompute the materialized views for them, since new
weighting vectors may have to be added.

VI. EXPERIMENTAL EVALUATION

In this section, we present an extensive experimental evalu-
ation of reverse top-k queries. All algorithms are implemented
in Java and the simulations run on a 3GHz Dual Core AMD
processor equipped with 2GB RAM. The block size is 8KB.
We focus on the evaluation of the bichromatic reverse top-k
query, as it is most useful for practical applications.

As far as the datasetS is concerned, both real (RE) and
synthetic data collections, namely uniform (UN), correlated
(CO) and anticorrelated (AC), are used. For the uniform
dataset, all attribute values are generated independentlyusing
a uniform distribution. The anticorrelated dataset is generated
by selecting a plane perpendicular to the diagonal of the data
space using a normal distribution, and within the plane each
attribute value follows a uniform distribution. Similarly, for the
correlated dataset, first a plane perpendicular to the diagonal
of the data space is selected by using a normal distribution
and within the plane, each attribute value is generated using
a normal distribution. We also use two real datasets. NBA
consists of17265 5-dimensional tuples, representing a player’s
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Fig. 7. Performance of RTA for varyingd [naive (outer bar) vs. RTA (inner bar)].

 10

 100

 1000

 10000

 100000

 2  3  4  5

T
im

e 
(m

se
c)

Dimensionality (d)

UN
AC
CO

(a) Average time.

 1

 10

 100

 1000

 10000

 100000

 1e+006

 2  3  4  5

I/O
s

Dimensionality (d)

UN
AC
CO

(b) I/Os.

 1

 10

 100

 1000

 10000

 100000

 2  3  4  5

#T
op

-k
 E

va
lu

at
io

ns

Dimensionality (d)

UN
AC
CO

(c) Number of top-k evaluations.

Fig. 8. Performance of RTA for varyingd for k-skyband queries [naive (outer bar) vs. RTA (inner bar)].

performance per year. The attributes are average values of:
number of points scored, rebounds, assists, steals and blocks.
HOUSE (Household) consists of127930 6-dimensional tuples,
representing the percentage of an American family’s annual
income spent on6 types of expenditure: gas, electricity, water,
heating, insurance, and property tax.

For the datasetW of the weighting vectors, two different
data distributions are examined, namely uniform (UN) and
clustered (CL). For the clustered datasetW , first CW cluster
centroids that belong to the (d-1)-dimensional hyperplane
defined by

∑
wi = 1 are selected randomly. Then, each

coordinate is generated on the (d-1)-dimensional hyperplane
by following a normal distribution on each axis with variance
σ2

W , and a mean equal to the corresponding coordinate of the
centroid. We conduct experiments varying the dimensionality
(2-5), the cardinality (10k-100k) of the datasetS and cardi-
nality (5k-15k) of the datasetW .

We evaluate the performance of RTA against an alternative
technique that evaluates a top-k query for each weight in
the datasetW . In particular, the datasetS is indexed by an
RTree and top-k processing is performed using a state-of-the-
art branch-and-bound algorithm. We refer to this algorithm
as naive. Our metrics include: a) the time (wall-clock time)
required by each algorithm, b) the I/Os used, and c) the number
of top-k evaluations conducted. We also investigate the perfor-
mance benefits that RTOP-Grid attains over RTA. We present
average values over the1000 queries in all cases. Notice that
we do not measure the I/Os that occur by readingW , since
this is the same for every method, assuming sequential scan
on the datasetW .

A. Performance Evaluation of RTA

In Figure 7, we study the behavior of RTA for increasing
dimensionalityd, for various distributions (UN,AC,CO) of
datasetS and uniform weightsW . We use|S|=10k, |W |=10k,
top-k=10 and 1000 random queries that follow the data distri-
bution. Notice that the y-axis is in logarithmic scale. In the bar
charts, each of the three bars (for a specific dimensionality)
represents a dataset: UN, AC, and CO respectively. The total
length of the bar represents the performance of naive, while
the inner dark-colored bar depicts the performance of RTA.
Regarding average time, RTA is 2 orders of magnitude better
than naive, in all examined data distributions. In terms of I/Os,
again RTA outperforms naive by 1 to 3 orders of magnitude,
while larger savings are obtained for datasets UN and CO.
The reason behind RTA’s superiority is clearly demonstrated
in Figure 7(c), where the average number of top-k evaluations
necessary for computing a bichromatic reverse top-k query is
shown. The threshold employed by RTA reduces significantly
the number of top-k evaluations, saving around 1.5 to 3 orders
of magnitude compared to naive. Notice that naive requires
|W | (=10k) top-k query evaluations to compute the result,
regardless of data distribution.

An interesting observation is that only a small percentage
(around 2%) of the queries actually return non-empty result
sets. This is due to the fact that queries are generated following
the data distribution, therefore many queries are not in thetop-
k result for any weighting vector. An important feature of our
algorithm is the fact that RTA can efficiently process such
queries. Thus, RTA processes reverse top-k queries that have
a small or empty result set quickly, because the threshold em-
ployed eliminates candidate weighting vectors, often requiring
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Fig. 9. Scalability study of RTA.

 0

 500

 1000

 1500

 2000

 2500

 3000

 2  3  4  5

#T
op

-k
 E

va
lu

at
io

ns

Dimensionality (d)

RTA-UN
RTA-AC
RTA-CO

(a) Clustered datasetW .

 0

 100

 200

 300

 400

 500

 600

 10  20  30  40  50

#T
op

-k
 E

va
lu

at
io

ns

top-k

RTA/UN
RTA/CL

(b) Real dataset (NBA).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10  20  30  40  50

#T
op

-k
 E

va
lu

at
io

ns

top-k

RTA/UN
RTA/CL

(c) Real dataset (HOUSE).

Fig. 10. Performance of RTA for clustered weightsW and for real data (NBA and HOUSE).

only one top-k evaluation. In contrast, naive does not have this
ability and computes|W | top-k queries for all queries. Notice
that reverse top-k queries that produce empty result sets are
also very informative for a product manufacturer, since they
indicate that the particular product is probably not popular for
any customer, compared to their competitors’ products.

Nevertheless, we also employ a different method to generate
queries and present the corresponding results. In order to
increase the probability that a query point belongs to a top-k
result, we pick random query points from thek-skyband of
the dataset. Obviously, these query points are more likely to
produce non-empty reverse top-k results. This query workload
corresponds to queries about products that seem popular
to costumers, and manufacturers are expected to pose such
queries with high probability. Figure 8 depicts the results
obtained by usingk-skyband queries for the same experimental
setup depicted in Figure 7. Although we witness a small
deterioration in the results of RTA, our algorithm consistently
outperforms naive by 1 to 2 orders of magnitude. Some
interesting observations can be made by studying Figure 8(c).
First, we notice that the correlated dataset requires more
top-k evaluations caused by the fact that the cardinality of
bRTOPk(q) is high. The reason is that thek-skyband of
a correlated dataset contains points that are close to the
origin of the data space, and therefore such points are in
the top-k for many weighting vectors. Second, we observe a
decreasing tendency as dimensionality increases, which seems
counterintuitive at first. However, this is because again the
cardinality of bRTOPk(q) decreases as the dimensionality
increases. For the rest of our experiments, we usek-skyband
queries and we do not show the results of naive, as it performs
consistently worse than RTA by few orders of magnitude.

Thereafter, we perform a scalability study of RTA by
varying several parameters in Figure 9. We use as metric the
number of top-k evaluations, as it is the dominant factor for
the performance of RTA. First, we increase the cardinality
of W and study the performance of RTA for different data
distributions ofS (Figure 9(a)). We fix the remaining parame-
ters to|S|=10k, d=5 and top-k=10. In general, datasetsW of
higher cardinality demand more top-k evaluations. However,
we observe that RTA is highly efficient, especially for the
costly CO dataset. For instance, for|W |=5k, RTA needs on
average544 top-k evaluations, while the average mandatory
cost is 459 (this is the number of queries that cannot be
avoided, also equal to the average size of the result set). This
shows that out of5000 query evaluations (100%), RTA needs
only 544 (10.88%), which is only marginally more than the
mandatory459 (9.18%), thus RTA saves89.12% of the cost.

In Figure 9(b), we set|W |=10k and gradually increase the
cardinality ofS to 100k. For the CO dataset, we observe that
fewer top-k evaluations are necessary with increasing|S|. This
is because the data space has more data points, thus becomes
denser, andk-skyband queries have fewer weighting vectors
as results, hence smaller processing cost. In Figure 9(c), we
useS=10k andW=10k, and study how the value ofk affects
the performance of RTA. It is clear that RTA is highly efficient
for UN and AC datasets, and its performance is affected only
for the CO dataset. The increase ofk increases the probability
that a query point belongs to top-k for some weighting vector,
and therefore the average cardinality ofbRTOPk(q) increases,
leading to more top-k evaluations.

We also study the performance of RTA for a clustered
datasetW , using CW =5 clusters of weighting vectors. A
clustered datasetW simulates the case where user preferences
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Fig. 11. Performance evaluation of the strategies of RTOP-Grid.
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Fig. 12. Scalability study of RTOP-Grid for the space-bounded strategy.

are not independent, but there exist some groups of common
user preferences. This chart, depicted in Figure 10(a), is
analogous (thus also comparable) to the setup of Figure 8(c),
which was for a uniform datasetW . The results show that in
the case of clustered datasetW , RTA performs better than for
uniform W for all data distributions, nevertheless the general
trends remain the same as dimensionality increases.

In Figure 10(b), we test the performance of RTA on the
NBA dataset. The performance of RTA is in accordance
with the case of synthetic data. We try both a uniform and
clustered datasetW and the results show again that fewer
top-k evaluations are required for the clustered datasetW .
In Figure 10(c), a similar experiment is conducted using the
HOUSE dataset.

B. Performance Evaluation of RTOP-Grid

In the sequel, we evaluate the performance of RTOP-Grid
and the results are shown in Figure 11. Unless mentioned
explicitly, we use |S|=10k, |W |=10k, d=5 and top-k=10.
First, we provide a comparison of the RTOP-Grid space-
bounded strategy to the UNIFORM approach and to RTA
(Figure 11(a)), for increasing number of cells. RTOP-Grid per-
forms consistently better than UNIFORM, demonstrating the
advantages of using the cost-based splitting strategy, instead of
splitting the cell with the maximum volume. RTOP-Grid also
provides an improvement to RTA, in terms of the required
number of top-k evaluations as expected, and in this setup it
achieves a reduction of top-k evaluations between18.5% (100
cells) and26.3% (1000 cells).

In Figure 11(b), we test the RTOP-Grid guaranteed cost
strategy versus the RTA algorithm, with increasing cost bound,
for top-k={10, 20}. The chart shows that RTOP-Grid reduces

the number of top-k evaluations compared to RTA by 30%,
when the cost bound is set to 100. As expected, when the
bound imposed on cost is smaller, RTOP-Grid improves RTA
more. Notice that in most cases the actual number of top-k
evaluations is smaller than the bound set on average cost. This
is because the average cost is estimated based on the number
of weighting vectors in the views, and it does not take into ac-
count the additional savings in top-k query evaluations caused
by the threshold mechanism of RTA, employed also by RTOP-
Grid. In Figure 11(c), we show the number of cells created
by RTOP-Grid for the same experiment. Clearly, the number
of cells increases rapidly when the cost bound is set too low.
However, similar improvement can be obtained by relaxing the
cost bound, i.e. notice that setting the bound to 200 achieves
similar performance to the bound of 100, using much fewer
cells. Furthermore, we study the scalability of RTOP-Grid for
varying values of|W |, |S| and top-k. Figure 12(a) shows the
results obtained by increasing the cardinality ofW . RTOP-
Grid consistently outperforms UNIFORM and improves RTA.
Then, in Figure 12(b), we set|W |=10k and increase|S|. Once
again, the gains of RTOP-Grid over RTA are sustained in all
setups. Finally, in Figure 12(c), the chart shows how the cost
is affected by increasing values ofk. RTOP-Grid performs
better than RTA and UNIFORM for allk values and the benefit
increases withk.

VII. R ELATED WORK

Reverse top-k queries are inherently related to top-k query
processing, thus we summarize some representative work
here. One family of algorithms are those based on pre-
processing techniques.Onion [2] pre-computes and stores the
convex hulls of data points in layers. Then, the evaluation



of a linear top-k query is accomplished by processing the
layers inwards, starting from the outmost hull.Prefer [6] uses
materialized views of top-k result sets, according to arbitrary
scoring functions. During query processing, Prefer selects the
materialized view corresponding to the function that is most
similar to the querying scoring function, and examines a
subset of the data elements in this view. Onion and Prefer
are mostly appropriate for static data, due to the high cost of
pre-processing. Efficient maintenance of materialized views
for top-k queries is discussed in [9]. The authors propose
algorithms that reduce the storage and maintenance cost of
materialized top-k views in the presence of deletions and
updates. Therobust index[8] is a sequential indexing approach
that improves the performance of Onion [2] and Prefer [6]. The
main idea is that a tuple should be placed at the deepest layer
possible, in order to reduce the probability of accessing itat
query processing time, without compromising the correctness
of the result. Later, in [10], the authors propose thedominant
graph as a structure that captures dominance relationships
between points. Then, the top-k computation is mapped to a
graph traversal problem. Another family of algorithms focuses
on computing the top-k queries over multiple sources, where
each source provides a ranking of a subset of attributes only.
Fagin et al. [4] introduce two algorithms, namely TA and NRA
algorithms. Variations of them have been proposed that try
to improve some of their limitations and have been studied
in other application areas, leading to various threshold-based
algorithms [1], [3], [5], [7].

Reverse nearest neighbor (RNN) queries were originally
proposed in [11] and have wide applicability in decision
support systems. An RNN query finds the set of points that
have the query point as their nearest neighbor. Reverse top-k
queries are different from RNN queries, since the aim is to find
the weights of the linear distance function that would make
the query point belong to the k-nearest neighbor set of a query
positioned at the origin of the data space. Recently, reverse
furthest neighbor queries [14] are introduced, that are similar
to RNN queries. The reverse skyline query [12] identifies
customers that would be interested in a product based on
the dominance of the competitors products. Monochromatic
and bichromatic reverse skyline queries have been also studied
in the context of uncertain databases [15]. DADA [16] aims
to help manufactures to position their products in the mar-
ket, based on three types of dominance relationship analysis
queries. Nevertheless in these approaches, user preferences are
expressed as data points that represent preferable products,
whereas reverse top-k queries examine user preferences in
terms of weighting vectors. Miah et al. [17] study a different
problem, again from the perspective of manufacturers. They
propose an algorithm that selects the subset of attributes that
increases the visibility of a new product.

VIII. C ONCLUSIONS

To the best of our knowledge, this is the first paper that in-
troduces reverse top-k queries. We present two versions of re-
verse top-k queries, namely monochromatic and bichromatic.
Then, an algorithm for evaluating monochromatic reverse top-

k queries is presented, based on the geometrical properties
of the result set. Thereafter, we present an efficient threshold-
based algorithm (RTA) for computing bichromatic reverse top-
k queries, which eagerly discards candidate user preferences,
without the need to evaluate the associated top-k query.
Furthermore, we present an indexing structure based on space
partitioning, which materializes reverse top-k views, in order
to improve reverse top-k query processing even further. We
conduct a thorough experimental evaluation that demonstrates
the efficiency of our algorithms. RTA consistently improves1
to 3 orders of magnitude the naive approach.

There are several interesting issues for future work. It is
important to study in more detail the monochromatic reverse
top-k query, especially for high dimensions, since the geomet-
rical properties of the result set are essential for processing the
bichromatic reverse top-k query efficiently. Moreover, we plan
to study approximate reverse top-k algorithms that compute
quickly a good approximation of the result set.
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