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Abstract

In this thesis, we address major challenges in seardeimgoral document collections
In such collections, documents are created and/or editedtowe. Examples of tem-
poral document collections are web archives, news archblegs, personal emails and
enterprise documents. Unfortunately, traditional IR apphes based on term-matching
only can give unsatisfactory results when searching teaiplmcument collections. The
reason for this is twofold: the contents of documents arengly time-dependent, i.e.,
documents are about events happened at particular tinedsesand a query representing
an information need can be time-dependent as well, itemgoral query

Our contributions in this thesis are different time-awgspraaches within three topics
in IR: content analysis, query analysis, and retrieval améiry models. In particular,
we aim at improving the retrieval effectiveness by 1) analyzhe contents of temporal
document collections, 2) performing an analysis of temipquaries, and 3) explicitly
modeling the time dimension into retrieval and ranking.

Leveraging the time dimension in ranking can improve theeet| effectiveness if in-
formation about the creation or publication time of docuisas available. In this thesis,
we analyze the contents of documents in order to determantrtte of non-timestamped
documents using temporal language models. We subseq@englpy the temporal lan-
guage models for determining the time of implicit temporaéges, and the determined
time is used for re-ranking search results in order to imprbe retrieval effectiveness.

We study the effect of terminology changes over time and@semn approach to han-
dling terminology changes using time-based synonyms. diitiad, we propose different
methods for predicting the effectiveness of temporal gserso that a particular query
enhancement technique can be performed to improve thelbperformance. When the
time dimension is incorporated into ranking, documents lvélranked according to both
textual and temporal similarity. In this casene uncertaintyshould also be taken into ac-
count. Thus, we propose a ranking model that considersrtieetthcertainty, and improve
ranking by combining multiple features using learning-4ok techniques.

Through extensive evaluation, we show that our proposeetimare approaches out-
perform traditional retrieval methods and improve theiegal effectiveness in searching
temporal document collections.
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Chapter 1

Introduction

This PhD thesis addresses different challenges in segrtéimporal document collec-
tions where documents are created and/or edited over time, @&ndotftents of docu-
ments are strongly time-dependent. Examples of temporlrdent collections are web
archives, news archives, blogs, personal emails and eisegocuments. The main focus
of the PhD thesis iBow to exploit temporal information provided in documentseries,
and external sources of data in order to improve the effea@ss in searching temporal
document collections.

This chapter describes the motivation and research questiddressed in the thesis.
In addition, we explain our research context and methodemnaecting the PhD work.
Our contributions to this thesis are composed of differgauraaches to solving the ad-
dressed research questions. In the end of this chapter,esergdrthe organization of the
rest of the thesis.

1.1 Motivation

In this thesis, we address major challenges in seardieimgporal document collections
In such collections, documents are created and/or editedtowe. Examples of tem-
poral document collections are web archives, news archiblegs, personal emails and
enterprise documents. Unfortunately, traditional IR apphes based on term-matching
only can give unsatisfactory results when searching teaiplmcument collections. The
reason for this is twofold: the contents of documents amengly time-dependent, i.e.,
documents are about events happened at particular tinedsesand a query representing
an information need can be time-dependent as well, itemgoral query

One problem faced when searching temporal document doltesas the large number
of documents possibly accumulated over time, which cowddltén the large number of
irrelevant documents in a set of retrieved documents. Toexrea user might have to
spend more time in exploring retrieved documents in ordéintbdocuments satisfying
his/her information need. A possible solution for this penb is to take into account
the time dimension, i.e. extending keyword search with tieaton or published date of
documents. In that way, a search system will narrow downckeaasults by retrieving

3



4 Section 1.1. Motivation

documents according to both text and temporal criteria, e2mporal text-containment
search[92].

In the rest of this section, we will explain our motivation pgesenting some short-
comings of existing document archive search systemsthe Wayback Machine [126]
and Google News Archive Search [36].

Wayback Machine

The Wayback Machine [126] is a web archive search tool thatasided by the Internet
Archive [48]. The Internet Archive is a non-profit organipatwith the goal of preserving
digital document collections asultural heritageand making them freely accessible on-
line. The Wayback Machine provides the ability to retriemel access web pages stored
in aweb archive, and it requires a user to represent higif@nnation need by specifying
the URL of a web page to be retrieved.

For example, given the query URit t p: / / ww. nt nu. no, the results of retrieval
are displayed in a calendar view as depicted in Figure 1.1¢chwtlisplays the number
of times the URLht t p: / / ww. nt nu. no was crawled by the Wayback Machine (not
how many times the site was actually updated). Two majorlprob of using the Way-
back Machine are observable. First, it is inconvenient foser to specify a URL as a
guery. Second, there is no easy way to sort search resultaeetby the tool because the
results displayed in a timeline according to their crawlated.

INTERNET ARCHIVE http://iwww.ntnu.no Go Wayback!

mnunﬂl}“mﬂ "I!IEI!‘ hitp/fwww.ntnu.no has been crawled 588 times gumg a\lthe way backto Jun 1: 1997

wl can be a duplicate of the last one. It happe of the tim websites. FAC

T ulhlui. ..n....."“lhl J| .

1997
JAN FEB MAR APR
1 1 1 1 3
[ 8 9 1 1 6 8 4 6 8 6 g 9 10 11 1
1 13 1 15 16 17 18 9 10 11 12 13 14 15 9 10 11 12 13 14 15 13 14 15 16 17 18 19
19 20 21 22 23 24 35 16 17 18 19 20 21 22 16 17 18 19 20 21 22 20 21 22 23 24 25 26
8 1 28 24 8 8
3
MAY JUN JuL AUG

Figure 1.1: Search results of the query URLt p: / / www. nt nu. no are displayed in
a calendar view (retrieved 2011/08/29).
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Google News Archive Search

The Google News Archive Search [36] tool allows a user tocdearnews archive us-
ing a keyword query and a date range. In addition, the tooliges the ability to rank
search results by relevance or date. However, there is depnoiinat has not been ad-
dressed by this tool yet, e.g., the effect of terminologyngjes over time. Consider the
following example, a user wants to search for news aBayte Benedict XVI that are
written between 2005. So, the user issues the gBepe Benedict XVI and specifies
the temporal criteria 2002/01/01 to 2004/31/12. As showfigure 1.2, only a small
number of documents are returned by the tool where most of #re not relevant to the
Pope Benedict XVI. In other words, this problem can be viewsaebaabulary mismatch
which is caused by the fact that the teRope Benedict XVI was not widely used before
2005/04/19 (the date which his papacy began).

GO ( fglC Pope Benedict XVI “

About 37 resutts (0.17 seconds) Advanced search
Q, Everything Sorted by date » Jan 1, 2002-Dec 31, 2004 x]
& Images Add "Pope Benedict XVI" section to my Google News homepage
&= Videos Vat\can Ends Probe of Legionaries - CBS News
B News

(AF‘ F‘hutu’F‘Imlu Lepﬂ}As the Vatican defends the institution of the priesthood against the sex abuse
@ Shopping scandal, Pope Benedict XV is expected to release a ..
Scandal-plagued Legionaries accept. . Faim Beach Fost

More
Pope calls for coogerahun between Chnistians and Muslims -
Los Angeles Tim

Top Stories Pope Benedld )(VI speakmg at a mosque in Amman, Jordan, also expresses concem ... Pope
Benedict XVI on Saturday called on Christians and Muslims to serve ..

All news

Images N\gena Bnts asked to influence Shell - Norwegian Council...

Blogs Read more > Lagus (Nigeria) - Pope Benedict XVI has advised the Nigerian government to take
decisive steps to... Read more > Abeokuta (Nigeria) — Senate ..

Any time

Past hour N\gerla Govemmem charges three with coup plotting -

Past 24 hours

Past week Raad more = Lagns (Nigeria) - Pope Benedict XVI has advised the Nigerian government to take

Past manth decisive steps to... Read more > Abeokuta (Nigeria) — Senate ..

2010

2009 Nigeria' Representatives reject fuel price increase and._

2008 Afrika - Oct B, 2004

2006 Read more > Lagos (Nigeria) - Pope Benedict XVI has advised the Nigerian government to take

2005 decisive steps to_ Read mare > Abeckuta (Nigeria) — Senate .

S Catholic church's anti-abuse chief... The Gusidian

Archives

Custom range...

Erom: | 1/1/2002 N\gena Presudem urges a "frue national party” - Norwegian...

Tor  [12/31/2004 Read more > Lagns (Nigeria) - Pope Benedict XVI has advised the Nigerian government to take

ex: 5/23/2004 decisive steps to... Read more > Abeokuta (Nigeria) — Senate ..

Search
| structure 15 key to resolution

\tksre\f has been bamshed from the Catholic Church and its renegade pastor was returned

Sorted by relevance Iu the status of a layman by Pope Benedict XVI.

Sorted by date

Figure 1.2: Results of the queriPope Benedict XVI and the temporal criteria
2002/01/01 TO 2004/31/12 (retrieved 2011/08/29).

As illustrated by the two examples, it is clear that there mead for highly efficient
and practical approaches to searching temporal documéetions. Thus, the goal of
this thesis is to identify and study problems in searchimgp@ral document collections,
as well as propose approaches as solutions to the problantise hext section, we will
present research problems that are addressed in this.thesis



6 Section 1.2. Research Questions

1.2 Research Questions

Based on the motivation stated in the previous section, thie research question ikiow
to exploit temporal information provided in documents, rigee and external sources
of data in order to improve the retrieval effectiveness iarsking temporal document
collections?Intuitively, we want to solve the main research question pgrialyzing the
contents of temporal document collections, 2) performimgalysis of temporal queries,
and 3) explicitly modeling the time dimension into retrieemd ranking. Hence, the
research questions we address are corresponding to timies to information retrieval:
content analysiqjuery analysisandretrieval and ranking modelsviore specific research
guestions are presented below.

1.2.1 Content Analysis

Incorporating the time dimension into search can increbseadtrieval effectiveness if
information about the creation or publication time of doents is available. However,
it is not always easy to find an accurate and trustworthy tiamep of a document for
some reasons. First, the time metadata of documents peelsierthe past might not be
readable and interpretable today. Second, it is difficuiiinid an accurate and trustworthy
timestamp for a web document because of the decentralizacerat the web, where the
document can be relocated and its time metadata made uneeliloreover, in a web
warehouse or a web archive there is no guarantee that a datsmmeation date and the
time of retrieval by the crawler are related. In this thesis,want to analyze documents’
contents in order to estimate the time of publication of soents/contents or the time of
the topic of documents’ contents. Thus, the first researelstipn we address is:

RQ1. How to determine the time of non-timestamped docurnreatder to
improve the effectiveness in searching temporal docunadieictions?

1.2.2 Query Analysis

Several studies of real-world user query logs have showtrte¢hgoral queries comprises
a significant fraction of web search queries [86, 94, 140t.dxample, Zhang et al. [140]
showed that 13.8% of queries contain explicit time and 17df%ueries have tempo-
ral intent implicitly provided. An example of a query withrte explicitly provided is
U.S. Presidential election 2008, while Germany FIFA World Cup is a query without
temporal criteria provided. However, for the latter exam@ user’s temporal intent is
implicitly provided, i.e., referring to the World Cup event in 2006. lis thesis, we want
to determine the time of a query when time is implicitly piabe@. Note that, this search
scenario happens when users have no knowledge regardiefeatnt time periods for a
guery, so that no time can be explicitly provided in the quétgnce, the second research
guestion we address is:

RQ2. How to determine the time of an implicit temporal querg ase the
determined time for re-ranking search results?
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The effect of terminology changes over time can cause a @molrh searching tem-
poral document collections. In fact, the definition, megnam name of terms can alter.
Moreover, terms can be obsolete, i.e., no longer used. Fongbe, the term “Siam” was
used as a nhame for “Thailand” before 1939, but it is rarelydusavadays. This causes
a problem for a temporal search if a query and documents aresented in different
forms, i.e., historical or modern forms. Given the qué&hailand before 1939, docu-
ments about Thailand that were written using the term “Siand published before 1939
will not be retrieved. Therefore, the third research quesive address in this thesis is:

RQ3. How to handle terminology changes in searching tempmireument
collections?

The research questions presented above are related toeyenysion and query ref-
ormation. In addition to that, we also want to analyze theeedl effectiveness of tem-
poral queries with respect to a specific retrieval model.drtipular, we will studyquery
performance predictiof0] for temporal queries.

Query performance prediction refers to the task of predlicthe retrieval effective-
ness that queries will achieve with respect to a particaaking model in advance of, or
during the retrieval stage, so that particular actions estiaken to improve the overall per-
formance [42]. Query performance prediction is useful too@sing between alternative
guery enhancement techniques, e.g., query expansion anglsiiggestion. In this thesis,
we want to investigate different methods for predictingdbery performance or retrieval
effectiveness of temporal queries. Hence, the fourth rebeguestion we address in this
thesis is:

RQ4. How to predict the retrieval effectiveness of tempguaries?

Two time dimensions commonly exploited in time-aware ragkare 1)publication
time, and 2)content timgtemporal expressions mentioned in documents’ conteAs).
shown later in the thesis, it makes a difference in retri@ffdctiveness for temporal
gueries when ranking using publication time or content tifBg determining whether a
temporal query is sensitive to publication time or contengt the most suitable retrieval
model can be employed. Consider the following examplesngive queryapan quake
869 AD, relevant documents should be those containing the terngqreession 869 AD,
but not those created or published in 869 AD. On the other hahdn searching for a
current event, such agacademy award rumors, temporal expressions in documents
should be more important in consideration than the pultinaime of documents. Thus,
the fifth research question we address is:

RQ5. How to predict the suitable time-aware ranking modelaféemporal
query?
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1.2.3 Retrieval and Ranking Models

In many cases, when searching temporal document colletsearch results are dis-
played in chronological order where recently created danimare ranked higher than
older documents. However, chronological ordering is natgk effective. Therefore, a
retrieval model should rank documents by the degree of aale with respect to time.
More precisely, documents must be ranked according to lestindl and temporal sim-
ilarity. In addition, a time-aware ranking model shouldoatake into accountime un-
certainty, which captures the fact that the relevance of documentsamayge over time.
Thus, the sixth research question we address is:

RQ6. How to explicitly model the time dimension into retieand ranking?

In general, a time-aware ranking model gives scores to deatsrwith respect to
textual and temporal similarity. However, we want to studyether exploiting other
features together with time can help improving the retili@ffectiveness in searching
temporal document collections. Specifically, we set up a taask calledranking related
news predictionswhich is aimed at retrieving predictions related to a netasysbeing
read, and ranking them according to their relevance to thes rstory. The challenges
of this task are related to various aspects of IR problemse-ware ranking, sentence
retrieval, entity ranking, and domain-specific predictionn this case, we need to find
features used for capturing the similarity between an mfdron need and predictions
of future-related events, and combine such features fevaeke ranking. Thus, the last
research question we address in this thesis is:

RQ7. How to combine different features with time in order tprowe rele-
vance ranking?

1.3 Research Context

The PhD work is carried out as a part of four-year PhD prograthe Department of
Computer and Information Science, Norwegian University oieSce and Technology
(NTNU) under the main supervision by Professor Kjetil Nayvand the co-supervision
by Professor Jon Atle Gulla and Associate Professor Heri Repieao.

The PhD work is a formal part of LongRec - Records Managemenmt@seades [79].
LongRec is a joint-industry project focusing on the challengf persistent, reliable, and
trustworthy long-term storage of digital records. LongR&organized as a consortium
led by DNV and partially funded by the Norwegian Research Ciburntemphasizes
on the availability and use of information. Problems assted with digital preservation
typically emerge when the lifetime of digital documents exds 10 years and digital
documents are expected to undergo several changes dueingjfétime.
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1.4 Research Method

We have already explained our motivation and mentionedipeesearch questions in
the previous section. This section presents the researtttothéor doing the PhD work.

We begin our research work by doing a literature study oestétthe-art of research
topics including information retrieval techniques, mahiearning, text mining, and in-
formation extraction. We aim at analyzing advantages asad¥antages of existing ap-
proaches as well as looking for a possibility for improveinen

In order to answer our research questions, we implement proagh for solving a
particular research question either as an independentlmodas a complete prototype.
Then, we evaluate performance of the approach by condueipgriments using test
data. Test data used in the experiments can be standardliestions (TREC, CLEF,
etc.), or synthetic collections created by us. For therdatte manually collect queries for
evaluation, and obtain relevance judgment using expeggs@r crowdsourcing. Several
metrics are used for measuring the effectiveness of oulggexpapproaches, for example,
standard IR measures like precision, recall and F-measure.

1.5 Contributions

The work on time-aware approaches to information retriev/al relatively new field of
research. Hence, our contributions are a combination oélreqpproaches and improve-
ments on existing techniques. In the following, we will gawvérief summary of our con-
tributions, and indicate the corresponding research guesas well as the subsequent
chapters where detailed contributions can be found. In sanpyrour contributions to the
PhD workaccomplish all research questignghich are listed below:

I. Content Analysis

C1. We propose different techniques for determining the tifm@on-timestamped
documents by improving temporal language models (origimabposed by de
Jong et al. [29]). The improved techniques that are proposdalde semantic-
based preprocessing, and incorporating internal andredt&nowledge into
the language models. In addition, we present a tool for deteng the time of
a non-timestamped document using the proposed techniques.

[The contributions are solutions to RQ1, which will be discdsseChapter 3

lI. Query Analysis

C2. We perform the first study on how to determine the time ofriggewithout
temporal criteria provided, and propose techniques foerdahing time. In
addition, we propose an approach to re-ranking searchisdspincorporating
the determined time of queries.

[The contributions are solutions to RQ2, which will be discdsseChapter 4]
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C3.

C4.

C5.

We model Wikipedia as a temporal resource and use it foodsing time-

based synonyms. Moreover, we propose a query expansiamdeehusing the
discovered time-based synonyms. Finally, we present a aegtsve search
tool that exploits changing synonyms over time.

[The contributions are solutions to RQ3, which will be discdsseChapter 5

We perform the first study and analysis of query perforragmediction of
temporal queries. In particular, we propose different timased predictors and
techniques for combining multiple predictors in order tgnaove query perfor-
mance prediction.

[The contributions are solutions to RQ4, which will be discdseeChapter 6]

We perform the first study on the impact on retrieval eifeciess of two differ-

ent ranking models that exploit two time dimensions. We pegpan approach
to predicting the suitable time-aware ranking model baseghachine learning
techniques, using three classes of features.

[The contributions are solutions to RQ5, which will be discdseeChapter 7|

Retrieval and Ranking Models

C6.

C7.

We analyze different time-aware ranking methods cotegriwo main as-
pects: 1) whether or not time uncertainty is concerned, gndtether the
publication time or the content time of a document is usedainking. By
conducting extensive experiments, we evaluate the ratrieffectiveness of
different time-aware ranking methods.

[The contributions are solutions to RQ6, which will be discdseeChapter §

The first formalization of theanking related news predictiortask is given.
Moreover, we propose a learned ranking model incorpordting classes of
features including term similarity, entity-based simtlgrtopic similarity, and

temporal similarity.

[The contributions are solutions to RQ7, which will be discdsseChapter 9

1.6 Publications

Our contributions to this PhD work have been published iressvinternational con-
ferences. Below is given a list of publications and the cquoesing chapters where
publications are included.

P1. Nattiya Kanhabua and Kjetil Ngrvatmproving Temporal Language Models For

Determining Time of Non-Timestamped Documgb®, Proceedings of the 12th
European Conference on Research and Advanced Technologydital.ibraries
2008 (ECDL'2008), Aarhus, Denmark, September 2008.

[This publication is included in Chapter|3

P2. Nattiya Kanhabua and Kjetil Ngrvagsing Temporal Language Models for Doc-

ument Dating(demo) [58], Proceedings of the European Conference on Machi
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P3.

P4.

P5.

P6.

P7.

P8.

PO.

Learning and Principles and Practice of Knowledge DiscpueDatabases (ECML
PKDD’2009), Bled, Slovenia, September 2009.
[This publication is included in Chapter|3

Nattiya Kanhabua and Kjetil Ngrvagxploiting Time-based Synonyms in Searching
Document Archivefs0], Proceedings of the ACM/IEEE Conference on Digital Li-
braries (JCDL'2010), Brisbane, Australia, June 2010.

[This publication is included in Chapter|5

Nattiya Kanhabua and Kjetil Ngrvagetermining Time of Queries for Re-ranking
Search Resultfs9], Proceedings of the 14th European Conference on Resaadch
Advanced Technology for Digital Libraries 2010 (ECDL201Glasgow, Scotland,
UK, September 2010.

[This publication is included in Chapter|4

Nattiya Kanhabua and Kjetil NervaQUEST: Query Expansion using Synonyms
over Timg(demo) [61], Proceedings of the European Conference on Madlgarn-
ing and Principles and Practice of Knowledge Discovery itabases (ECML PKDD’
2010), Barcelona, Spain, September 2010.

[This publication is included in Chapter|5

Nattiya Kanhabua and Kjetil Ngrvagy,Comparison of Time-aware Ranking Meth-
ods (poster) [62], Proceedings of the 34th Annual ACM SIGIR Coafee (SI-
GIR’2011), Beijing, China, July 2011.

[This publication is included in Chapter|8

Nattiya Kanhabua and Kjetil Nagrvagime-based Query Performance Predictors
(poster) [63], Proceedings of the 34th Annual ACM SIGIR Coerfee (SIGIR’2011),
Beijing, China, July 2011.

[This publication is included in Chapter|6

Nattiya Kanhabua, Roi Blanco and Michael MatthelRanking Related News Pre-
dictions[56], Proceedings of the 34th Annual ACM SIGIR Conference (&&011),
Beijing, China, July 2011.

[This publication is included in Chapter|9

Nattiya Kanhabua, Klaus Berberich and Kjetil NarvEigye-aware Ranking Predic-
tion, (under submission).
[This publication is included in Chapter|7

1.7 Thesis Organization

The thesis is divided into four main parts. Part | presentsvations, research questions,
technical background and the state-of-the-art. Part Ipkdsents our proposed time-
aware approaches to searching temporal document coltecfitne detailed organization
of the thesis is outlined below.
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Part I - Overview and Background

Chapter 1 includes this introduction, which states our motivatiortto$ PhD the-
sis. Research questions and methodology for conductinghésstare also
discussed in this chapter.

Chapter 2 describes technical background composed of fundamerdahigues
useful for understanding the work in this thesis. In additithe state-of-the-
art relevant to the PhD thesis is also explained.

Part Il - Content Analysis

Chapter 3 presents and evaluates our proposed approach to detegrti@rtime
of non-timestamped documents.

Part 11l - Query Analysis
Chapter 4 describes approaches to determining the time of queridsutitem-

poral criteria provided and evaluate our proposed appesch

Chapter 5 presents the effect of terminology changes over time, amoagp to
solving the problem and the evaluation of the proposed ambro

Chapter 6 discusses query performance prediction for temporal gegpresents
time-based predictors and the evaluation of the proposdiats.

Chapter 7 presents and evaluates an approach to predicting theleuitabk-aware
ranking model based on machine learning techniques, usineg tlasses of
features.

Part VI - Retrieval and Ranking Models

Chapter 8 describes an empirical comparison of different time-awan&ing meth-
ods.

Chapter 9 presents and evaluates a learned ranking model that cosnioinkéiple
evidences with time for relevance ranking.

Finally, in Chapter 10, we give conclusions, outline futur@ky and discuss possible
research topics beyond what have been addressed in the thesi



Chapter 2

Background and State-of-the-art

In this chapter, we briefly describe fundamental techniguéise research area of infor-
mation retrieval, which are useful for understanding ountdbutions in the following
chapters. Then, we describe temporal information retriexplaining howtime can be
represented and exploited in IR, and giving an overview ofthee-of-the-art techniques
in temporal information retrieval.

2.1 Information Retrieval

Information retrieval (IR) provides a user with the ability &ccess information about
his/her topics of interest, calleah information need A document collection refers to
a data repository containing different types of documesiish as textual documents or
multimedia documents. A typical IR system allows a user tmidate his/her information
need using one or more keywords, calieduery Then, the system retrieves documents
related to the query and ranks the results according toaetevbefore returning them to
the user. For example, given the quéHgFA Euro 2008, the user interfaces and results
returned by two different IR systems are shown in Figure 2.1.

In general, the process of information retrieval consi$tthoee main components:
document indexing, query processing and document relyi@sallustrated in Figure 2.2.
Another important issue critical to IR is retrieval evaioat which is not a part of the
online retrieval process. We will now describe each IR congpd in more detail.

2.1.1 Document Indexing

One major concern when building an IR system is efficiena t, the system should
process a query and return a result list to the user as fastsagofe. In order to increase
the speed of search, documents must be indexed. In this w#y,system avoids linearly
scanning the document collection to find the documents nregche query.

The process of transforming documents into index is calmliment indexingvhich
basically includes two main steps: 1) document acquisiéind 2) text preprocessing.
Document acquisition refers to the process of obtainingidmnts, e.g., scanning books
into digital documents or crawling web pages. Before a docuroan be indexed, a text

13
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Figure 2.1: Examples of the user interfaces and resultsmediby two search systems.
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Figure 2.2: Main components of a typical IR system.

preprocessing step must be performed. For unstructuréglledocuments, the prepro-
cessing step can include tokenization, part-of-speeadhirigg stopword removal, stem-
ming and lemmatization.

1.

Tokenization splits a document into a list of words or twkeln English, a period,
a question mark, an exclamation mark, or a comma are usedi@nse delimiters.

. Tagging is the process of labeling each token with its-p&dpeech (POS) in the

sentence, such as, a noun, a proper noun, an adjective, aavedierminer, or
a number. POS tagging helps in removal of irrelevant words.,(@djectives, or
determiners) and also can reduce ambiguity of word senskseweral meanings (a
noun or a verb). Moreover, tagged tokens are also usefuhéstemming process.

Stopword removal aims at eliminating less informativeuseless words before
indexing. Highly frequent words like articles, prepositsp and conjunctions are
stopwords which are not necessarily useful in distinguisbrag documents.

The stemming process reduces syntactic variations alsmay transforming them
into a common form (a root of word, or stem) for example, ‘t@ecomes ‘car’.
In addition, stemming helps in reducing the vocabulary.sfae easy and efficient
method for stemming is to do affix removal by writing rules.

Lemmatization is the lexicon approach mapping infleciofihwords into one canon-
ical representation or lemma, such as, mapping variousfeenis to infinite, map-
ping plural noun to singular form, or mapping comparativerfe of an adjective to
the normal form.

After text preprocessing, terms as well as the informatiooua documents and posi-
tions will be stored in thelocument index
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2.1.2 Query Processing

A user expresses his/her information need by formulatingexygtypically consisting of
one or more keywords. The results of a query in an IR systenpadily matcha given
query. In other words, it retrieves documents containifigrmationrelevantto the query.
A document is considered relevant if it is one that the usecegyees as containing infor-
mation of value with respect to their personal informati@ed [82]. Given a query
and a document, the degree of relevance a@fwith respect tg; is determined by the IR
system and depends on the retrieval model that the systerogsnDifferent retrieval
models will be described in the next section. The basic carapts for query processing
are 1) query preprocessing and 2) query refinement. Notedbaty refinement is op-
tional, and itis dependent on an IR application. A query rbegtreprocessed in the same
way as the documents in order to be able to match the queryindtx terms. For in-
stance, a query can be tokenized, stop-word removal, stdmamemmatized. In general,
a query is not preprocessed extensively because it onlysterd a few keywords. After
representing both a query and a document using the sametfdhmanatching process
will be performed during retrieval.

Consider two example queries: the queay is unable to match a document contain-
ing “automobile”, and similarly the quemlane is unable to match a document contain-
ing “aircraft” because documents do not exactly containghery queries. This is one
of two classic problems in natural languages: synonymy atygspmy. Synonymy refers
to a case where two different words have the same meaningcargnd “automobile”,
or plane and “aircraft”. On the contrary, polysemy refers to the cabere a term has
multiple meanings. For instance, the term “java” can refeptogramming language,
coffee, or an island in Indonesia. In order to overcome tlublems,query refinement
or the process of reformulating the query using semanyicathilar terms, can be per-
formed either manually by a user or automatically by a syst@mo main approaches
can be applied to tackle with the problems [82]: 1) globalhods and 2) local methods.
Global methods reformulate the original query by expandiinvgth other semantically
similar terms, which can be done independently of the ilig&ieved results. Examples
of global methods are query expansion/reformulation withesaurus, spelling correc-
tion, and query suggestion. Local methods reformulate tlggnal query by analyzing
the initial results returned. The local methods includevahce feedback and pseudo
relevance feedback (also known as blind relevance feeglback

In this work, we employ two techniquejuery expansiomusing a thesaurus and
pseudo relevance feedbackQuery expansion is aimed at improving the retrieval ef-
fectiveness, especially recall, by expanding the querggusynonyms or related terms
from a thesaurus (or a controlled vocabulary). Generallfhesaurus is composed of
synonymous names for concepts and can be manually createdniign editors, semi-
automatically created using machine learning, or fullyaudted using word co-occurrence
statistics or query log analysis. Note that, applying gueqyansion can decrease preci-
sion significantly when a query contains ambiguous terms.

Relevance feedbadk the process of involving a user in improving the final resof
retrieval. First, a user issues a query and the system eetieninitial results of retrieval.



Chapter 2. Background and State-of-the-art 17

Table 2.1: A term-document matrix represents a documengusnary weighting1,0}.

Documents
dy dy d3 dy
UEFA 1 0 0 1
Europe 1 1 0 1
Terms football 1 1 1 1

championship 0 1 1 O

Then, the user is able to provide feedbacks by labeling eactirdent in the initial result
set agelevantor non-relevance Finally, the system will employ the feedback to refor-
mulate the original query and return the final results, whaidhretrieved with respect to
the modified query.Pseudo relevance feedback the other hand does not require in-
volvement from the user. It assumes that the top-k retri@@liments are relevant to
the query without asking for an additional input from theru€oth relevance feedback
and pseudo relevance feedback have been shown to improvettieval effectiveness.
However, they can lead tguery driftfor some queries with too few relevant documents
in the top-k retrieved results.

2.1.3 Document Retrieval

Document retrieval is the core process of IR, and a retriewaehis a major component

of document retrieval. Several retrieval models have begpgsed, for example, Boolean
retrieval model, vector space model, probabilistic moldglguage modeling approaches
and learning-to-rank. Retrieval models differ from eacheotih many aspects including

guery interpretation, document representation, and deatiscoring and ranking algo-

rithms employed. In the following, we will explain each oktretrieval models.

Boolean Retrieval Model

The Boolean retrieval model is the simplest IR model. A qusty combination of terms
and Boolean operators AND, OR and NOT. A document is modeldg®f wordgan
unordered list of terms). Each term in the document is reotesl using binary weighting
{1,0} (1 for term presence and O for term absence) as illustraied asterm-document
matrix in Table 2.1.

The Boolean retrieval model ignores the degree of relevamme st assumes two
outcomes of relevance, i.e., relevant or non-relevant.simatd, q) be a function giving
a relevance score, a document score is either 1 (relevartt)(non-relevant), that is,
sim(q, d) € {1,0}. Given the Boolean queffEFA AND championship) NOT league,
the results are those documents containing both terms “UBRA “championship” but
not the term “league”, as illustrated using a Venn diagrafigure 2.3. Intuitively, the
model returns all documents “exactly matched” with the guerms without ordering the
documents.
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league
{d3,d4}

UEFA
{d1, d2 ,d3}

championship
{d2,d3,d4}

Figure 2.3: Result of the que(WEFA AND championship) NOT league is the shaded
area, ofrds,.

Despite its simplicity, the retrieval effectiveness of a Bam query depends entirely
on the user. In order to gain high effectiveness, the useissare a complex query, but
it is quite difficult to formulate. If a simple query is usetiete might be too few or too
many documents retrieved. If a large number of documentsetrieved, this poses a
problem for the user because he/she has to spend time lofikinlgose satisfying the
information needs.

Vector Space Model

The vector space model is a ranked retrieval model. Thabyments are retrieved and
ranked descendingly by the degree of relevance, which camdasured as the similarity
between a query and a document. First, a query and docunrerepaesented as vectors
of term weights by using a term weighting scheme, dfgdf. Given a termw and a
document, tf is the term frequency af, which is normalized by the total term frequency
in d. Thus,tf can be computed as:

freq(w, d)
>t freq(w;, d)

wherefreq(w, d) is the term frequency ab in d andn, is the number of distinct terms
in d. tf captures the importance of a teemin a document by assuming that the higtfer
score ofw, the more importance af with respect tal. Intuitively, terms that convey the
topics of a document should have high valueff of

idf is the inverse document frequency weight of a ternit measures the importance
of w with respect to a document collectiolf can be seen as a discriminating property,
where a term that appears in many documentsss discriminativehan a term appears
in a few documents. For example, the term “football” ocawgrin all documents. Thus,

tf(w, d) = (2.1)
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it is less discriminativeompared to the term “UEFA’ occurring in only two documents.
idf can be computed as:

idf(w) = log N (2.2)

whereN is the total number of documents in a collection, ands the number of docu-
ments in which a ternw occurs. Finally, af-idf weight of a termw in a document! can
be computed using the functi¢fidf (w,d) given as:

tf-idf(w, d) = tf(w, ) - idf(w) (2.3)

Finally, a queryy and a document can be represented as vectorsfadlf weights of
all terms in the vocabulary as:

<w1,Q7 v 7¢n,q>
(V1,45 Una)
wherev), , is tf-idf weight of a termw; in ¢ andv), 4 is tf-idf weight of a termw; in d.

The similarity of the term-weight vectors gfandd can be computed using the cosine
similarity as:

g=
d =

L= qge d
sim(¢. d) = =
|q] < |d| (2.4
Z?zl Yig X Vi '

\/Z?:1 wzz,q X D iy zd

The advantages of the vector space model over the Booledevedtmodel are: 1) it
employs term weighting which improves the retrieval effemtess, 2) the degree of sim-
ilarity allows partially matching documents to be retridyand 3) it is fast and easy for
implementing. However, there are some disadvantages ofettier space model. First,
it makes no assumption about term dependency, which migtttte poor results [8]. In
addition, the vector space model makes no explicit defmiidelevance In other words,
there is no assumption about whether relevance is binaryiavatued, which can impact
the effectiveness of ranking models.

Probabilistic Model

The probabilistic model was first proposed by Robertson amés)¢102]. The model
exploits probabilistic theory to capture the uncertaimyhe IR process. That is, docu-
ments are ranked according to the probability of relevarideere are two assumptions

in this model: 1) relevance is a binary property, that is, eudeent is either relevant or
non-relevant, and 2) the relevance of a document does nendegn other documents.
Given a query, let R and R be the set of relevant documents and the set of non-relevant
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documents with respect tprespectively. A basic task is to gather all possible evidsnc
in order to describe the properties of the sets of relevacish@nts and non-relevant doc-
uments. The similarity off and a documeni can be computed using the odd ratio of
relevance as:

i - 542

In order to simplify the calculation, Bayes’ theorem is apgliyielding the following
formula:

(2.5)

(2.6)

where P(R) is the a prior probability of a relevant document, aR@R) is the a prior
probability of a non-relevant document. For a given qugny is assumed that both prior
probabilities are the same for all documents, so they cagrmaéd from the calculation.
P(d|R) and P(d| R) are probabilities of randomly selecting a documéfrom the set of
relevant document® and the set of non-relevant documentsespectively.

In the probabilistic model, a documehis represented as a vector of terms with binary
weighting, which indicates term occurrence or non-ocewree

J: <¢1,d7 cee 7¢n,d>

where1); 4 is the weight of a termw; in a documentl, and+;, € {0,1}. In order to
computeP(d|R) and P(d|R), it assumes the Naive Bayes conditional independence [82],
that is, the presence or absence of a term in a document isegndent of the presence
or absence of other terms in the given query. Thus, the catipatof similarity can be
simplified as:

sim(d, q) ~ ig;l:g;

~ H?:l P(wzlf;?)
H?:l P(w;|R)

whereP (w;|R) is the probability that a terns; occurs in relevant documents, aR¢uw;| )

is the probability that a ternw; occurs in non-relevant documents. By modeling relevance
using probability theory makes the probabilistic modeltietically sound compared to
the Boolean retrieval model and the vector space model. Henvawdrawback is an in-
dependence assumption of terms, which is contrary to thetliat any two terms can

2.7)
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Table 2.2: Example of a language model or a probability ihgtion over terms in the
language.

Term Probability
UEFA 0.18
Europe 0.27
championship 0.36
football 0.18

be semantically related. In addition, the probabilisticdelds difficult to implement be-
cause the complete sets of relevant documents and noranéléecuments are not easy
to obtain. Thus, in order to compufé(w;|R) and P(w;|R), it is needed to guess prior
probabilities of a termw; by retrieving tops relevant documents and then perform itera-
tive retrieval in order to recalculate probabilities. Thsakes it difficult to implement the
model. In addition, the probabilistic model ignores thejfrency of terms in a document.

Language Modeling

Originally, language modeling was employed in speech netiog for recognizing or
generating a sequence of terms. In recent years, languade aqgproaches have gained
interests from the IR community and been applied for IR. A leage model/, is es-
timated from a set of document3, which is viewed as the probability distribution for
generating a sequence of terms in a language. An examplenfjiadge model is shown
in Table 2.2. The probability of generating a sequence afisezan be computed by multi-
plying the probability of generating each term in the segedcalled a unigram language
model), which can be computed as:

P(wl,wg,w3|MD) = P(w1|MD) : P(w2|MD) : P(wglMD) (28)

The original language modeling approach to IR is calledjtery likelihood modgB2].
In this model, a documeiatis ranked by the probability of a documehas the likelihood
that it is relevant to a query, or P(d|q). By applying Bayes’ theorem?(d|q) can be
computed as:

Plg|d) - P(d)

Pldlg) = =5

(2.9)

where P(q) is the probability of a query, and P(d) is a document’s prior probability.
Both P(q) and P(d) are in general ignored from the calculation because theg Has
same values for all documents. The core of ¢uery likelihood modeis to compute
P(q|d) or the probability of generatinggiven the language model df M. P(q|d) can
be computed using maximum likelihood estimation (MLE) aime tinigram assumption
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as:

P(Q|Md) = P(w1,w27W3|Md)

=TT Pty .

wheren, is the number of terms in. The equation above is prone to zero-probability,
which means that one or more termsgimay be absent from a document In order

to avoid zero-probability, a smoothing technique can bdiegpn order to add a small
(non-zero) probability to terms that are absent from a da@nunSuch a small probability
is generally taken from the background document collectieor each query term, a
smoothing technique is applied yielding the estimated aiodiy P(w[d) of generating
each query ternw from d as:

P(w|d) = X - P(w|My) + (1 = \) - P(w|Mc) (2.11)

where the smoothing parametee [0, 1]. C'is the background document collectioW
is the language model generated from the background doltect

Learning to Rank

Many researchers have applied machine learning algorithorsier to optimize the qual-
ity of ranking, called learning-to-rank approaches. Inggah there are three main steps
for modeling a ranking function using learning-to-rank eggehes [76]:

1. Identify features A set of featureqxy, xo, ..., z,,} are defined as sources of the
relevance of a document with respect to a query;. Normally, a value of each
featurez; is a real number betweef, 1]. The same notation will be used for both
feature and its value, thats. Given a query;;, a document; can be represented
as a vector of feature value$, = (z1,xo,...,z,) indicating the relevance af;
with respect tay;.

2. Learn a ranking modelMachine learning is used for learning a ranking function
h(q,d) based on training data, called supervised learning. Trgidata is a set of
triples of labeled or judged query/document pdifg;, d;, yx) }, where each docu-
mentd; is represented by its feature valués; {1,...,n} andj € {1,...,m}. A
judgment or label;, can be either relevant or non-relevapte {1, —1}, or arank
representing by natural numbejse IN.

3. Rank documents using modele ranking functiork(q, d) learned in the previous
step will be used for ranking test data, or a set of unseenyffiGrument pairs
{(g;,d;)} wherei ¢ {1,...,n}andj ¢ {1,...,m}. The result is a judgment or
labely; for each query/document pair.



Chapter 2. Background and State-of-the-art 23

A ranking modeli(d, q) is obtained by training a set of labeled query/documenspair
using a learning algorithm. A learned ranking model is etsalyra weighted coefficient
w; of a featurer;. An unseen document/query péit', ¢') will be ranked according to a
weighted sum of feature scores:

N
scordd’,q') = Y w; x af (2.12)
=1

where N is the number of features. Many existing learning algorghmave been pro-
posed, and can be categorized into three approaches: Eenairwise, and listwise
approaches [76]. The pointwise approach assumes thavwedrdocuments are indepen-
dent, so it predicts a relevance judgment for each docunmehigmores the positions of
documents in a ranked list. The pairwise approach conseeas of documents, and rel-
evance prediction is given as the relative order betweem {fne., pairwise preference).
The listwise approach considers a whole set of retrievedmeats, and predicts the rel-
evance degrees among documents. For a more detailed diescop each approach,
please refer to [76].

2.1.4 Retrieval Evaluation

In the IR research community, it is common to evaluate an IResy using a test col-
lection, which is composed of various document collecti@aset of queries, and rele-
vance judgments for queries. For example, the Text Retriéealference (TREC) and
Cross Language Evaluation Forum (CLEF) provide test cotlestiand evaluation data
for different IR tasks, such as, ad hoc search, enterpraelsequestion answering, cross
language retrieval, etc. Building each test collection imes evaluating all documents in
a collection, which is a time-consuming process for humaessors and not feasible in
practice. In general, poolingtechnique is used in TREC for creatingp@ol of relevance
judgments [24]. Tope documents (between 50 and 200) from the rankings obtained by
different search engines (or retrieval algorithms) aregeéinto a pool, and duplicates are
removed. Then, documents are presented in some randomtorassessors for making
relevance judgments. Hence, the final output of pooling istakrelevance judgments
for the queries.

Basically, there are two aspects of evaluating an IR systéreffitiency and 2) ef-
fectiveness. Efficiency measures a system’s response tiches@ace usage, while ef-
fectiveness measures the quality of the system’s relevearde@ng. In this work, we
only consider the retrieval effectiveness aspect. Twoiogethat are commonly used for
evaluating the retrieval effectiveness @recisionandrecall. Precision is the fraction of
retrieveddocuments that are relevant. Recall is the fractiorl@vantdocuments that are
retrieved. LetR be the set of relevant documents afhthe the set of retrieved documents
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(answer set) of. Precision and recall can be computed as:

precision= w
RN Al (2.13)
recall =

F-measure is a single measure that combines precision ealll @nd it is computed

as the weighted harmonic mean of precision and recall:
2-P-R
F= P+ R) (2.14)

whereP is precision and? is recall. In this work, we also use other metrics for measyri
the retrieval effectivenes®recision at topk documents, so-called P@k, focuses on only
top documents and it is easy to compute. For example, poacatitop-5, 10 and 15 are
denoted as P@5, P@10 and P@15 respectividan Average PrecisiofMAP) provides
a summarization of rankings from multiple queries by avergthe precision values from
the rank positions where a relevant document was retrievealyerage precisionMean
Reciprocal RanKMRR) is the average of the reciprocal ranks over a set of gsiesikere
reciprocal rank is the rank at which the first relevant docoineretrieved.

More thorough description on retrieval evaluation can hatbin [8, 24, 82].

2.2 Temporal Information Retrieval

Temporal information retrieval refers to IR tasks that gmaland exploit the time dimen-
sion embedded in documents to provide alternative seaathrés and user experience.
Examples of interesting applications of temporal IR areutioent exploration, similarity
search, summarization, and clustering.

As mentioned previously, we want to exploit temporal infatian in document col-
lections, queries or external sources of data in order taongthe quality of search
or the retrieval effectiveness. Basically, two types of temapinformation particularly
useful for temporal IR: 1) the publication or creation timeaaflocument, and 2) tempo-
ral expressions mentioned in a document or a query. In thewilg, we first give an
overview of different types of temporal expressions. Theea,present time models de-
fined in two previous work [12, 29], which later are used astmodels also in our work.
Finally, we present state-of-the-art in temporal IR.

2.2.1 Temporal Expressions

As explained in [2], there are three types of temporal exgioes: explicit, implicit and
relative. An explicit temporal expression mentioned in awdoent can be mapped directly
to a time point or interval, such as, dates or years on thedgiggcalendar. For example,
“July 04, 2010” or “January 01, 2011” are explicit temporapeessions. An implicit
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temporal expression is given in a document as an imprecrge pioint or interval. For
example, “Independence Day 2010” or “New Year Day’s 201 ¥ ianplicit expressions
that can be mapped to “July 04, 2010” or “January 01, 2011peetvely. A relative
temporal expression occurring in a document can be resédvadime point or interval
using a time reference - either an explicit or implicit temgda@xpressions mentioned in
a document or the publication date of the document itself.ekample, the expressions
“this Monday” or “next month” are relative expressions whiwe map to exact dates
using the publication date of the document.

2.2.2 Models for Time, Documents and Queries

In temporal IR, the time dimension must be explicitly modaledocuments and queries.
In the following, we outline models for time, documents an@iges that are employed in
temporal IR tasks.

Time Models

In [29], de Jong et al. modeled time agime partition that is, a document collection
is partitioned into smaller time periods with respect toraetigranularity of interests,
e.g. day, week month or year. A document collectiorC' contains a number of corpus
documents, such as; = {d,,...,d,}. A documentd; is composed of bag-of-words,
and the publication time af; is represented aBme(d;). Thus,d; can be represented as
d; = {{wn,...,w,},Timed;)}. Given a time granularity of interest addis partitioned
into smaller time periods, the associated time partitiom;,0f a time periodty, tx1]
that contains the publication time df, that isTimgd;) € [t;,tx+1]. For example, if
the time granularity of/ear is used, the associated time interval for 2011/08/22 will be
[2011/01/01,2010/12/31]. Two data structures for storing terms and associated time a
proposed [29] as shown in Table 2.3. Both data structures tiffeeent advantages and
disadvantages. A table is good when data is sparse, andfficiert in sorting. On the
other hand, a matrix gives a direct access to data which cproira access time.

In [12], Berberich et al. represented a temporal expressitaced from a document
or the publication time of a document as a quadrugt;, tb,, te;, te,) wheretb, and
tb, are the lower bound and upper bound for the begin boundarieotilme interval
respectively, which underline the time interval’s eatliasd latest possible begin time.
Similarly, te; andte, are the lower bound and upper bound for the end boundary of the
time interval respectively, which underline the time ina8s earliest and latest possible
end time. Since the time interval is not necessarily knowacdy, the time model of
Berberich et al. is proposed to capture lower and upper bdoentise interval boundaries.
To interpret the time uncertainty in this model, considex thllowing example given
in [12]. The temporal expression “in 1998” is represented1&98/01/01, 1998/12/31,
1998/01/01, 1998/12/31), which can refer to any time irdej e] having a begin point
b € [th,th,] and an end point € [te, te,| whereb < e. Note that, the actual value
of any time point, e.gtb,, tb,, te;, or te,, is an integer or the number of time units (e.g.,
milliseconds or days) passed (or to pass) a reference pidime(e.g., the UNIX epoch).
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Table 2.3;: Data Models: Table vs. Matrix

(a) Table (b) Matrix
Word Partition | Frequency| 2002 | 2003 | 2004
terrorist 2002 9478 terrorist| 9478| 7750| 5212
terrorist 2003 7750 tsunami| 101 56 | 26905
terrorist 2004 5212 | | world cup| 19273| 6069 | 448
tsunami 2002 101
tsunami 2003 56
tsunami 2004 26905
world cup| 2002 19273
world cup| 2003 6069
world cup| 2004 448

These time units are referred elsrononsand a temporal expressiens denoted as the
set of time intervals thatcan refer to.

Document Model

A documentd consists of a textual padie (an unordered list of terms) and a temporal part
drime cOmposed of the publication date and a set of temporal esipre&t,, .. .t;}. The
publication date ofi can be obtained from the functid?tubTiméd). Temporal expres-
sions mentioned in the contents®tan be obtained from the functi@@ontentTiméd).
Both the publication date and temporal expressions can beseped using the time
models defined above.

Temporal Query Model

A temporal queryy refers to a query representitgmporal information needsvhich is
composed of two parts: keywordgy and a temporal expressigge. In other words,
a user wants to know about documents that are relevant tothettopic of interest and
temporal intent. Temporal queries can be categorized wbaypes: 1) those with time
explicitly specified, and 2) those with implicit temporatents. An example of a query
with time explicitly specified ighe eruptions of volcanoes in Iceland before 2010.
In this case, a temporal intent is represented by the terhpapaession “before 2010”
indicating that a user wants to know about volcanic eventeaétand during the years
before 2010. A query of the latter type is, for instan€arope flight disruptions from
ash cloud that contains an implicit temporal intent referring to therépe air travel
disruption caused by the Iceland volcano ash problem init&@10” or “May 2011".
Similarly, the temporal part of a query @§n. can be represented using any time models
defined above.

Note that, there is no standard terminology for referringiary in this research area.
Previous work [70, 86, 92, 125] mainly uses the téemporal querieshowever, the term
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time-sensitive querielsas been used recently in some work [27, 32, 139]. We will use
these two terms interchangeably throughout this thesis.

2.2.3 State-of-the-art in Temporal Information Retrieval

In this section, we will give a brief overview of related warktemporal IR: determining
time for non-timestamped documents, time-aware rankarmgpbral indexing, visualiza-
tion using a timeline, and searching with the awarenessofit®logy changes.

Determining Time for Non-timestamped Documents

Determining the time of a document can be done using two ndsthéearning-based
and non-learning methods. The difference between thesestbods is that the former
determines time of a document by learning from a set of tngimlocuments, while the
latter does not require a corpus for training. Learningedasethods are presented in [29,
116, 115]. In [116, 115], they use a statistical method (hiyesis testing) on a group
of terms having an overlapped time period in order to deteenti they are statistically
related. If the computed values from testing are above altlotd, those features are
coalesced into a single topic, and the time of the topic isneged from a common time
period associated to each term. Other previous work ondbis ts the work by de Jong,
Rode, and Hiemstra [29] based on a temporal language modieh will be explained in
more detail in Chapter 3.

Non-learning methods are presented in [77, 81]. In ordeeterdthine time of a doc-
ument, temporal expressions in the document are annotatédeaolved into concrete
dates. A relevancy of each date is computed using the freguanwhich the date ap-
pears in the document. The most relevant date is used asanedalate for the document,
however, if all dates are similar relevant, the publicatiate will be used instead. In the
end, the event-time period of the document is generatedsgnading all nearly dates to
the reference date where their relevancy must be greateatti@eshold.

Comparing the non-learning to learning-based methods, dfdtiem return two dif-
ferent aspects of time. The first method gives a summary & tihevents appeared in the
document content, or time of topic of contents. The secontthoaegives the most likely
originated time of the document, or time of document creatio

Time-aware Ranking

Time-aware ranking techniques can be classified into twegoates: techniques based
on 1)link-based analysiand 2)content-based analysigpproaches of the first category
exploit the link structures of documents in a ranking precadereas the latter approach
leverages the contents of documents instead of links. Irresgarch context, we will
focus on analyzing contents only, because information &laks is not available in all
application domains, and content-based analysis seengsrtmle practical for search in
general.
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Previous work on time-aware ranking that exploits link stanes is presented in [14,
26, 134]. In[134], Yu et al. pointed out that traditionald#based algorithms (i.e., PageR-
ank and HITS) simply ignore the temporal dimension in ragkifhus, they modified the
PageRank algorithm by taking into account the date of a oitdti order to improve the
quality of publication search. A publication obtains a riaugkscore by accumulating the
weights of its citations, where each citation receives agiMeexponentially decreased
by its age. In [14], Berberich et al. also extended PageRan#rtio documents with re-
spect to freshness. The difference is that this work defireesshhess as a linear function
that will give a maximum score when the date of document & diocur withinthe user
specified periocand decrease a score linearly if it occurs outside the iatetvm more
recent work [26], Dai and Davison studied the dynamics of detuments and links that
can affect relevance ranking, and proposed a link-basddngmethod incorporating
the freshness of web documents. Intuitively, features @rsiethnking were captured by
considering two temporal aspects: 1) how fresh the pagesnort, referred to as page
freshness, and 2) how much other pages care about the taget eferred as in-link
freshness.

Ranking methods based on an analysis of document contentesenped in [31, 50,
73, 99, 110]. In [73], Li and Croft proposed to incorporatedimto a language model-
ing framework [72, 100], called a time-based language madaethe previous language
model [72, 100], it is assumed uniform prior probabilitibat in the new model, they as-
signed prior probabilities with an exponential functiortleé created date of a document
where a document with a more recent creation date obtaihganapability. In this work,
they did not explicitly use the contents of documents, buly date metadata. Jatowt et
al. presented in [50] an approach to rank a document by ghifress and relevance. The
method analyzed changed contents between a current vergioarchived versions, and
find a similarity score of changes to a query topic. It is asstithat a document is likely
to have fresh contents if it is frequently changed and ofetdghus, documents are ranked
with respect to the relevance of changed contents to the,tthy@ size of changes and the
time difference between consecutive changes. In othersyardocument is ranked high
if it is modified significantly and recently. In [31], Diaz addnes used timestamp from
document metadata to measure the distribution of retrideedments and create the tem-
poral profile of a query. They showed that the temporal pradiggether with contents of
retrieved documents improve average precision for theygogiusing a set of different
features for discriminating between temporal profiles: Kledyence, autocorrelation,
the kurtosis order, and three factors from the burst model.

Another work on content-based analysis is presented in P&Kio et al. introduced a
process of automatically detecting a topical trend (thengjth of a topic over time) within
a document corpus by analyzing temporal behavior of doctsngsing a statistic topic
model. Then, itis possible to use topical trends on top ofteawitional ranking like tf-idf
to improve the effectiveness of retrieval. In [110], Sh&pdwo et al. proposed a method
that does not require link information. The proposed metiscappropriate for various
types of documents, for example, emails or blogs, lackingmmgful citation data. The
idea is to identify the most influent document by defining thpact of a document as the
amount of follow-up work it generates representetbas/lag index The index measures
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if a document is more leader or more follower by comparinglanities of two documents
and time lag.

Temporal Indexing

Also related is work on temporal indexing for supporting paral text-containment queries.
Ngrvag presented in [92] an approach to manage documentad@dstructures in tem-
poral document databases. Using a web warehouse contduistogical web pages as
a testing environment, the author showed that differengximy methods proposed im-
prove the performance of temporal text-containment qaeria [11], Berberich et al.
presented a method for text search over temporally verdidneuments. They proposed
the temporal coalescingechnique for reducing the index size, and proposed thessubl
materialization technique to improve index performanasceoning space and time. Doc-
uments are retrieved according to a query and user’s sptifie, and are ranked based
on tf-idf.

Visualization using a Timeline

Recent work also consider visualization of search resultggugmporal information to
place retrieved documents on a timeline, which is usefullémument browsing [1, 2, 36].
When a user enters only keywords as a query, retrieved rem@ttoo broad without
giving temporal context. To narrow down a set of documerttgenged, it is necessary to
give an overview of possible time periods relevant to the'gjaed suggest that as a hint
to the user. In [10], they display a histogram of a distribntof the size of estimated
results over a timeline. The intention is to draw tentatiweetperiods for the query, and
then the user can refine the query with the new temporal cohé&ghe is interested in.

Searching with the Awareness of Terminology Changes

Search results can be affected by the terminology changedioe, for instance, changes
of words related to their definitions, semantics, and narpesgle, location, etc.). Itis
important to note that language changes is an continuouggsdhat can be observable
also in a short term period. The variation in languages catwge problems in text re-
trieval; 1) spelling variationor a difference in spelling between the modern and historic
language, and Zemantics variatior terminology evolution over time (new words are
introduced, others disappears, or the meaning of wordsgesan

Previous work [34, 35, 68] addressed the spelling varighiailem using techniques
from cross language information retrieval (CLIR). In [68],d{en et al. proposed a cross-
language approach to historic document retrieval. A ralseld method for modernizing
historic languages, and the retrieval of historic documestng cross-language informa-
tion retrieval techniques are proposed. In [34, 35], Efdstlach and Fuhr used proba-
bilistic rule-based approaches to handling term variamtsmsearching historic texts. In
this case, a user can search using queries in contempongydge and the issued queries
are translated into an old spelling possibly unknown to ger,uvhich is similar to query
expansion. As explained in [34], there are two ways to perfquery expansion: an
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expansion of query and an expansion of index. In the first,@set of rules is automati-
cally constructed for mapping historic terms into modermt In the latter case, based
on a lexical database, terms are indexed together with $iggwnyms and holonyms as
additional indices.

The affect of terminology evolution over time is addresse(ili3, 28, 54, 55, 117].
In [13], Berberich et al. proposed a method based on a hiddekkdManodel for re-
formulating a query into terminology prevalent in the pasaluarachchi et al. [54, 55]
studied the problem of concepts (or entities) whose name<gltange over time. They
proposed to discover concepts that evolve over time usisgcegion rule mining, and
used the discovered concepts to translate time-sensitieges and answered appropri-
ately. In [28], de Boer et al. presented a method for autormaifiextracting event time
periods related to concepts from web documents. In theiroggh, event time periods
are extracted from different documents using regular esgio@s, such as, numerical no-
tations for years. Tahmasebi et al. [117] proposed to autioally detecting terminology
evolution within large, historic document collections ksing clustering techniques and
analyzing co-occurrence graph.
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Chapter 3

Determining Time of Non-timestamped
Documents

In order to incorporate the time dimension into search, aigmnt should be assigned
to its time of creation or published date. However, it is difft to find an accurate and
trustworthy timestamp for a document. This chapter addseg®e research problemow
to determine the time of non-timestamped documents in tvdewprove the effectiveness
in searching temporal document collections?

3.1 Motivation

When searching temporal document collections, it is diffitmlachieve high effective-
ness using only a keyword query because the contents of dodarare strongly time-
dependent. Possible solutions to increase the retrief@tt®feness are, for instance,
extending keyword search with the publication time of doeuts (called temporal crite-
ria), or automatically re-ranking retrieved documentsigdime. Incorporating the time
dimension into search will increase the retrieval effeatiess if a document is assigned
to its time of creation or published date. However, due taésentralized nature and
the lack of standards for date and time, it is difficult to findaccurate and trustwor-
thy timestamp for a web document. In a web warehouse or a waivar there is no
guarantee that the creation time and the time of retrieved lyeb crawler are related.
Similarly, a document can be relocated and its metadata madiable. The purpose
of determining time for non-timestamped documents is toredge the time of publica-
tion of document/contents or the time of topic of documentsitents. The process of
determining the time of documents is calldocument dating

Contributions
Our main contributions in this chapter are:

e We propose different techniques for improving temporagleage models (origi-
nally proposed by de Jong et al. [29]) used for determinirggdieation time of

33
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non-timestamped documents. The proposed approachedémifterent semantic-
based preprocessing. In addition, we aim at improving thadityuof document
dating by incorporating internal and external knowledde the temporal language
models.

e We present a system prototype for dating documents usingridposed extension
approaches. The system prototype can take different ferofanput: a file, the
contents of a given URL, or directly entered text. As outputyill present an
estimation of possible time periods associated with theioh@nt, with confidence
of each of the estimated time periods.

Organization

The organization of the rest of this chapter is as follows.S#ettion 3.2, we give an

overview of related work. In Section 3.3, we outline prelwauies that will be used as
the basis of our approach. In Section 3.4, we explain senobased techniques used in
data preprocessing. In Section 3.5, we propose three nemwages that improve the
previous work: word interpolation, temporal entropy anthgexternal search statistics.
In Section 3.6, we evaluate our proposed techniques. Indpe8t7 we describe our

document dating prototype, and we demonstrate the usage dbtument dating system.
Finally, in Section 3.8, we give conclusions.

3.2 Related Work

Previous work on determining the time of a document can begoaized into 2 ap-
proaches: learning-based and non-learning methods. Ttezetice between the two
methods is that the former determines the time of a documetaarning from a set of
training documents, while the latter does not require auw®gwllection. Learning-based
methods are presented in [29, 116, 115]. In [116, 115], thesyaistatistical method
calledhypothesis testingn a group of terms having an overlapped time period in oxler t
determine if they are statistically related. If the compiutalues from testing are above a
threshold, those features are coalesced into a single tapicthe time of the topic is es-
timated from a common time period associated to each termth&n method presented
by de Jong et al. in [29] is based on a temporal language moketerthe time of the
document is assigned with a certain probability. We willcdiss in details the temporal
language model in the next section.

Non-learning methods are presented in [77, 81, 93]. Theyiregn explicit time-
tagged document. In order to determine the time of a docyreewsh time-tagged word
is resolved into a concrete date and a relevancy of the datenputed using the fre-
guency of which the date appears in the document. The mastargl date is used as
a reference date for the document, however, if all datesiaréas relevant, the publi-
cation date will be used instead. In the end, the event-tiereo@ of the document is
generated by assembling all nearly dates to the refererneeautere their relevancy must
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be greater than a threshold. Nunes et al. [93] propose amaiitee approach to dat-
ing a non-timestamped document using its neighbors, sud) dscuments containing
links to the non-timestamped document (incoming links)d@suments pointed to the
non-timestamped document (outgoing links) and 3) the maskats (e.g., images) asso-
ciated with the non-timestamped document. They computavtbeage of last-modified
dates extracted from neighbor documents and use it as tledfdinthe non-timestamped
document.

More recent work on document dating is the work by Chen et &l. [Zhey propose
a hybrid approach, i.e., extracting and inferring the titaeg of a web document using
a machine learning technique. Different features are useldding linguistic features,
position-based features and the page format and tag infanmaf web documents. In
addition, the links and contents of a web document and ighiairs are also exploited.

Comparing the non-learning to learning-based methods, dfdtrem return two dif-
ferent aspects of time. The first method gives a summary dirtie of events appeared
in the document content, while the latter one gives the niksiyl originated time which
is similar to written the time of the document. In this chapitee focus on analyzing con-
tents only because information about links is not availablall domains, and content-
based analysis seems to be more practical for a generahsgaptcation.

3.3 Preliminaries

In this section, we briefly outline our document model anddtadistic language model
presented by de Jong, Rode and Hiemstra [29]. For short wénwiiie following denote
their approach as thtRHapproach.

3.3.1 Document Model

In our context, a document collection contains a number gbu® documents defined
asC = {dy,ds,ds,...,d,}. A document has two views: a logical view and a temporal
view. The logical view of each document can be seen as bagpuals (an unordered
list of terms, or features), while the temporal view repreéseérustworthy timestamps. A
simple method of modeling the temporal view is partitiontilge spans into a smaller
time granularity. A document model is defineddas= {{wy, wo, ws, ..., w,}, (ti, tiv1)}
wheret; < t;.1, t; < PubTiméd;) < t;1, and(t;,t;,1) is the temporal view of the doc-
ument which can be represented by a time partitRubTiméd;) is a function that gives
trustworthy timestamp of the document and must be validiwitihthe time partition.

3.3.2 Temporal Language Models

The JRH approach is based on temporal language models, which io@igs the time
dimension into language modeling [100]. The temporal laggumodels assign a prob-
ability to a document according to word usage statistics tmee. TheJRH approach



36 Section 3.4. Semantic-based Preprocessing

employs a normalized log-likelihood ratio (NLLR) [69] for mputing the similarity be-
tween two language models. Given a partitioned corpus,pbssible to determine the
time of a non-timestamped documehnby comparing the language model&iwith each
corpus partitiorp; using the following equation:

P(wlp;)
NLLR(d;, p;) P(w|d:) x log —\Ps) 3.1)
wezd P(w|C)
P(w|d2) B Zw/edi tf(w,’ dl) (32)
_ tf(w7pj)
P(wlp;) = ey, 1) (3.3)
Plw|c) = — - C) (3.4)

Yowee w', C)
wheretf(w, d;) is the frequency of a terma in a non-timestamped documeit tf(w, p;)

is the frequency ofv in a time partitionp;. tf(w, C') is the frequency ofv in the entire
collectionC. In other word (' is the background model estimated on the entire collection.
The timestamp of the document is the time partition which imées the score according
to the equation above. The intuition behind the describeithouks that given a document
with unknown timestamp, it is possible to find the time ingdrthat mostly overlaps in
term usage with the document. For example, if the documentaats the word “tsunami”
and corpus statistic shows this word was very frequently uise2004/2005, it can be
assumed that this time period is a good candidate for therdestitimestamp.

As can be seen from the equation, words with zero probalaitgyproblematic, and
smoothing (linear interpolation [69] and Dirichlet smoiotdy [138]) is used to solve the
problem by giving a small (non-zero) probability to wordsabt from a time partition.

In the next section, we will present out approach to deteingithe time of a document,
which basically extends thtRHapproach.

3.4 Semantic-based Preprocessing

Determining the time of a document from a direct comparisetwben extracted words
and corpus partitions has limited accuracy. In order to owprthe performance, we
propose to integrate semantic-based techniques into dadpreprocessing. We have in
our work used the following techniques:

e Part-of-Speech Tagging:Part-of-speech (POS) tagging is the process of labeling
a word with a syntactic class. In our work, we use POS taggingetect only the
most interesting classes of words, for example, nouns, eedbadjectives.

¢ Collocation Extraction: Collocations [83] are common in natural languages, and a
word cannot be classified only on the basis of its meaningetiames co-occurrence
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with other words may alter the meaning dramatically. An epkms “United

States” as one term compared to the two independent ternitedlimnd “states”,
which illustrates the importance of collocations compat@aingle-word terms
when they can be detected.

e Word Sense Disambiguation:The idea of word sense disambiguation (WSD) is
to identify the correct sense of word (for example, two of skases of “bank” are
“river bank” and “money bank”) by analyzing context withirsantence.

e Concept Extraction: Since a timestamp-determination task relies on statisfics
words, it is difficult to determine the timestamp of a docutneith only a few
words in common with a corpus. A possibility is to instead pame concepts in
two language models in order to solve the problem of lessugatjwords.

e Word Filtering: A filtering process is needed to select the most informatioeda
and also decrease the vocabulary size. In our work, we applif-tdf weighting
scheme to each term and only the top-rankgderms will be selected as represen-
tative terms for a document.

3.5 Improving Temporal Language Models

In this section, we propose three new methods for improviegJRH approach: 1) word
interpolation, 2) temporal entropy, and 3) external seatelistics from Google Zeit-
geist [37]. Each method will be described in more detailsWwel

3.5.1 Word Interpolation

When a word has zero probability for a time partition accaydim the training corpus,
this does not necessarily mean the word was not used in dotsroetside the training
corpus in that time period. It just reflects a shortcoming &fihg a training corpus of
limited size. As described in Section 3.3.2, smoothing canded to model that a word
also exists in other time partitions.

In the following we present more elaborate ways of word fesauy interpolation
for partitions where a word does not occur. In this processpal is categorized into
one of two classes depending on characteristics occurnirtgrie: recurring or non-
recurring. Recurring words are words related to periodic events, fomgte, “French
Open”, “Christmas”, “Olympic Games”, and “World Cup”, and a@pposed to appear
periodically in time, for example December every year, @rgdour years. On the other
hand, non-recurring words do not appear periodically (dghirstill appear in many time
periods, and as such can be also classified as aperiodic).

How to interpolate depends on which category a word belomgalt words that are
not recurring are non-recurring, and thus it suffices to tidgng the recurring words.
This can be done in a number of ways, we initially use a singalrique just looking at
overlap of words distribution at endpoints of intervals,éaample when detecting yearly
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Figure 3.1: Interpolation of a recurring word.

events look at all possible 12 month intervals (i.e., wordslanuary 2000 and January
2001, February 2000 and February 2001. Note that the endmhiould actually be a bit
flexible/wide, due to the fact that many events do not occtiin@exact same date each
year (Easter and Olympics are two typical examples).

Our interpolation approach is based on two methods: forraguwords, if they exist
in a number of event periods those that are missing are atit@ia“filled in”, for non-
recurring words interpolation is applied on periods adpde periods where the words
exist.

Recurring Words: Assume a wordw, that has been determined to be recurring,
for example “Olympic Games”. If the frequency af. in a partitionp,, represented as
tf(w,, p;), is equal to zero, we interpolat&w,, p;) with the minimum value of adjacent
partitions as:

tf(w,, p;) = min (tf(w,, p;_1), th(w, ), pj11) (3.5)

As depicted in Figure 3.1(a), the frequency is zero in the 2880 (i.e., the word
does not occur in any documents with timestamp within ye&@020After interpolating,
Figure 3.1(b) shows how the frequency in the year 2000 igyasdi with that of 1996
because it is the minimum value of 1996 and 2004.

Non-Recurring Words: Assume a wordu,,,. that has been determined to be non-
recurring, for example “terrorism”. Figure 3.2(a) illustes that a frequency is missing
in the year 2000 because there is no event (occurrence of)wartterrorism” in this
year. On the other hand, in the year 2001 and 2002, “terrérimnomes popular as
terrorists attacked ohl*" of September 2001. Once again, information about “tematis
is absent in the year 2003. However, “terrorism” becomesufaopn the year 2004 and
2005 because of bombing in Madrid and London. Supposecd; thero major event on
“terrorism” after the year 2005, so the frequency is zerdayear 2006, 2007 and 2008.
Although the word does not occur in the corpus it is quiteairrthat the word still has
been used in “the real world”. We interpoldtéw,,, p;) in three ways.

1. In the case of a periog; wherew,, has never been seen before, it is possible to
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Figure 3.2: Interpolation of a non-recurring word.

observew,, in that period. We interpolat(w,,, p;) as:

tf(wnrapj> =« tf(wnrapj-i-l) (36)

wherea is a constant and < o < 1. p;, is the first partitionw,,. occurs. For
example, the year 2000 is interpolated based on a fractidneofrequency in the
year 2001. The interpolation method for this case is showsREnN Figure 3.2(b).

. Inthe case that; is a period thaty,,. is supposed to be normally used, but is absent

due to missing data, we interpolétéw,,, p;) with the average frequency of two
adjacent partitions as:

tf(wnra pjfl) + tf<wnr7 pj+1)
2

tf(wnra pj) = (37)

For example, the year 2003 is interpolated with the aversggpiency of 2004 and
2005. The interpolation method of this case is showNR&in Figure 3.2(b).

. If p; is a period wherev,,, is absent because of decreasing popularity of the word,

it can still be expected that,, is used afterward, but not as much as before. We
interpolatetf(w,,, p;) as:

tf(wnr7pj) = ﬁ : tf(wm"ap]?l) (38)

wheref is a constant and < 8 < 1. p,;_, is the last partitionu,, appears. In
this case, the frequency of the years 2006, 2007 and 2008 t@rpaolated with a
frequency of the year 2005 in a decreasing proportion. Ttexpolation method
for this case is shown d@¢R3in Figure 3.2(b).
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3.5.2 Temporal Entropy

In this section we present a term weighting scheme conagtamporality calledempo-
ral entropy(TE). The basic idea comes from the term selection methagkpted in [78].
Terms are selected based on their entropy or noise measuteopiz of a wordw; is

defined as follows:

Entropy(w;) =1+ Z P(d|w;) x log P(d|w;) (3.9)

10gND

tf(wz, dj)
SO th(w, dy)

where N, is the total number of documents in a collectibnandtf(w;, d;) is the
frequency ofw; in a documentl;. It measures how well a term is suited for separating
a document from other documents in a document collectioth adso it captures the im-
portance of the term within the document. A term occurrinfeim documents has higher
entropy compared to one appearing in many documents. Trerghe term with high
entropy, is a good candidate for distinguishing a documemt fothers.

Similar to tf-idf but more complicated, term entropy underline the imporaoica
term in the given document collection where¢fglf weights a term in a particular docu-
ment only. Empirical results showing that term entropy isdjfor index term selection
can be found in [67]. Thus, we use term entropy as a term wiagimethod for high-
lighting appropriate terms in representing a time pautitio

We define temporal entropy as a measure of how well a termtsdeifor separating
a time partition among overall time partitions and also ¢aties how important a term is
in a specific time partition. Temporal entropy of a texrmnis given as follows:

P(d;lw;) = (3.10)

ZP (plw;) x log P(p|w;) (3.11)

peP

log N

tf(wz, pj)
whereNp is the total number of partitions in a corpBsandtf(w;, p;) is the frequency

of w; in partitionp,. Modifying the score in Equation (3.1), each texntan be weighted
with temporal entropyE(w) as follows:

P(pj|wi) =

(3.12)

P .
NLLR.(di,p;) = > TE(w) x P(wl|d;) x log (ZW (3.13)

wed;

A term that occurs in few partitions is weighted high by itsral entropy. This
results in a higher score for those partitions in which tmtappears.
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Figure 3.3: Search statistics and trends obtained from @atejtgeist.

3.5.3 Search Statistics

In our work, we have also studied how to use external knovdedgd in this section
we describe how to make use of search statistics providedsepiech engine. The only
public available statistics that suits our purpose aredlfimsn Google Zeitgeist, which is
given on different time granularities, such as week, monit year. We have employed
the finest granularity available, i.e., weekly data. Figdi{a) shows a snapshot of search
statistics which is composed of the top-10 rank for two typlegueries. In the statistics,
a query can be gaining or declining.

A gaining query is a keyword that is growing in interest anddimes an emerging
trend at a particular time. Figure 3.3(b) shows the trenglycd the keywords “Tsunami”
and “Earthquake”. Both words are gaining queries in Decer2béd because they gain
very high frequencies compared to a normal distributionsigghtly decrease their popu-
larity over the time line. In March 2005, the word “Earthgedkecomes a gaining query
again because of an earthquake in Sumatra. On the other aatetlining query is a
keyword where its interest drops noticeably from one pettoanother.

By analyzing search statistics, we are able to increase tisapility for a particular
partition which contains a top-ranked query. The highebphility the partition acquires,
the more potential candidate it becomes. To give an additiscore to a wordv; and a
partitionp,, we check if {v;,p;) exist as a top-ranked query. After that, we retrieve from
statistics information about a query type (gaining or decli), query ranking and the
number of partitions in whichy, appears. Finally, a GZ score af;, given p; can be
computed as:

G2, ) (P<wi> - f(RZ-,») < inf, (3.14)

whereipf; is defined as an inverse partition frequency and is equblgtgnfp. Np is
the total number of partitions and is the number of partitions containing. ZP(wl-) is
the probability thaty; occurs; P(w;) = 1.0 if w; is a gaining query word ané(w;) =
0.5 if w; is a declining query word. This reflects the fact that a ggjrguery is more
important than a declining one. The functip(?; ;) takes a ranked number and converts
into a weight for each word. A high ranked query is more imguotin this case.
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We now integrate GZ as an additional score into Equation) (8.brder to increase
the probability of partitiorp;:

P(w|p;
NLLR,.(di,p;) = Y ( P(w|p;) x log Plulp) BGZ(p;, w) (3.15)
= P(w|C)
whereg is the weight for the GZ function which is obtained from an esqment and
represented by a real number between 0 and 1.

3.6 Evaluation

Our proposed enhancements were evaluated by comparingérgrmance in determin-
ing the timestamp with experimental results from using REl Approach as baseline. In
this section, we will describe experimental setting, ekpents and results.

3.6.1 Setting

In order to assign timestamp to a document, a reference sagnsisting of documents
with known dates was required for comparison. A temporafjlege model was then
created from the reference corpus. In fact, the temporguage model is intended to
capture word usage within a certain time period. Two mangigimoperties of the refer-
ence corpus are:

e A reference corpus should consist of documents from vadousains.

o A reference corpus has to cover the time period of a docurodrd tlated.

We created a corpus collection from the Internet Archive] [#8 downloading the
history of web pages, mostly web versions of newspapers @B News, CNN, New
York Post, etc., in total 15 sources). The corpus colleatiovers on average 8 years for
each source and the total number of web pages is about 90Q@ndots, i.e., the web
pages in the corpus collection have on average been retra@wee every five day by the
Internet Archive crawler.

3.6.2 Experiments

In order to evaluate the performance of the enhanced teilpoguage models, the doc-
uments in the corpus collection were partitioned into twis $€;,4in., Ciest). Cirain WAS
used as a training set and to create a temporal language .ntddelwas used as a test-
ing set and to estimate timestamps of documents (note thactually have the correct
timestamps of these documents so that the precision ofasbinncan be calculated).
The training set},.;, must meet the two properties mentioned above. This can be

achieved by creating it based on news sources of variouggémat cover the time period

of documents to be dated. We chosen 10 news sources from tpescoollection to
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build the training set. To creat€,.,;, we randomly selected 1000 documents from the
remaining 5 news sources as a testing set.

In our experiments, we used two performance measures:spyer@nd recall. Preci-
sion in our context means the fraction of processed docisitbat are correctly dated,
while recall indicates the fraction of correctly dated doents that are processed. A
recall lower than 100% is essentially the result of usingfidemce of timestamping to
increase precision.

The experiments were conducted in order to study three tspEcsemantic-based
preprocessing, 2) temporal entropy (TE) and Google Zeatg&Z), and 3) confidence in
the timestamp-estimation task. Unfortunately, we wereblento evaluate our proposed
interpolation because of a too short time span (only 8 yaarf)e corpus collection.
However, we used linear interpolation as proposed by Kf&8]jin our experiments, and
the smoothing parametaris set to 0.1.

We evaluated the performance of the techniques repeattigesgeriment 10 times
on different testing sets, which all were created based ndam sampling. Averaged
precision and recall were measured for each experiment.

Experiment A: In this experiment, we evaluated the performance of secwased
preprocessing. The experiment was conducted on differembmations of semantic
methods. In A.1, we studied the effect of concept extractiéf.,;, was created as a
training language model with the preprocessing steps: RQ§rtg, WSD, concept ex-
traction and word filtering. In A.2, we studied the effect oflocation extractionC},.i,
was created as a training language model with the prepriogesteps: POS tagging, col-
location, WSD and word filtering. In A.3},,.;, was created as a training language model
with the preprocessing steps: POS tagging, collocatiometton, WSD, concept extrac-
tion and word filtering. In all experiments, timestamp wated®ained for documents in
Ciest- Precision was measured for each combination of semaasieebtechniques.

Experiment B: In order to evaluate the performance of temporal entropyusmadof
Google Zeitgeist statistics, we created a training languagdel onCy,..;,, in two ways:
using the semantic-based preprocessing in A.3 and witleoodstic-based preprocessing.
For each document if,.,, the timestamp was determined using Equations (3.13) and
(3.15). Precision was measured for each scoring technique.

Experiment C: Similar to a classification task, it is necessary to know houcim
confidence the system has in assigning a timestamp to a dotuies can for example
be used as feedback to a user, or as part of a subsequent goeggpwhere we want to
retrieve documents from a particular time only of the confaieof the timestamp is over
a certain threshold. Confidence was measured by the distdsoeres of the first and
the second ranked partitions and it is given as follows.

NLLR(d;, pm)
NLLR(d;, pn)

wheret,, = PubTiméd,). p,, andp, are the first two partitions that give the highest
scores to a documenf computed by Equation (3.1). A language model was created for
Cirain @nd, for each document {..;, timestamp was determined by varying a confidence
threshold. We measured precision and recall for each lévairdidence.

Conf(ty,) = log (3.16)
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Table 3.1: Results of the experiment A.

Granularities . Precision
Baseline A.1 A.2 A.3
1-w 53.430 55.873 47.072 48.365
1-m 56.066 62.873 59.728 61.152
3-m 53.470 62.076 65.069 66.360
6-m 53.971 62.051 66.065 68.712
12-m 53.620 58.307 69.005 68.216

3.6.3 Results

Figure 3.4(a) (also presented in Table 3.1) presents [wacts results from determin-
ing timestamp for different granularities using the basetechnique (th8RHapproach)
and combinations of different preprocessing technique$/gA2/A.3). As can be seen,
by adding semantic-based preprocessing higher precisiorbe obtained in almost all
granularities except for 1-week (where only using concegtaetion outperforms the
baseline). The observation indicates that using a 1-weakugrity, the frequency of a
collocation in each week is not so different. For examplgyswelated to “tsunami” were
reported for about 6 weeks (during December 2004 and Jard@dy) and each week
had almost the same frequency of collocations such as “tsuwmiatim” and “tsunami
survivor”. Thus the probability of a collocation is distuted in the case of a small granu-
larity and it is hard to gain a high accuracy for any particplartition. On the other hand,
as soon as the granularity becomes more coarse, usageafatmhs are quite distinct,
as can be seen from the results of 1-month, 3-month, 6-marti2-month.

Figure 3.4(b) (also presented in Table 3.2) illustrateipren of results from de-
termining timestamp when using temporal entropy (TE) witheemantic-based prepro-
cessing, Google Zeitgeist statistics without semantgetareprocessing (GZ), temporal
entropy with semantic-based preprocessing (S-TE), andyl@eitgeist statistics with
semantic-based preprocessing (S-GZ). As can be seen,uviemantic-based prepro-
cessing, TE only improves accuracy greatly in 12-month evimlother granularities its
results are not so different to those of the baseline, and @&8 dot improve accuracy in
all granularities. In contrast, by applying semantic-loggeeprocessing first, TE and GZ
obtain high improvement compared to the baseline in almbgranularities except for
1-week which is too small granularity to gain high probadlas in distinguishing parti-
tions.

From our observation, semantic-based preprocessing afeserollocations as well
as concept terms which are better in separating time mansitihan single words. Those
terms are weighted high by its temporal entropy. Similanhgst of the keywords in
Google Zeitgeist statistics are noun phrases, thus coitsaand concepts gains better
GZ scores. This results in a high probability in determintingestamp.

Figure 3.4(c) shows how the confidence level affects theracgwf document dating.
If the confidence level is 0, recall is 100% but precision iy &4.13%. On the other hand,
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Table 3.2: Results of the experiment B.

Granularities . Precision
Baseline TE Gz S-TE S-GZ
1-w 53.430 55.725 53.050 49.126 48.423
1-m 56.066 54.629 56.026 61.196 61.540
3-m 53.470 55.751 54.030 64.525 67.008
6-m 53.971 54.797 54.271 69.605 69.824
12-m 53.620 63.104 53.947 71.564 68.366

if the confidence level is 1.0, precision is up to 91.35% bualledecreases to 33%. As
shown in the figure, a high confidence threshold gives a higkigion in determining
time, whereas a document with a correctly estimated datétrbig discarded. Thus the
confidence level can be used to provide more reliable results

3.7 Document Dating Prototype

In order to demonstrate the usefulness of our research we ihngemented a proof-
of-concept prototype for document dating. We built the sysprototype based on the
proposed techniques for improving temporal language nsodéile prototype uses a web-
based interface, and allows estimating the date of docwsmerdifferent input formats
(i.e. a file, contents from an URL, or text entered directlyshewn by Figure 3.5(a).
Example inputs can be: 1) URbKt t p: //t sunam -t hai | and. bl ogspot. com

or 2) text:the president Obama. In addition, a user can select different parameters for
perform document dating.

e Preprocessing: POS, COLL, WSD, or CON
e Similarity score: NLLR, GZ or TE
e Time granularity: 1-month, 3-months, 6-months, or 12-rhent

Given an input to be dated, the system computes similariyescbetween a given
document/text and temporal language models. The docurmmehen associated with
tentative time partitions or its likely originated timestgs. As output it will present an
estimation of possible creation time/periods with confakeof each of the estimated time
periods, that is, a rank list of partitions ordered desaaglgliaccording to their scores as
shown in Figure 3.5(b). Besides, each tentative time pamtis drawn in a timeline with
its score as a height as depicted in Figure 3.5(c).

3.8 Conclusions

In this chapter, we have described several methods th&dserthe quality of determining
the time of non-timestamped documents. Extensive expetsshow that our approaches
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Figure 3.5: Input and output interfaces of the documenndatystem.

considerably increases quality compared to the baselisedban the previous approach
by de Jong et al. Note that, although using our approach smpr®vement, the quality
of the actual document dating processing is still limitecewlaiming at further increase
in effectiveness. Finally, we have presented a system fyqmdor document dating.



48

Section 3.8. Conclusions




Part |l

Query Analysis

49






Chapter 4

Determining Temporal Profiles of
Queries

In the previous chapter, we proposed an approach for impgat¥ie temporal language
model for determining the time of non-timestamped docuseht this chapter, we ad-
dress the research questidraw to determine the time of an implicit temporal query and
use the determined time for re-ranking search result&? propose novel approaches for
determining the time of a temporal query where time is notieitly provided by a user
and use the determined time for re-ranking search results.

4.1 Motivation

In previous work [11, 92], searching temporal documentemtibns has been performed
by issuing temporal queries composed of keywords, and thégation time of docu-
ments (called temporal criteria). In that way, a systemavesrdown search results by
retrieving documents with respect to both textual and teadpmiteria. As explained in
Chapter 2, temporal queries can be divided into two categfori¢ those with tempo-
ral criteria explicitly provided by users [11, 92], and 2p#le with no temporal criteria
provided. An example of a query with temporal criteria esiplly provided isU.S. Pres-
idential election 2008, while a query without temporal criteria provided is, fosiance,
Germany FIFA World Cup. However, for the latter example, a user’s temporal intent i
implicitly provided, i.e., referring to the world cup event in 2006.

More precisely, we want to determine the time of a query thatomposed obnly
keywordswhere its relevant documents are associated to partidolarfgeriods that are
not given by the query. We propose to leverage the deterntimedlof queries, the so-
calledtemporal profilesof queries, for re-ranking search results in order to ineegthe
retrieval effectiveness. To the best of our knowledge ndgshort queries and employing
the determined time in ranking has not been done before.

Contributions
Our main contributions in this chapter are as follows.
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e We perform the first study on how to determine the temporafilpsoof queries
without temporal criteria provided, and we propose techesjfor determining the
time of implicit temporal queries.

e We propose an approach to re-ranking search results bypong the deter-
mined time of queries.

Organization

In Section 4.2, we give an overview of related work. In Setda3, we outline the doc-
ument and query models used in this chapter. In Section &£4resent our approaches
to determining temporal profiles of queries without temporéeria provided. In Sec-
tion 4.5, we describe how to use the determined time to ingtbe retrieval effective-
ness. In Section 4.6, we evaluate our proposed query datimdre-ranking methods.
Finally, in Section 4.7, we conclude the chapter.

4.2 Related Work

Recently, a number of papers have described issues of tehggarah [11, 92, 105]. In
the approaches described in [11, 92], a user explicitly iipedime as a part of query.
Typically, such a temporal query is composed of query kegwa@nd temporal criteria,
which can be a pointin time or a time interval. In general,genal ranking can be divided
into two types: approaches basedlioik-based analysiandcontent-based analysi$he
first approach studies link structures of a document andthgemformation in a ranking
process, whereas the second approach examines the casft@ntiocument instead of
links. In our context, we will focus on analyzing content$ydmecause information about
links is not available in all domains, and content-basedyaigseems to be more practical
for a general search application. Temporal ranking explgidtocument contents and
temporal information are presented in [31, 50, 73, 99, 105].

In [73], Li and Croft incorporated time into language modeksljed time-based lan-
guage models, by assigning a document prior using an exgiahdacay function of a
document creation date. They focused on recency queriels tisat the more recent doc-
uments obtain the higher probabilities of relevance. In,[Bliaz and Jones also used
document creation dates to measure the distribution aevenl documents and create
the temporal profile of a query. They showed that the tempmile together with the
contents of retrieved documents can improve average padar the query by using a
set of different features for discriminating between temapprofiles. In [105], Sato et
al. defined a temporal query and proposed ranking takingaotount time for fresh in-
formation retrieval. In [50] an approach to rank documentéréshness and relevance is
presented. In [99], Perkit et al. introduced a process aimaatically detecting a topi-
cal trend (the strength of a topic over time) within a docutemrpus by analyzing the
temporal behavior of documents using a statistic topic rhode

Berberich et al. [12] integrated temporal expressions intergtlikelihood language
modeling, which considers uncertainty inherent to temipexaressions in a query and
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documents, i.e., temporal expressions can refer to the Samenterval even they are
not exactly equal. The work by Berberich et al. and our workinsilar in the sense

that both incorporate time into a ranking in order to imprdive retrieval effectiveness
for temporal search, however, in their work, the temporaéda are explicitly provided

for a query. Metzler et al. [86] also consider implicit temgloneeds in queries. They
proposed mining query logs and analyze query frequenciesstowe in order to identify

strongly time-related queries. In addition, they presgrmeanking concerning implicit

temporal needs, and the experimental results showed thiatapproach improved the
retrieval effectiveness of temporal queries for web sedfetikha et al. [64, 65] proposed
a time-based query expansion technique that selects temexpansion from different
times. Then, the technique was used for retrieving and ngrikliogs, which also captures
the dynamics of the topic both in aspects and vocabularyeusegy time.

4.3 Models for Documents and Queries

In this section, we present models for documents and queses in this chapter.

4.3.1 Document Model

In this chapter, a document collection contains a numberogius documents defined
asC = {d,,...,d,}. A documentd; can be seen as bag-of-words (an unordered list
of terms), and the publication time. Note thdf,can also be associated to temporal
expressions containing in the contents. However, temgagaiessions will not be studied

in this chapter. LePubTiméd,) be a function that gives the publication time &f so

d; can be represented ds = {{wy,...,w,},PubTiméd;)}. If C is partitioned with
respect to a time granularity of interest, the associated fartition ofd; is a time interval

[tk, te+1] containingPubTiméd;), that isPubTimed;) € [t tx+1]. For example, if we
partition C' using thel-monthgranularity andPubTiméd;) is 2010/03/05, the associated
time partition ofd; will be [2010/03/01,2010/03/31].

4.3.2 Temporal Query Model

We define a temporal queryas composed of two parts: keyworgs: and temporal cri-
teriagime, Wheregiext = {w1, . . ., wm }, andgime = {1}, . . . . t;} wheret’; is a time interval,
ort’ = [t;,t;11]. In this work, we model time using a time interval only beao$ its
simple representation. However, we note that a fine-grainse representation, such as
a point in time, should also be employed in order to captueerdtal-world meanings of
time.

In other wordsg contains uncertain temporal intent that can be represdytede or
more time intervals. We can refer i, as topical features angne as temporal features
of ¢. Hence, our aim is to retrieve documents about the topic efygwhere their creation
dates are corresponding to time criteria.
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Definition 1 (Temporal Queries)Temporal queries can be divided into two types with
respect to given temporal criteria:

(i) A query with temporal criteria explicitly provided by aarsis called an explicit
temporal query.

(i) A query without temporal criteria explicitly provided talled an implicit temporal
query.

An example of an explicit temporal querySsimmer Olympics 2008 where a user is
interested in documents abd&ummer Olympics written in 2008. Because we represent
the time of a query by a time interval, for a given query, ushngl-yeartime granularity
iime 1S represented as:

gime = {[2008,/01/01,2008,/12/31]}

Implicit temporal queries are strongly related to parécudime periods although time
is not given in the queries as such. An example of an impletgoral query iBox-
ing Day tsunami, which is implicitly associated with the year 2004, thyse can be
represented as:

qime = {[2004/01/01,2004/12/31]}

Another example is the quetiie U.S. presidential election, which can be associ-
ated with the years 2000, 2004, and 2008. So that,is equal to:

gime = {[2000/01/01,2000/12/31], ..., [2008,/01,/01, 2008/12/31]}

When the timeyine is not given explicitly by the user, it has to be determinedhsy
system, as will be described later in this chapter.

4.4 Determining Time of Queries using Temporal Lan-
guage Models

In this section, we describe three approaches to detergihi@ time of queries when
no temporal criteria are provided. The first two approachsssthe temporal language
models (cf. Section 3.3) as basis, and the last approacmodasguage models.

In order to build temporal language models, a temporal corpumeeded. The tem-
poral corpus can be any document collection where 1) therdents are timestamped
with creation time, 2) covering a certain time period (atstethe period of the queries
collections), and 3) containing enough documents to makestomodels. A good basis
for such a corpus is a news archive. We will use the New YorkeBrAnnotated Cor-
pus [95] since it is readily available for research purpoddewever, any corpus with
similar characteristics can be employed, including nogHsh corpora for performing
dating of non-English texts. We will in the following denademporal corpus a8, .
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Table 4.1: Example of the contents of the temporal languaggets.

Time Term Frequency
2001 World Trade Center 1545
2002 Terrorism 2236
2003 Iraq 1510
2004 Euro 2004 750
2004 Athens 1213
2005 Terrorism 1990
2005 Tsunami 3528
2005 Hurricane Katrina 1012
2008 Obama 2030

The first approach performs dating queries using keywortys ®he second approach
takes into account the fact that in general queries are,smttaims at solving this prob-
lem with a technique inspired by pseudo-relevance feedfRBIF) that uses thtop-k
retrieved documents in dating queries. The third appro#sih eses theéop-k retrieved
documents by PRF and assumes their creation dates as tempudilals of queries.

All approaches will return a set of determined time intes\aahd their weights, which
will be used in re-ranking documents in order to improve tbeieval effectiveness as
described in more detail in Section 4.5.

4.4.1 Dating Queries using Keywords

Our basic technique for query dating is based on using keysvonly, and it is described
formally in Algorithm 1.

The first step is to build temporal language modglg from the temporal document
corpus (line 5), which essentially is the statistics of wasdge (raw frequencies) in all
time intervals, which are partitioned with respect to thiested time granularity. Ta-
ble 4.1 illustrates a subset of the temporal language mod#isating the temporal lan-
guage models (basically aggregating statistics groupetinmn periods) is obviously a
costly process, and will be done just once as an off-lineges@nd then only the statis-
tics have to be retrieved at query time.

For each time partitiop; in 7i v, the similarity score betweep.,: andp; is computed
(line 7). The similarity score is calculated using a noredi log-likelihood ratio accord-
ing to Equation 3.1. Each time partitign and its computed score will be storeddh
or the set of time intervals and scores (line 8). After cormuuthe scores for all time
partitions, the contents d@f' will be sorted by similarity score, and then ttep-mtime
intervals are selected as the output4dtine 10).

Finally, the determined time intervals resulting from Aldglom 1 will be assigned
weights indicating their importance. In our approach, wemy give a weight to each
time interval using its reverse ranked number. For exaniptbe output setd contains
top-5 ranked time intervals, the intervals ranked 1, 2, &l 5 will have the weights 5,
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Algorithm 1 DateQueryKeywordsfe:, g, m, Dar)
1: INPUT: Query giext, time granularityg, number of time intervals:, and temporal

corpusD,,
2: OUTPUT: Set of time intervals associateddgy
A0 // Set of time intervals
4. C+ 0 /I Set of time intervals and scores
5. Tim < BuildTemporalLMg, Dy)
6: for each {p; € Tim} do
7. score,, < CalSimScor@pex: p;) /I Compute similarity score @fex andp;
8:  C <« CU{(pj,scorey,)} /I Storep; and its similarity score
9: end for
10: A < C'.selectTopMintervals(m) Il Select top-m intervals rangdcores
11: return A

4, 3, 2, and 1 respectively.

4.4.2 Dating Queries using Top-k Documents

In our second approach to query dating, the idea is thatddstédating query keywords
qiext directly, we will instead date th#op-k retrieved documents of the (non-temporal)
gueryqext. The resulting time of the query will be the combination ofetenined times
of each top-k document.

The algorithm for dating a query using top-k retrieved doeats is given in Algo-
rithm 2. First, we retrieve documents by issuing a (non-t@ral) querygex, and retrieve
only thetop-kresult documents (line 5). Then, temporal language mdtig{sare built
as described previously (line 6). For each documgmih Dypk, COMpute its similarity
score with each time partitiop; in 7y (lines 10-13). After computing scores fay for
all time partitions, sort the contents 6fby similarity score, and select ontgp-mtime
intervals as the results df (line 14).

The next step is to update the getvith a set of time result€’y,, obtained from dating
d;. This is performed as follows: For each time interyalin Cimp, check if B already
containsp;. (line 16). If p, exists inB, get a frequency of, and increase the frequency
by 1 (lines 17-18). Ifp, does not exist irB, addp,, into B as a new time interval and set
its frequency to 1 (line 20). After dating all documentdif,pk, sort the contents b by
frequency, and select only thep-mtime intervals as the output sat(line 25).

The weights of time intervals will be their reverse rankediber. Note that it can be
only one time interval in each rank of an output obtained flsigorithm 1, while it can
be more than one time interval in each rank in case of Algorigh

4.4.3 Dating Queries using Publication Time

The last approach is a variant of the dating usmgrk documents described above. The
idea is similar in the use of thp-k retrieved documents of the (non-temporal) query
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Algorithm 2 DateQueryWithTopkDoggy:, g, m, k, D)
1: INPUT: Query ¢ext , time granularityg, number of intervals and documents k,
temporal corpu®

2: OUTPUT: Set of time intervals associateddgy

3 A0 /Il Set of time intervals
4: B+ () /I Set of time intervals and their frequencies
5: Dropk < Retrieve TopKDO@texs, k) Il Retrieve top-k documents
6: Tim < BuildTemporalLMg, Dy)

7: for each {d; € Dok} dO

8 C<+ 10 /I Set of time intervals and scores
90 Cimp< 0 /] Set of time intervals
10: foreach{p; € Tim} do
11: score,, < CalSimScorgl;, p;) /I Compute similarity score af; andp;
12: C < CU{(pj,scorey,)} /I Storep; and its similarity score
13: end for
14:  Cimp < C.selectTopMIntervals(m) /I Select top-m intervals by esor
15:  for each {p; € Cimp} do

16: if B hasp, then

17: freq < B.getFregForTIntervelpy,) Il Get frequency afy,
18: B «+ B.updateFreqForTIntervapy, freq+ 1) /I Increase frequency by 1
19: else
20: B «+ B.addTIntervalp,, 1) // Add a new time interval and set its frequency

tol

21: end if
22: end for
23: end for
24: A + B.selectTopMintervals(m) /I Select top-m intervals rankgdrequency
25: return A

grex- 1he resulting time of the query will be the creation datet{mestamps) of each
top-k document. In this case, no temporal language modelssad.

4.5 Re-ranking Documents Using Query Temporal Pro-
files

In this section, we will describe how to use temporal profiegueries determined by our
approaches to improve the retrieval effectiveness. Theiglthat, in addition to the doc-
uments’ scores with respect to keywords, we will also take account the documents’
scores with respect to thmplicit time of queries. Intuitively, documents with creation
dates that closely match with temporal profiles of querieswaore relevant and should be
ranked higher.

There are a number of methods to combine a time score withirexigext-based
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weighting models. For example, a time score can be combingdtfxdf weighting
using a linear combination, or it can be integrated into legge modeling using a docu-
ment prior probability as in [73]. In this chapter, we propas use a mixture model of a
keyword score and a time score. Given a temporal quevigh the determined time;me,
the score of a documertcan be computed as follows:

S(Q7 d) = (1 - a) : S/(Qtexta dtext) +a- S”(Qtimea dtime) (4-1)

whereq is a parameter underlining the importance of a keyword s86g.x;, diext) and a
time scoreS” (gsime, diime). A keyword scoreS’ (qiex, diext) Can be implemented using any
of existing text-based weighting models, and it can be nbredas:

S’ (Qtexb dtext)
max S (Grext drexti)

S r/mrm(Qtexb dtext) = (4-2)

wheremax S’ (grext, diext;) iS the maximum keyword score among all documents.
For a time score” (gime, diime), We formulate the probability of generating temporal
profiles of queryime given the associated time partition of documeépte as:

S//(Qtimey dtime) = P(Qtime|dtime)

Z P(t;‘ |dtime)

t;- Eqtime

(4.3)

B 1
’(Jtime’

wheregime is a set of time interval§t’, . .., ¢/ }, such that:

#ntyn...nt) =10

S0, P(gimeldime) 1S an average of the probability of generating a time interoa
P(t|diime), over all the number of time intervals igime, Or | Gtime -

The probability of generating a time interviglgiven the time partition of document
diime Can be defined in two ways as proposed in [12]: 1) ignoring dac#y, and 2) taking
uncertainty into account. By ignoring uncertainB(t’|dime) is defined as:

0 if dame # 1/,

In this case, the probability of generating query time wal é&qual tol only if dijye is

exactly the same a$. By taking into account a weight of each time intert/alP (t | dtime)
with uncertainty-ignoranbecomes:

P(tj‘dtime) - wity) if diime = 1/
j

-
Zt% Eatime w(tk’)

(4.5)
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wherew(t}) is a function giving a weight for a time interval, which is normalized by the
sum of all weightszt;c caime (). In the case where uncertainty is concernéd;|dime)
is defined using an exponential decay function:

P(t;‘|dtime) = DecayRateMt}—dtimel (4_6)

where DecayRate and ) are constant) < DecayRate < 1 andX > 0. Intuitively, this
function gives a probability that decreases proportiondhe difference between a time
interval ¢’ and the time partition of documerifme. A document with its time partition
closer tot’; will receive a higher probability than a document with itadi partition farther
from ;. By incorporating a weight of each time interval P(|dime) With uncertainty-
awarebecomes

w(ty)

Zt;ce(hime w(t;)
The normalization o6},,,(¢time, diime) are computed in two ways:

P(t; | dtime) X DecayRate)"|t3' -~ dmel (4.7)

1. uncertainty-ignorant usin@(t;|dﬂme) defined in Equation 4.5.

2. uncertainty-aware using(t’;|dime) defined in Equation 4.7.

Finally, the normalized value &/, (¢time, diime) Will be substitutedS” (gtime, dtime) IN
Equation 4.1 yielding the normalized score of a docurdagiten a temporal querywith
determined timeyinme as follows:

Snorm(Q; d) = (1 - a) : Srﬁorm(‘]texh dtext) + - Srqorm(Qtima dtime) (48)

4.6 Evaluation

In this section, we will perform two experiments in order t@keiate our proposed ap-
proaches: 1) determining temporal profiles of queries utngporal language models,
and 2) re-ranking search results using the determined timéhis section, we will de-
scribe the setting for each of the experiments, and therethdts.

4.6.1 Setting

As mentioned earlier, we can use any news archive colletdioreate temporal language
models. In this chapter, we used the New York Times Annot&egbus as the temporal
corpus. This collection contains over 1.8 million artictessering a period of January
1987 to June 2007. The temporal language models were craatestored in databases
using Oracle Berkeley DB version 4.7.25.

To evaluate the query dating approaches, we obtained gueyia Robust2004, which
is a standard test collection for the TREC Robust Track comi@i250 topics (topics 301-
450 and topics 601-700). As reported in [73], some TREC gsdaeor documents in
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particular time periods. Similarly, we analyzed a disttiba of relevant documents of the
Robust2004 queries over time, and we randomly selected @gtyrtime-related queries
(with the topic number: 302, 306, 315, 321, 324, 330, 335, 330, 352, 355, 357, 404,
415, 428, 435, 439, 446, 450, 628, 648, 649, 652, 653, 656, ®AY, 676, 683, 695).
Time intervals of relevant documents were assumed as tihectdime of queries.

We measured the performance using precision, recall armbies Precision is the
fraction of determined time intervals that are correct,levheécall indicates the fraction
of correct time intervals that are determined. F-scoreeswkighted harmonic mean of
precision and recall, where we set= 2 in order to emphasize recall. For query dating
parameters, we used the top-m interval with= 5, and the time granularity and the
top-kdocuments were variable in the experiments.

To evaluate the re-ranking approaches, the Terrier seagihe[119] was employed,
and we used the BM25 probabilistic model with Generic DivaggeFrom Randomness
(DFR) weighting as our retrieval model. For the simplicitye wsed default parameter
settings for the weighting function. Terrier provides a hatism to alter scores for re-
trieved documents by giving prior scores to the documentsthis way, we re-ranked
search results at the end of retrieval by combining a keyvgoeS’ (gext, diext) @and a
time scoreS” (gime, dime) @s defined in Equation 4.8. We conducted re-ranking experi-
ments using two collections: 1) the Robust2004 collectionl, 2) the New York Times
Annotated Corpus.

For the Robust2004 collection, we used the 30 queries as tageries without
time explicitly provided. The retrieval effectiveness efrtporal search using the Ro-
bust2004 collection is measured by Mean Average PrecidwhP), and R-precision.
For the New York Times Annotated Corpus, we selected 24 gaidrgen a historical
collection of aggregated search queries, or the Googlgeisit[37]. An example of tem-
poral queries are shown in Table 4.2. The temporal searches eonducted by human
judgment. Performance measures are the precision at 5ndd,%documents, or P@5,
P@10, and P@15 respectively. For re-ranking parametergsagan exponential decay
rate DecayRate = 0.5, and\ = 0.5. A mixture model parameter was obtained from the
experiments, whera = 0.05 and0.10 for uncertainty-ignoraniand uncertainty-aware
methods respectively.

Table 4.2: Example of the Google zeitgeist queries and &gsodime intervals.

| Query | Time || Query | Time |
diana car crash 1997 || madrid bombing 2005
world trade center 2001 | pope john paulii 2005
osama bin laden 2001 | tsunami 2005
london congestion charges2003 || germany soccer world cup | 2006
john kerry 2004 || torino games 2006
tsa guidelines liquids 2004 | subprime crisis 2007
athens olympics games | 2004 | obama presidential campaigr2008

The description of different approaches is given in TabB Zop-k documents were
retrieved using pseudo relevance feedback, i.e., thetrdeauments after performing
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guery expansion using Rocchio algorithm.

Table 4.3: Different re-ranking approaches for comparison

Method Description

QwW determines time using keyworg@tus uncertainty-ignorant re-ranking

QW-U  determines time using keyworgéusuncertainty-aware re-ranking

PRF determines time using top-k retrieved documepits uncertainty-ignorant re-ranking

PRF-U determines time using top-k retrieved documeaitss uncertainty-aware re-ranking
assumes creation dates of top-k retrieved documents as temporal profjlesies

NLM (no language models useplusuncertainty-ignorant re-ranking
assumes creation dates of top-k retrieved documents as temporal profjlesries
NLM-U : :
(no language models useglusuncertainty-aware re-ranking
4.6.2 Results

The performance of query dating methods is shown in Table MM performs best
in precision for all time granularities whereas PRF perfolmest in recall (only for
12-month. NLM and PRF give the best F-score results @®monthand 12-monthre-
spectively. In general, the smalletends to give the better results, whil2-monthyields
higher performance compared@emonth Finally, the performance of QW seems to be
robust forl2-monthregardless of dating solely short keywords.

Table 4.4: Query dating performance using precision, fecal F-score.

Method Precision Recall F-scorgs = 2)

6-month| 12-month| 6-month| 12-month| 6-month| 12-month
Qw .56 .67 .34 .64 37 .65
PRF(k=5) .55 .63 A7 .79 .48 .75
PRF(k=10) 56 60 46 74 48 71
PRF(k=15) 54 60 42 70 44 68
NLM (k=5) 92 97 35 44 40 49
NLM (k=10) .90 95 48 56 53 61
NLM (k=15) .89 93 56 63 61 67

To evaluate re-ranking, the baseline of our experiments ristrgeval model with-
out taking into account temporal profiles of queries, i.seymo relevance feedback
using Rocchio algorithm. For the Robust2004 queries, thelihasperformance are
MAP=0.3568 and R-precision=0.3909. Experimental resuitAP and R-precision
are shown in Table 4.5. The results show that QW, QW-U, PRF & ® outperformed
the baseline in both MAP and R-precision fi#-month and NLM and NLM-U outper-
formed the baseline in all cases. PRF-U always performeeistin PRF in both MAP
and R-precision fo2-month while QW-U performed better than QW in R-precision for
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12-monthonly. NLM and NLM-U always outperformed the baseline and akiger pro-
posed approaches because using the creation dates of dusumenore accurate than
those obtained from the dating process. This depicts thatgdime into re-ranking can
better the retrieval effectiveness. Hence, if query dasngproved with a high accuracy,
the retrieval effectiveness will be improved significantly

Table 4.5: Re-ranking performance using MAP and R-precisiibm thre baseline perfor-
mance 0.3568 and 0.3909 respectively (the Robust2004 toh¢c

MAP R-precision

Method 6-month| 12-month| 6-month| 12-month
QW .3565 .3576 .3897 .3924
QW-U .3556 3573 3925 .3943
PRF(k=5) 3564| .3570| .3885|  .3926
PRF(k=10) 3568| .3570| .3913|  .3919
PRF(k=15) .3566 3567 3912 .3921
PRF-U(k=5) 3548|  .3574| 3903  .3950
PRF-U(k=10) .3538 3576 .3904 .3935
PRF-U(k=15) .3538 3572 .3893 .3940
NLM (k=5) .3585 .3589 3924 3917
NLM (k=10) .3586 3591 3918 .3925
NLM (k=15) 3584|  .3506| .3898|  .3934
NLM-U (k=5) .3604 .3608 3975 .3978
NLM-U (k=10) .3604 .3610 3953 .3961
NLM-U (k=15) .3606 .3620 .3943 .3967

Table 4.6: Re-ranking performance using P@5, P@10, and P@HA5h& baseline per-
formance 0.35, 0.30 and 0.27 respectively * indicatesssteailly improvement over the
baselines using t-test with significantzat 0.05 (the NYT collection).

Method P@5 P@10 P@15

6-month| 12-month| 6-month| 12-month| 6-month| 12-month
QW 42 45 37 39 32 33
QW-U 40 42 35 36 30 32
PRF(k=15) A2 46 .38 A2 .35 .39
PRF-U(k=15) A1 45 .36 40 .33 37
NLM (k=15) .50 .52 A7 49 A2 44
NLM-U (k=15) .53 55 48 S0 45 A6

The results of evaluate the Google zeitgeist queries aresimoTable 4.6. In this
case, we fix the number tdp-kto 15 only. Table 4.6 illustrated the precision at 5, 10 and
15 documents. The baseline performance is P@5=0.35, P@3Dadd P@15=0.27.
The results show that our proposed approaches perfornr betbe the baseline in all
cases. NLM and NLM-U performs the best among all proposedoagbes.
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4.7 Conclusions

In this chapter, we have studied implicit temporal querié®re no temporal criteria is

provided, and how to increase retrieval effectivenessdichgjueries. The effectiveness
has been improved by determining the implicit time of thergggeand employing this

to re-rank the query results. Through extensive experimemt have shown that our
proposed approach improves retrieval effectiveness. Wethat the quality of the actual
guery dating processing is a limitation when aiming at fertmcrease in the retrieval
effectiveness.
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Chapter 5

Handling Terminology Changes over
Time

A language can change over time, which includes changesrmafswelated to their defini-
tions, semantics, and names (people, location, etc.)icBiamy, words can be obsolete,
for example, before the year 1939, the name “Siam” was usetlMwiland” and it is
rarely used nowadays. This causes a problem when a userikeundormulate a query
equivalent to a term used in the collection, that is, bothrgjaead documents are repre-
sented in different forms (historical or modern forms). histchapter, the research ques-
tion we address iBow to handle terminology changes in searching temporalidwmnt
collections?

5.1 Motivation

This chapter focuses on the problem of terminology changes time. In particular,
we deal with the changes of named entities (i.e., name oflpeopganizations, loca-
tions, etc.) because a peculiarity of named entities coetptar other vocabulary terms is
that they are very dynamic in appearance, e.g., changesesf @o alterations of names.
Moreover, we are interested in named entities because trestitute a major fraction of
queries [18, 104]. To illustrate the problem, we give as gxamtwo search scenarios.
First, a student studying the history of the Roman Catholic Ehuvants to know
about the Pope Benedict XVI during the years before he bechenPape (i.e., before
2005). Using only the querifope Benedict XVI and temporal criteria “before 2005”
is not sufficient to retrieve documents about “Joseph AloiziRger”, which is the birth
name of the current Pope. Second, a journalist wants tolséaranformation about the
past career of Hillary Rodham Clinton before becoming@tié United States Secretary
of State in January 2009. When searching with the gtiltgry R. Clinton and tempo-
ral criteria “before 2008”, documents about “United SteBesator from New York” and
“First Lady of the United States” are also relevant as heggauring the years before
2008. The given examples indicate an inability of retrigvielevant documents com-
posed of the synonyms of query terms in the past. This can bsidered asemantic

65
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gapsin searching document archives, i.e., a lack of knowledgeitd query and its syn-
onyms, which are semantically equivalent/related to a query wnégpect to time. We
denote those synonyms tamie-dependent synonyms

This problem will be handled during query time by using aiditary linking concepts
and entities based on time, such as, by performing querynskpa Thus, for the query
Thailand, the query might be expanded Tdailand or Siam. For the queryTlhailand
and a temporal constraitefore 1939, the query can be rewritten frofhailand to
Siam. To improve the quality of searching historical documerntgkpansion, it has been
done before in two manners: an expansion of query and an siqaof index. In the first
case, a set of rules is automatically constructed for mapbistoric terms into modern
terms. In the latter case, based on a lexical database, teenmsdexed together with their
synonyms and holonyms as additional indices. In order taleachanging languages,
we will expand a query with terms that are semantically equtd respect to temporal
criteria. This we achieve by building a time-concept dietioy from the well-known and
freely available encyclopedia Wikipedia.

In this chapter, we describe an approach to automaticadigticrg entity-synonym
relationships based on the contents of Wikipedia. Evolvelgtionships are detected
using the most current version of Wikipedia, while relasbips for particular time in
the past are discovered through the use of snapshots obpseWikipedia versions. In
this way, we can provide a source of time-based entity-symarelationships from 2001
until today, and using our approach also future relatiggshvith new named entities
can be discovered simply by processing Wikipedia as newectsitare added. Further,
we employ the New York Times Annotated Corpus in order to extine covered time
range as well as improve the accuracy of time of synonymalllyjrwe present a system
prototype for searching news archives that takes into atdeuminology changes over
time.

Contributions
Our contributions in this chapter are as follows.

o We formally model Wikipedia viewed as a temporal resouraecfassification of
time-based synonyms.

e \We propose an approach to discovering time-based synongimg Wikipedia and
improving the time of synonyms. In addition, we propose guepansion tech-
niques that exploit time-based synonyms.

e A system prototype for searching news archives taking ictmant terminology
changes over time is present.

Iin general, synonyms are different words with very similar niegs However, in this work, synonyms are words used as
another name for an entity.
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Organization

The organization of the rest of the chapter is as follows. éct®n 5.2, we give an
overview of related work. In Section 5.3, we briefly descrthe assumed document
model and Wikipedia features. In Section 5.4, we introducenal models for Wikipedia
viewed as a temporal resource and for time-based synonym&edtion 5.5, we de-
scribe our approach to discovering time-based synonyms ¥ktkipedia. In Section 5.6,
we describe how to use time-based synonyms to improve thevateffectiveness. In
Section 5.7, we evaluate our proposed synonym detectiomaey expansion. In Sec-
tion 5.8, we present our news search system prototype. IfsimalSection 5.9, we con-
clude this chapter.

5.2 Related Work

Several attempts have been made in using the semi-strdatargents of Wikipedia for
information retrieval purposes. The ones most relevanutonrk are [18, 75, 87, 106,
133, 137]. For a thorough overview of the area of Wikipediaing, we refer to the
survey by Medelyan et al. [85].

In [137], Zesch et al. evaluate the usefulness of Wikipedia #éxical semantic re-
source, and compare it to more traditional resources, ssichctionaries, thesauri and
WordNet. In [18], Bunescu and Pasca study how to use Wikgéali detecting and
disambiguating named entities in open domain texts in c@&nprove search quality.
By recognizing entities in the indexed text, and disambiiggabetween multiple entities
sharing the same proper name, the users can access to aavigeraf results as today’s
search engines may easily favor the most common sense otin eraking it difficult
to get a good overview of the available information for a éedsiown entity.

An initial approach for synonym detection based on [18] inoa-temporal context
was described in [17]. As far as we know, all previous appneado synonym detection
from Wikipedia have been based on redirects only (i.e., ]£8, 132]) and no temporal
aspects are considered. There is some work that exploitgp®dia for query expansion.
In [75], they proposed to improve the retrieval effectivenef ad-hoc queries using a local
repository of Wikipedia as an external corpus. They analyhe categorical information
in each Wikipedia article, and select terms from top-k &tido expand a query. Then,
a second retrieval on the target corpus is performed. Resluttw that Wikipedia can
improve the effectiveness of weak queries while pseudwvaealee feedback is unable to
improve.

Milne et al. [87] proposed an approach to help users to evgpheries interactively,
and automatically expand queries with synonyms using &iti@. The experiments show
an improvement in recall. The recent work by Xu et al. [138ktad with a problem of
pseudo-relevance feedback that one or more of the topvetridocuments may be non-
relevant, which can introduce noise into the feedback m®c&he proposed approach
in [133] classifies queries into 3 categories (entity, ambigs, and broader queries) based
on Wikipedia, and use a different query expansion methoddch query category. Their
experiments show that Wikipedia based pseudo-relevaeddéek improves the retrieval
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effectiveness, i.e., Mean Average Precision.

The affect of terminology evolution over time is addressedl3, 28, 54, 55, 117].
We are unable to compare the performance of different mstbedause many of them
were published at the same time or later as this work. Thudeawge a comparison of
different approaches for future work.

5.3 Preliminaries

In this section, we briefly outline models for queries andwoents. In addition, we
introduce temporal document collections employed in thegpter, that is, Wikipedia and
the New York Time Annotated Corpus.

5.3.1 Temporal Query Model

We define a temporal query as composed of two parts: keyworgs, and temporal
criteria gime, Wheregiext = {w1, ..., wy}, andgime = {t},..., 1} wheret’ is a time
interval, ort; = [t;,t;,1]. In this work, we model time using a time interval only beeaus
of its simple representation and we aim at retrieving doausabout the topic of query
where their creation dates are corresponding to the tineevial

5.3.2 Document Model

In our work, we employ aemporal document collectiprwhich contains documents
that are temporally-ordered and it can be modeled'as {d;,...,d,}. A document
can be seen as bag-of-words (an unordered list of terms,aturés) with its associ-
ated time interval (from it was created until replaced by & mersion or deleted)d; =
{{wy, we,ws, ..., w,}, [ti, tix1]} Wherelt;, t;+1] is a time interval of the document, i.e., a
time period thati; exists, and; < t;;. PubTiméd;) is a function that gives the publica-
tion date of the document and must be valid within the timerival, andPubTiméd;) <

[ti, tisa).

5.3.3 Temporal Document Collections

Generally, temporal document collections are documem¢ctbns where their contents
appear in a temporal order, such as, web archives, newseschilogs, personal emails
and enterprise documents. In such domains, terms in thesteedms are temporally
dynamic in pattern, e.g., rising sharply in frequency, gngmn intensity for a period
of time, and then fading away. In the following, we present i@mporal document
collections that are used in this chapter.

Wikipedia
Wikipedia is a freely available source of knowledge. Eacitabte article in Wikipedia
has associated revisions, i.e., all previous versionssofantents. Each revision (or a
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version) of an article is also associated with a time pernad it was in use before being
replaced by the succeeding version. In other words, thedimagevision is a time period
when it was a current version.

There are four Wikipedia features that are particularlyaative as a mining source
when building a large collection of nhamed entities: artiohiks (internal links in one
Wikipedia article to another article), redirect pages ¢(sanreader to another article),
disambiguation page% (used by Wikipedia to resolve conflicts between terms having
multiple senses by either listing all the senses for whidltlas exist), and categories
(used to group one or more articles together, and everyleagtould preferably be a
member of at least one category although this is not enfdrced

New York Time Annotated Corpus

The New York Times Annotated Corpus is used in the synonym timpeovement task.
This collection contains over 1.8 million articles coveyia period of January 1987 to
June 2007. 1.5 million articles are manually tagged of vataly of people, organizations
and locations using a controlled vocabulary that is appimusistently across the collec-
tions. For instance, if one article mentions “Bill Clinton”éanother refers to “President
William Jefferson Clinton”, both articles will be tagged witCLINTON, BILL". Some
statistics of tagged documents are given in Table 5.1.

Table 5.1: NYT collection statistics of tagged vocabulary.
Tagged Vocabulary #Documents Tagged

People 1,328,045 (71.6%)
Locations 600,114 (32.3%)
Organizations 596,890 (32.2%)

5.4 Temporal Models of Wikipedia

In this section, we will present temporal models of Wikigedie., synonym snapshots.
The models will be later used for detecting synonyms oveetifinally, we will give a
formal definition of four different classes of synonyms, dmav to classify them using
temporal patterns of occurrence as a feature.

5.4.1 Synonym Snapshots

In our context, a document collection is Wikipedi that consists of a set of articles or
pages,P = {p1,...,p.}. A pagep; € P consists of a set of terms and a time interval:
pi = {{w1,...,w,},[ta, ts]}, Wherew; € V andV is the complete set of terms or a

ZNote that the meaning of the temlisambiguatiorin Wikipedia context is slightly different from how it is udén computational
linguistics.
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vocabulary in the collection. A time interv@l,, ¢, is a time period thap; exists in the
collection. Wikipedia page® can be categorized into two types: those that describe a
named entity, e.g., a concept about people, companiesjinagi@ns, etc., and those not
referring to a named entity, e.g., user talk pages and categges.

We call a page in the first typa named entity page For simplicity, we will use
the term “entity” and “named entity” interchangeably. A rednentity obtained from
Wikipedia can be defined as:

Definition 2 (Named Entity) A named entity; is represented by terms constituting the
title of an entity page. that can be obtained using the functidmtity(p.).

Let x be any object, e.g., a pagg or a named entity,. We defineTIntervalz) as a
function that gives a time interval associatedrta.e., a time period of existendg,, ¢.].
We defineTStar{x) as a function that gives the starting time pointof.e., the smallest
time pointt, from the time intervalt,, t.] of x, andTEndz) as a function that gives the
ending time point of, i.e., the largest time poirt from the time intervalt,, ¢.] of z.

A pageyp; is associated to a set of its revisiofig|r; € R;}. A revisionr; consists of
two components: 1) a set of terfi®,, . . ., w,, }, and 2) a time intervdk., t,), which can
be obtained a$Intervalr;). Thus, a revision; = {{w1,...,wn,}, [t., ta)}. Note that a
time interval of anyr; excludes its last time pointt,., t4) = [t., 4] — {ta}. LetR; is a set
of revisions{r,...,r,} of a pagep;. The time interval of a revision; € R; overlaps
with the time interval of;, that is, TIntervalr;) C Tintervalp;).

The intersection of the time intervals of all revisionsRn can be computed as:

Definition 3 (Intersection of Revisions)The intersection of the time of all revisions in
R, is an empty set. It is because at any time poiint TIntervalp;), only one revision;
can exist fom;, that is:

Tintervalr,) N Tintervalry) N ... N Tintervalr,_,) N Tintervalr,,) = 0 (5.1)

Time intervals of two adjacent revisions can be defined imtef each other as the
follows.

Definition 4 (Two Adjacent Revisions)Letr; andr;,, be any two adjacent revisions,
we can define the time intervals of these two revisions as:

1. Tintervalr;) = [TStar{(r;), TStar{r;;1))

2. Tintervalr;;1) = [TEndr;), TENdr;11))

By partitioning)V with respect to a time granularity we will have a set of snapshots
of WikipediaW = {W,,,..., W, _}. In our work, we only use th&-monthgranularity.
Hence, if we have the history of Wikipedia for 8 years ane- month, the number of
snapshots will b¢W| = 8 x 12 = 96, i.e., W = {Wo3 /2001, - - - , Wos2000 } - A Wikipedia
snapshot can be defined as:
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Figure 5.1: Wikipedia snapshot at timeand its current revisions.

Definition 5 (Wikipedia Snapshot)A snapshotl;, consists of the current revisiof of
every page; at timety:

Wi, = {rc|Vpi : 7. € R; Aty € Tintervalr,) A NTIntervalr,) # 0} (5.2)

Because all revisions are current at titpethe intersection of the time intervals of all
revisions inl¥;, is not an empty set. Figure 5.1 depicts a snapshptof Wikipedia and
current revisions at time= ¢,.

Let S be a set of synonymésy, ..., s,,,} of all entities inVW, where each synonym
s; € V. An entitye; is associated to a set of synonyfns, . .., s, }. An entity-synonym
relationship can be defined as:

Definition 6 (Entity-synonym Relationship)WWe define an entity-synonym relationship
&,; 1s a pair of an entitye; and its associated synonwn that is:

&}j = (61‘, Sj) (53)

Instead of referring to a synonysm alone, we must always refer to an entity-synonym
relationshig; ;, because; can be a synonym of one or more entities. An entity-synonym
relationship¢; ; has an associated time interval, ¢5], i.e., a time period that; is a
synonym ofe;.

The time pointst, andtz can be obtained usingintervalé; ;), TStar(¢; ;), and
TEnd¢; ;) respectively. We define a synonym snapshot as:

Definition 7 (Synonym Snapshaot)A synonym snapshet, is defined as a set of entity-
synonym relationships at a particular timme= ¢, that is:

Stk = {51’1, .. 7§n7m} 7tk - Tlntervakfi’j) (54)
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5.4.2 Time-based Classes of Synonyms

In this section, we give the definition of time-based clagsges/nonyms. The intuition
behind the synonyms classes is that, synonyms occur diffgrever time, so they should
be employed differently as well. Consequently, we will cigssynonyms into different
classes based on their occurrence patterns over time.

Let ¢ be the starting time point and’ be the last time point of the document col-
lection, i.e., Wikipedia. Hence;, = TStar{)V) andty = TEndW). For every entity-

synonym relationshig, ;, let 5 be the first time point we obserng; andtg” be the

last time point we observg ;, sots = TStar{(¢; ;) andtg” = TEnd¢; ;). Figure 5.2
depicts occurrence patterns of different synonym clasgesstone.
The first class of synonyms is calléche-independent and it is defined as:

Definition 8 (Time-independent SynonymsAn entity-synonym relationshgy; is clas-
sified as “time-independent” (Class A) if all of the followingrditions hold:
() 57 € [tv, ¢ + &,] whered; > 0

H 51‘,' __ jw
(i) t57 =1t}

The idea of Class A is to detect synonyms that exist for a lomg interval, as long
as that of Wikipedia. These synonyms are robust to changetiove and can represent
good candidates of synonyms. For example, the synonym “B&tassein Obamalll” is a
time-independent synonym of the entity “Barack Obama”. Wedy$o relax a condition
of starting time because there are not many pages created béginning of Wikipedia.
For example§; can be 24 months after Wikipedia was created.

The second class of synonyms is calliede-dependent and it is defined as:

Definition 9 (Time-dependent SynonymsAn entity-synonym relationshg ; is classi-
fied as “time-dependent” (Class B) if all of the following cotioins hold:

() ta7,t57 € [ty + 61,8 — 8] wheredy > 0,157 > t5”
(||) A< t%] — tgj’j < Ay Where/\l, Ay > 0, Ay > Ay

The idea of Class B is to detect synonyms that are highly etatéme, for example,
“Cardinal Joseph Ratzinger” is a synonym of “Pope Benedict Xh&fore 2005. We
interest in using this synonym class for query expansionatadle the effect of rapidly
changing synonyms over time as explained in Sectiond.ihdicates that synonyms are
no longer in use, and it can be 12 months, \, represents minimum, maximum values
of a time interval of synonym respectively. For exampleand \, can be 2 months and
24 months. If a time interval is less than 2 months, it is a@oisjunk synonym, and if it
is greater than 24 months, it is less specific to time.

In addition to Class A and B, we observe some synonyms canndabsifeed into
the two classes above because of their temporal charaicteri$hus, we introduce two
fuzzy-membership classes, and the first class cgiéging synonymyis defined as:
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Definition 10 (Gaining Synonyms)An entity-synonym relationshi ; is classified as
“gaining synonymy” (Class C) if all of the following conditioh®Id:

(i) 157 € [tY + 61, + 6, + €] wheree > 0
.. £i,' _ qw
(i) t57 =1tp

The idea of Class C is to detect synonyms that exist for a lang tnterval,but not
as long as that of Wikipedia. These synonyms can be considgred candidates of
synonyms as they are tentative to robust to change over Eiowever, it isnot confident
to judge if they are time-independent or not. This class absyms is actually a special
type of Class A that lacks of data in early years. For example,synonym “Pope”
has occurred as a synonym of the entity “Pope Benedict XVI"4/2005. Hence, this
synonym will be classified to Class C instead of Class A becalige time interval.e is
a parameter for the missing data of early years, ecan be 24 months.

The final fuzzy-membership class call@eclining synonymyis defined as:

Definition 11 (Declining Synonyms)An entity-synonym relationshiy; is classified as
“declining synonymy” (Class D) if all of the following conditns hold:
() 15 € [t 1Y + 6]

(i) 57 € [ty — 0 — 6, tY — 6] whered > 0

The idea of Class D is to detect synonyms that are stopped asirsynonyms for
some time ago, i.e., not in use at the moment. We can consigeclass of synonym as
out-of-datesynonyms. For example, for the entity “Bill Clinton”, the syryon “President
Clinton” is less popular nowadays and it is very rare to be u$éds, this synonym will
belong to Class D. Synonyms in this class can be viewed as #sabpge of Class B.
They are equivalent to synonyms in the past, but their tirrexvwals are not too specific to
particular time, i.e., greater than a certain period of tifige period of time is determined
by 0 that can be 12 months.

5.5 Time-based Synonym Detection

In this section, we will present our approach to find timedabsntity-synonym relation-
ships. The approach is divided into three main steps: 1) daenéty recognition and
synonym extractions, 2) improving time of synonyms usingaalei for temporal dynam-
ics of text streams, and 3) synonym classification.

5.5.1 Named Entity Recognition and Synonym Extraction

First, we partition the Wikipedia collection according heettime granularityy = month
in order to obtain a set of Wikipedia snapsh®{s= {1V;,,..., W,_}.
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Figure 5.2: Temporal patterns of time-based classes ofrgyns.

For each Wikipedia snapshit;, , we identify all entities in a snapshut;, . A result
from this step will be a set of entities;, at a particular time,.. After that, we determine
a set of synonyms for each entitye E,, in this snapsholl;, . A result from this process
is a set of entity-synonym relations, that is a synonym smaipS;, = {&1.1,- ... &um}-
We repeat this process for every Wikipedia snap$tigtin W. The final result will be the
union of all synonym snapshdfs= {S;, U...U S;_}. S will be input of the time-based
synonym classification step.

Step 1: Recognizing named entitiesGiven a Wikipedia snapshét’;, , we have a set
of pages existing at timg,, that isW;, = {p;|Vp; : tx € Tintervalp;)}. In this step, we
only interest in an entity page. In order to identify an entity page, we use the approach
described by Bunescu and Pasca in [18] which is based on ltheifog heuristics:

o |f multi-word title with all words capitalized, except pregitions, determiners, con-
junctions, relative pronouns or negations, consider itraitye

e If the title is a single word, with multiple capital letteisynsider it an entity.

e If at least 75% of the occurrences of the title in the artield ttself are capitalized,
consider it an entity.

After identifying an entity page. from a snapshot,, , we will have a set of entity
pagesP. ;. = {p.|p. € W;, }. From this set, we will create a set of entitiBg at timet,,
by simply extracting a title from each entity pagee P.,,. A result from this step is a
set of entities?;, = {ey, ..., e, }, which will be used in step 2.

Step 2: Extracting synonyms. After identifying a set of entitieg’;,, we want to
find synonyms for each entity, € £, . Owing to its richness of semantics structure,
it is possible to use article links and redirect pages in Wékiia for finding synonyms.
However, we will not use redirect pages in this chapter bgedus problematic to define
a temporal model of redirect pages. Hence, we will find synmipy extracting anchor
texts from article links. For a page € W, , we list all internal links irp; but only those
links that point to an entity page. € P.,, are interesting. In other words, the system
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extracts as synonyms all anchor texts for the associatéty,earid these synonyms are

weighted by their frequencies of occurrence. We then oldaset of entity-synonym

relationships. By accumulating a set of entity-synonymti@teships from every page
pi € Wy, we will have a set of entity-synonym relationships at titpei.e., a synonym

snapshob;, = {&11,...,&um}-

Step 1 and 2 are processed for every snapBhipte W. Finally, we will obtain a

set of entity-synonym relationships from all snapst®ts {S;,, .

synonyms for all entitie§ = {s, ..

.., 5.}, and a set of
., sy}. Table 5.2 depicts examples of entity-synonym

relationships and their time periods extracted from Willipe Note that, time periods of
some relationships in Table 5.2 are incorrect. For exantipéesynonym “Cardinal Joseph

Ratzinger” of the entity “Pope Benedict XVI” should assocsateth a time period before

2005. Consequently, in order to improve time periods, thelteérom this step will be

input to the next subsection.

Table 5.2: Entity-synonym relationships and time periods.

Named Entity Synonym

Time Period

Cardinal Joseph Ratzinger

Cardinal Ratzinger

05/2005 - 03/2009
05/2005 - 03/2009

Pope Benedict XVI

05/2005 - 03/2009
05/2005 - 03/2009
05/2005 - 03/2009

Joseph Cardinal Ratzinger
Joseph Ratzinger
Pope Benedict XVI

Barack Obama

02/2007 - 03/2009
02/2007 - 03/2009
04/2006 - 03/2009

07/2007 - 03/2009

05/2006 - 03/2009

Barack Hussein Obama Il
Barack Obama

Obama

Sen. Barack Obama
Senator Barack Obama

Hillary Rodham Clinton

Hillary Clinton 08/2003 - 03/2009
Hillary Rodham 10/2002 - 03/2009
Hillary 07/2004 - 03/2009
Mrs. Clinton 07/2005 - 03/2009

03/2007 - 03/2009
11/2007 - 03/2009

Sen. Hillary Clinton
Senator Clinton

5.5.2

Improving Time of Entity-synonym Relationships

The time periods of entity-synonym relationships do notsisshave the desired accuracy.

The main reason for this is that the Wikipedia history hasrg short timespan of only 8
years. Thatis, the time periods of synonyms are timestaff¥kipedia articles in which

they appear, not the time extracted from the contents ofpWikia articles. Consequently,

the maximum timespan of synonyms has been limited by the difvéikipedia. In order
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to discover the more accurate time, we need to analyze a dadwarpus with the longer
time period, i.e., the New York Time Annotated Corpus.

There are a number of methods for extracting the more aectiraé of synonyms.
The easiest method is to find the starting time and the endirgy or the first point and
the last point in the corpus, at which a synonym is observed it8 frequency greater
than a threshold. However, the problems with this methodree

1. It cannot deal with sparse/noisy data.
2. It cannot find multiple, discontinuous time intervals afyaonym.

Alternatively, we can apply the method called “burst detett proposed in [66]
for detecting the time periods of synonyms from the corpugs®uare defined as points
where a frequency of term increases sharply, and the fregueay oscillate above and
below the threshold, resulting in a single long interval ofdt or a sequence of shorter
ones. Consequently, burst periods can formally represeidsethat synonyms are “in
use” over time.

The advantage of this method is that it is formally modeled eapable of handling
sparse/noisy data. In addition, it can identify multiplscdntinuous time intervals for all
terms in the document corpus. Readers can refer to Chapterd2taited description of
the algorithm for burst detection.

We propose to improve the time period of each entity-synorstationshig; ; € S by
analyzing the NYT corpus (with the longer timespan of 20 geasing the burst detection
algorithm. The process of detecting entity-synonym retathips from the NYT corpus
is as follows. First, we have to identify a synonymfrom document streams. Note the
difference between an entity-synonym relationsfjip and a synonyns;, the first one
refers to a tuple of synonym; and its associated named entity while the latter one
refers to a synonyrs; only.

Second, we have to find a named entifyassociated to the identified synonwn
becauss; can be a synonym of more than one named entity. We call theepssynonym
disambiguation Finally, after we disambiguate synonyms, we will then obtaursty
periods of each entity-synonym relationslgig that can be represented more accurate
time periods of, ;.

Identifying and Disambiguating Synonyms using the NYT corpus

To identify a synonyns; from the text streams of the NYT corpus is not straightfodyar
because a synonyr} can be ambiguous (i.e., a synonym may be associated with more
than one named entities as Table 5.3 shows the number of ayiscessociated with the
different number of named entities). For example, thererayee than 19,000 synonyms
associating with more than one named entities, while 2.banifynonyms associate with
only one named entities. In order to disambiguate a namety enfor a synonyms;, we
can make use of a controlled vocabulary of the NYT corpusrdsstin Section 5.3.

Recall that input of this step is a set of all synonyms of alites®tS obtained from
Subsection 5.5.1. The algorithm for identifying a synonypfrom the text streams is
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Table 5.3: Synonyms and corresponding named entities.
#Named Entity #Synonym

2,524,170
14,356
2,797
994

442

259

155

94

58

37
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given in Algorithm 3 and Algorithm 4. An explanation is asléls. Algorithm 3 finds a
synonyms; from each document, wheres; can have the maximum size of n-grams of,
or w called the window size of synonym. In this case, a synonymitha&ize is greater
thanw is not interesting. Table 5.4 shows synonyms with differegrams.

Table 5.4: Examples of Synonyms with different n-grams.
N-gram Synonym

2 Jospeh Ratzinger

Senator Barack Obama

George Il of Great Britain

United Nations Commission on Human Rights

Society for the Prevention of Cruelty to Animals

13 Queen Elizabeth Il of the United Kingdom of Great Britain and Northeriaie

3
5
6
8

First, read a term; with the maximum sizev from a document,, starting at the index
pointerptr = 0 as in Algorithm 4 (line 7). Check whethey is a synonym{; € S), and
retrieve all associated named entities §p@s in Algorithm 4 (line 9). Next, check ¥;
has only one associated named entity, thaa not ambiguous, as in Algorithm 4 (line 10-
11). If s; is associated with more than one named entities, disamigigsanamed entities
as in Algorithm 4 (line 13-15). After disambiguating the nedarentities fors;, insert an
entity-synonym relationshife;, s;) plus the publication time aof,,, i.e.,PubTiméd,,), in
the output set and move the index pointer by the size;pthat isptr = (ptr + w) in
Algorithm 3(line 11-12).

If s; cannot be disambiguateg), will be ignored and we continue identifying another
synonym, i.e., reading a term with the maximum sizéom d,, by increasing the index
pointer to the next worgtr = (ptr + 1) as in Algorithm 3 (line 14). On the contrary,
if a terms; is not a synonymg; ¢ S), decrease a window size by 1 as in Algorithm 3
(line 20), and consider a prefix string 6f with a size of(w — 1), or s;41. If s;41
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is not a synonym, repeat the same process until a windowwsigeequal to 0 as in
Algorithm 4 (line 4). This means, if no any prefix substringsphas been recognized as
a synonym, continue to read the next term with the maximuexsizom the text streams
by increasing the index pointer to the next watd = (ptr + 1) as in Algorithm 3 (line
14).

Algorithm 3 IdentifyEntitySynonymInNYD(,)
1: INPUT: D, is a set of documents in the NYT corpus.
2: OUTPUT: A sequence of; ; or (e;, s;) and its timestamp.

3C«0 Il A set of entity-synonyms relationships and a time point.
4: for each{d,, € Dy} do
5 leng + |dy| Il leng is the number of words id,,.
6: ptr<«0 Il ptr is an index pointer ini,,, default is O.
7. w<c Il w is the window size of synonym, default.is
8:  while ptr < len, do
o: (i, s5) < FindSynonyrd,,, ptr, w)
10: if (e;,s;) # null then
11: C + CU{(e;,s;), Time(d,)} [l Output(e;,s;) and publication time ofl,,
12: ptr < (ptr + CountWordss;))  // Moveptr by the number of words isy.
13: else
14: ptr < (ptr + 1) /I Moveptr to the next word.
15: end if
16:  end while
17: end for
18: return C

After identifying s; as a synonym, it is necessary to determine whethas am-
biguous or not. Note that we retrieve the set of all entifigsassociated witls; as in
Algorithm 4 (line 9). If there is only one entity iy}, s; iS not ambiguous and that entity
will be assigned tos; as in Algorithm 4 (line 10-11). However, if there are morertha
one entity,s; have to be disambiguated by using controlled vocabulgriagged in the
documenti,, as in Algorithm 4 (line 13).

The algorithm for disambiguating named entities for a symons given in Algo-
rithm 5. For each entity, € £}, if e, is in a set of tagged vocabulaby, of d,,, adde
into a list of disambiguated entitieS,, as in Algorithm 5 (line 7-8). Continue for all
entities inEy,. If Eyy,p contains only one entity,; is disambiguated. IEy,, has more than
one entity,s; cannot be disambiguated.

The final results will be tuples of disambiguated entityyym relationships associ-
ated with timestamps of documents where they occur. TabldlBstrates results from
this step of the synonyms “President Reagan” and “Senatotd@liof the named entities
“Ronald Reagan” and “Hillary Rodham Clinton” respectively. B&aple is composed of
an entity-synonym relationship, the publication time ofcegaiment where it occurs, and
its frequency. Note that, one entity-synonym relationstap be associated ttifferent
timestamps. This is equivalent to the statistics of a erslytyonym relationship over time
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Algorithm 4 FindSynonym,, ptr, w)
1: INPUT: A documentd,, a pointerptr, a size of synonynw.
2: OUTPUT: An entity-synonym relationshife;, s;) or&; ;.
3: (e;,s5) < null /I Set a tuple result to null.
4: if w = 0then

5. return (e, s;)

6: else

7. s; + ReadStringd,, ptr, w) Il Reads; fromd,, at indexptr.
8: if s; € Sthen

9 E; < GetAssocEntitigs;) Il All entities associated tg;.
10: if |E;| =1then

11: e; < E; firstElement()

12: else

13: ey, < Disambiguatéd,,, £;) /I Disambiguater;.
14: if ex # null then

15: €; < e

16: end if

17: end if

18: return (e;, s;)

19: else

20: FindSynonyrt,,, ptr, (w — 1)) /I Find a synonym with a sizev — 1).
21 endif

22: end if

extracted from text streams of documents. The results flosnstep will be input to the
next subsection.

Improving Time of Synonyms using Burst Detection

In this step, we will find the correct time of a entity-synonyetationshipg; ; by using
the burst detection algorithm described in [66]. The akhoni takes the results from
the previous step as input, and generates bursty periogs; &fy computing a rate of
occurrence from document streams. An output produced #nstieip is bursty intervals
and bursty weight, which are corresponding to periods ofimetice and the intensity of
occurrence respectively, as showed in Table 5.6.

Detected bursty periods are mostly composed of discontisudervals because the
algorithm depends heavily on a frequencyépf in the text streams. A gap in time in-
tervals prevents us from classifyirg, as time-independent since a time-independent
synonym should have a long and continuous time interval. IAtiem to this problem is
to combine two adjacent intervals and interpolate theistywveight. However, interpo-
lation for &; ; will be performed only if a synonym of; ; has no other candidate named
entities according to the fact that the relationship of a @@mntity and its synonym can
change over time. A result from this step is a set of entityesyym relationships, that is
S={&1,...,&.m) and more accurate time.
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Algorithm 5 Disambiguated,,, £;)

1: INPUT: A documentd,,, and a set of associated entitiés

2: OUTPUT: A disambiguated entity.

3: Eimp <0 /I A temporary list of entities.

4: e; < null /I An output entity.

5. V,, «+ GetVocabularyd,,) /I Tagged vocabulary af,.

6: for eache;, € E; do

7. if e, €V, then

8: Etmp — Etmp U {ek}

9: endif

10: end for

11: if |Eyyy| = 1 then

12:  e; + EympfirstElement()

13: end if

14: return e;

Table 5.5: Tuples of entity-synonym relationships.
Timestamp Synonym Entity Frequency

01/1987 President Reagan Ronald Reagan 54
03/1987 President Reagan Ronald Reagan 23
11/1988 President Reagan Ronald Reagan 11
01/1989 President Reagan Ronald Reagan 34
10/1990 President Reagan Ronald Reagan 12
04/2001  Senator Clinton  Hillary Rodham Clinton 67
05/2002  Senator Clinton  Hillary Rodham Clinton 121
05/2003  Senator Clinton  Hillary Rodham Clinton 33
11/2004  Senator Clinton  Hillary Rodham Clinton 61
01/2005  Senator Clinton  Hillary Rodham Clinton 359

5.5.3 Time-based Synonym Classification

To classify an entity-synonym relationship; based on time is straightforward. The
starting time point5 and the ending time poir‘tf;j of & ; will be used to determine
synonym classes as defined in Subsection 5.4.2. In this waekare only interested
in using time-independent and time-dependent synonymsgudery expansion because
synonyms from the other two classes might not be useful sit#sk. In the next section,
we will explain how can we actually make use of time-basedsyms in improving the
retrieval effectiveness.
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Table 5.6: Results from burst-detection algorithm.

: , Time
Synonym Entity Burst Weight Start End

President Reagan Ronald Reagan 5506.858 01/1987 02/1989
President Ronald Ronald Reagan 100.401 01/1989 03/1990
President Ronald Ronald Reagan 67.208 07/1990 02/1993
Senator Clinton  Hillary Rodham Clinton 18.214 01/2001 10/2001
Senator Clinton  Hillary Rodham Clinton 17.732 05/2002 01/2003
Senator Clinton  Hillary Rodham Clinton 172.356 06/2003 11#00

5.6 Query Expansion

In this section, we will describe how to use time-based synmn(time-independent and
time-dependent synonyms) to improve the retrieval effeciess. The use of synonyms
will be divided into two different search scenarios.

The first scenario is to use time-independent class of syneny an ordinary search,
for example, searching with keywords only (no temporakcidt explicitly provided). The
usefulness of time-independent synonyms is that they canelaeed as good candidate
synonyms for a named entity. For example, the synonym “Bakragdsein Obama II” is
better than “Senator Barack Obama” as a synonym for the namtiy ‘@Barack Obama”
in this case. Consequently, a query containing named entiéie be expanded with their
time-independent synonyms before performing a search.

Another case is when performing a temporal search, we nmkesirito accounthanges
in semanticsFor example, searching documents about “Pope Benedict Xkitten “be-
fore 2005”, documents written about “Joseph Alois Ratzihgkould also be considered
as relevant because it is a synonym of the named entity “Popedse XVI” at the years
“before 2005”. In this case, a time-dependent synonym vagipect to temporal criteria
can be used to expand a query before searching.

In the rest of this section, we will describe how we actuakpand a query with
time-based synonyms.

5.6.1 Using Time-independent Synonyms

Before expanding a query and performing an ordinary seaycionyms must be ranked
according to their weights. We define a weighting functiotime-independent synonyms
as a mixture model of a temporal feature and a frequencyrieasifollows:

TIDP(s,) = - pf(s;) + (1 — ) - T (s)) (5.5)

wherepf(s;) is a time partition frequency or the number of time partigigar time snap-
shots) in which a synonym; occurs.tf(s;) is an averaged term frequency ©fin all
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time partitions:

o) = S

wherey underlines the importance of a temporal feature and a frexyuieature. In
our experiments, 0.5 is a good value for

Intuitively, this function measures how popular synonymes@ver time. The popular-
ity of synonym over time is measured using two factors. Fagbonyms should be robust
to change over time as defined in 5.4.2. Hence, the moreipagtisynonyms occur, the
more robust to time they are. Second, synonyms should hgheulseiges over time. This
corresponds to having a high value of averaged frequenuadime.

We intend to use time-independent synonyms in order to iugotioe effectiveness of
an ordinary search, i.e., search without temporal criténighis chapter, we will perform
an ordinary search using Terrier search engine developéthlwersity of Glasgow.

Given a queryy, first we have to identify a named entity in query. Note tha¢, w
could not rely on state-of-the-art named entity recogniti@cause queries are usually
very short (i.e., 2-3 words on average), and lacked of stahftem, e.g., all words are
lower case. In addition, we need to identify a named entityesponding to a title of
Wikipedia article since our named entities and synonymexiracted from Wikipedia.

We do this by searching Wikipedia with a queryandg is a named entity if its search
result exactly matches with a Wikipedia page. Besides, a madag method is to select
the top4 related Wikipedia pages instead. Now, we obtain a set of deenétiesE, =
{eg1,--.,eqn} Of g¢. Subsequently, time-independent synonymg afe all synonyms
corresponding to a named entity; € E,. Next, we will rank those synonyms by their
TIDP scores and select only top-k synonyms with highest scoresxjpansion. Query
expansion of time-independent synonyms can be performtéulees ways as follows:

(5.6)

1. Add the top-k synonyms to an original queryand search.

2. Add the top-k synonyms to an original queryand search with pseudo relevance
feedback.

3. Add the top-k synonyms to an original querglusTIDP scores as boosting weight,
and search with pseudo relevance feedback.

Boosting weights a weight of term as defined in Terrier's query language.eNloét, if
synonyms are duplicated with an original quetywe will remain the original query
unchanged, and add those duplicated synonymsTWidi® scores as boosting weight.

5.6.2 Using Time-dependent Synonyms

In order to rank time-dependent synonyms, we first have olataet of synonyms from
time ¢, and weight them differently according to the following wieiimg function.

TDP(s;, t) = t£(s;, t1) (5.7)
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wheretf(s;, t;,) is a term frequency of a synonysn at timet,. Note that, a time partition

frequency is not counted because synonyms from the samepgnad should be equal
with respect to time. Thus, only a term frequency will be usecheasure the importance
of synonym. Time-dependent synonyms will be used for a teaim®arch, or a search
taking into account a temporal dimension, i.e. extendingved search with the publi-

cation time of documents. In that way, a search system wiriernee documents according
to both textual and temporal criteria, e.ggmporal text-containment searfd2].

Given a temporal query, t;.), we will recognize named entities in a querysing
the same method as explained in Section 5.6.1. After obvigiiaiset of named entities
E,={eq1,--.,eq.n} Of aqueryg, we will perform two steps of filtering synonyms. First,
only synonyms which their time overlaps with timewill be processed, that is:

{s;|Timgs;) Nty # 0}

Second, those synonyms will be ranked by tHEP scores and select only top-k
synonyms with highest scores for expansion. Using timesddent synonyms in a tem-
poral search is straightforward. A set of synonyms will bd ado an original temporal
query(q, t;). In the following subsection, we will explain how to automcatly generate
temporal queries that will be later used in temporal seaxple@ments.

5.7 Evaluation

In this section, we will evaluate our proposed approachesaeting and improving time
of synonyms, and query expansion using time-based syngnydus experimental eval-
uation is divided into three main parts: 1) extracting grsynonym relationships from
Wikipedia, and improving time of synonyms using the NYT amsp2) query expansion
using time-independent synonymend 3) query expansion usirigne-dependensyn-
onyms. In this section, we will describe the setting for eatlhe main experiments,
and then the results.

5.7.1 Setting

We will now describe in detail the experimental setting afteaf the experiments.

Extracting and Improving Time of Synonyms

To extract synonyms from Wikipedia, we downloaded the catgpdump of English
Wikipedia from the Internet Archive [128]. The dump contiall pages and revisions
from 03/2001 to 03/2008 in XML format, and the decompressaglis approximately 2.8
Terabytes. A snapshot was created for every month resuiiB§ snapshots (03/2001,
04/2001,. .., 03/2008). In addition, we obtained 4 more snapshots (@&207/2008,
10/2008, 03/2009), where 2 of them were downloaded [129], v&have 89 (85+4)
snapshots in total.
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We used the tool called MWDumper [90] to extract pages fromdinep file, and
stored the pages and revisions of 89 snapshots in databsisgsQracle Berkeley DB
version 4.7.25. We then created temporal models of Wikg#&dm all of these snapshots.

To improve time of synonyms, we used the burst detectionrétgo implemented by
the author in [66] and the NYT corpus described in Section35.8n advantage of this
implementation is that no preprocessing is performed ordtdoaments. Parameter for
burst detection algorithm were set as follows: the numbestaies was 2, the ratio of rate
of second state to base state was 2, the ratio of rate of ebskuent state to previous
state (for states- 2) was 2, and gamma parameter of the HMM was 1. We use accuracy
to measure the performance of our method for improving tifre/ponyms.

Query Expansion using Time-independent Synonyms

To perform an ordinary search, the experiments were caouedsing the Terrier search
engine. Terrier provides different retrieval models, sashdivergence from randomness
models, probabilistic models, and language models. In xper@ments, documents were
retrieved for a given query by the BM25 probabilistic modethaeneric Divergence
From Randomness (DFR) weighting. In addition, it providesifilexquery language that
allows us to specify a boosting weight for a term in query. éaivan initial queryg,,,

an expanded query,, with top-k synonymgsy, ..., sx} plus TIDP scores as boosting
weight can be represented in Terrier's query language ksvel

N A A
Qexp = Qorg S1 W1 S "Wo ... Sk wg

wherewy, is a time-independent weight of a synonymand computed using the function
TIDP(s;) defined in Equation 5.5.

We conducted an ordinary search using the standard TexeRatGonference (TREC)
collection Robust2004. Robust2004 is the test collectionttier TREC Robust Track
containing 250 topics (topics 301-450 and topics 601-700e Robust2004 collection
statistics are given in Table 5.8. The retrieval effecte@nof query expansion using time-
independent of synonyms is measured by Mean Average RyedBIAP), R-precision
and recall. Recall in our experiments is the fraction of relgvdocuments Terrier re-
trieves and all relevant documents for a test query.

Query Expansion using Time-dependent Synonyms

To perform a temporal search, we must identify temporaliggarsed for a search task.
We do this in an automatic way by detecting named entitielsdiia represent temporal
gueries for performing temporal search experiments. Thamed entities of interest-
ing should have manyime-dependensynonyms associated to them. To automatically
generate temporal queries is composed of two steps as ®llow

Given entity-synonym relationshig = {&1,...,&,,»}. First, we find temporal
guery candidates by searching for any named entityhich the number of its synonyms
is greater than a threshold Nevertheless, in this case, most of synonyms matyrbe-
independentand named entities become less appropriate to represepotal queries.
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Then, we must take into accountTdDP of each synonym. The intuition is that the
lower TIDP weight a synonym has, the better time-dependent it is. Soedeaentities
with an average oTIDP weight less than a thresholtl probably associate with many
time-dependerdynonyms. This makes them good candidate for temporalegidn our
experiment, the threshold of the number of synonynad a threshold of the average of
TIDP weight¢ are 30 and 0.2 respectively.

Table 5.7: Examples of temporal queries and synonyms.
Temporal Query

Named Entity Time Period Synonym
American Broadcasting Company 1995-2000 Disney/ABC
Barack Obama 2005-2007 Senator Obama
Eminem 1999-2004  Slim Shady
Eminem 2000-2002 Marshall Mathers
George H. W. Bush 1988-1992 President George H.W. Bush
George H. W. Bush 2000-2003 George Bush Sr.
George W. Bush 2000-2007 President George W. Bush
George W. Bush 2002-2005 Bush 43
Hillary Rodham Clinton 2001-2007  Senator Clinton
Kmart 1987-1992 Kmart Corporation
Kmart 1987-1987 Kresge
Pope Benedict XVI 1988-2005 Cardinal Ratzinger
Ronald Reagan 1987-1989 Reagan Revolution
Ronald Reagan 1987-1989 President Reagan
Rudy Giuliani 1994-2001 Mayor Rudolph Giuliani
Tony Blair 1998-2007 Prime Minister Tony Blair
Virgin Media 1999-2002 Telewest Communications

The temporal searches were conducted by human judgmergt 3isisers. Some ex-
amples of temporal queries are shown in Table 5.7. Each agpiains a temporal query
(a named entity and time criteria), and its synonym with eespo time criteria. We
performed a temporal search by submitting a temporal guetlye news archive search
engine [91]. We compared the results of top-k retrieved dens of each quenyithout
synonym expansion, and those of the same quéity synonym expansion. A retrieved
document can be eithezlevantor irrelevantwith respect to temporal criteria. According
to the lacking of a standard test set (with all relevant judgta available), we could not
evaluate temporal search using recall as we intended. Peufrmance measures are
the precision at 10, 20 and 30 documents, or P@10, P@20, aB0 R&@pectively.

5.7.2 Results

First, we will show the results of extracting synonyms, amg@roving time of synonyms.
Then, the results of query expansion usiimge-independergynonyms and the results of
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Table 5.8: Robust2004 collection statistics.
Document Collection  #Docs Size (GB) Time Period

Financial Times 210,158 0.56 1991-1994
Federal Register 55,630 0.40 1994
FBIS 130,471 0.47 1996

Los Angeles Times 131,896 0.48 1989-1990
All 528,155 1.9 1989-1994, 1996

guery expansion usingme-dependergynonyms will be presented respectively.

Extracting and Improving Time of Synonyms

Different named entity recognition methods is describedahle 5.9. Note thaffjlter-
ing criteria for synonym®f BPF-NERW are including: 1) the number of time intervals
is less than 6 months, and 2) the average frequency (the stragofencies over all in-
tervals divided by the number of intervals) is less than 2e Tilkering aims to remove
noise synonyms. For BPC-NERW, uninteresting categorieshasetnone of “people”,
“organization” or “company”.

Table 5.9: Different named entity recognition methods.
NER Method Description

BP-NERW Bunescu and Pagca’s named entity recognition of Wikipedia (cf. Sectoh)5
BPF-NERW  BP-NERW withfiltering criteria for synonyms

BPC-NERW BP-NERW filtered out named entities in uninteresting categories
BPCF-NERW BPC-NERW withfiltering criteria for synonyms

The statistics obtained from extracting synonyms from é&kiia are in Table 5.10.

Table 5.10: Statistics of entity-synonym relationshipsaoted from Wikipedia.
NER Method #NE #NE-Syn. Max. Syn. per NE Avg. Syn. per NE

BP-NERW 2,574,319 7,820,412 631 3.0
BPF-NERW 2,574,319 3,199,115 162 1.2
BPC-NERW 473,829 1,503,142 564 3.2
BPCF-NERW 473,829 488,383 148 1.0

In Table 5.10, Columns 2-3 are the total number of named estrtcognized, and
the total number of entity-synonym relationships extrddtem Wikipedia, respectively.
Column 4 is the maximum number of synonyms per named entity.ur@ol5 is the
average number of synonyms per named entity.
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The results from improving time of synonyms using the NYTprarare in Table 5.11.
Note that, only entity-synonym relationships without mosynonyms are interesting, i.e.,
recognized by the methods BPF-NERW and BPCF-NERW. In Table &alumn 2 is
the number of entity-synonym relationships that can betitled and assigned time from
the NYT corpus using the method in Section 5.5.2. The peagenof the number of
entity-synonym relationships identified and assigned tsrshown in Column 3.

In order to evaluate the accuracy of the method for improtimg of entity-synonym
relationships, we randomly selected 500 entity-synonylaticmships and manually as-
sessed the accuracy of time periods assigned to those-sytibpnym relationships. The
accuracy of the method for improving time of entity-synongegtationships is shown in
Column 4. The accuracy of the method for improving time of tgrgynonym relation-
ships in a case of BPCF-NERW is better than that of BPF-NERW Isecaamed entities
recognized by BPF-NERW is too generic, and it is rare to gagh lilequencies in the
NYT corpus.

Table 5.11: Accuracy of improving time using the NYT corpus.
NER Method #NE-Syn. Disambiguated Accuracy (%)

BPF-NERW 393,491 (12.3%) 51
BPCF-NERW 73,257 (15.0%) 73

Query Expansion using Time-independent Synonyms

We evaluate our proposed query expansion by comparingeiiffenethods described in
Table 5.12. Note that, Pseudo relevance feedback was peribby selecting 40 terms
from top-10 retrieved documents, and those expansion teersweighted by DFR term
weighting model, i.e., Bose-Einstein 1.

Table 5.12: Different query expansion methods for compatis

Method Description
PM (Baselinel) the probabilistic model without query expansion
RQ (Baseline2) query expanding by re-weighting the original query
PRF (Baseline3) query expanding by pseudo relevance feedbackliRagorithm)
SQE (Approachl) add the top-k synonyms to an original query beforekear

SQE-PRF  (Approach2) add the top-k synonyms to an original query and seathPRF
) (Approach3) add the top-k synonyms to an original query plus tHH&P
SWQE-PRF scores as boosting weight, and search with PRF

Test queries were selected from the Robust2004 test setneningd entities in a query
described in Section 5.6.1. Note the difference between Sunand Pasca’s named
entity recognition for Wikipedia page (BP-NERW), and namettgmecognition in a
guery (NERQ). The first method recognizes whether a Wikipddizument is a named
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entity or not, and it needs to analyze the content of the Witi@ document. For the
second method, we have only a set of short queries (withoatardent) and we need to
identify named entities in those queries. Recall that thexéveo methods for recognizing
named entities in queries described in Section 5.6.1: 1Jtxanatched Wikipedia page
(MW-NERQ), and 2) exactly matched Wikipedia page andkopiated Wikipedia pages
(MRW-NERQ). We used = 2 in our experiments becausareater than 2 can introduce
noise to the NERQ process.

The number of queries from the Robust2004 test set recogniied two methods
are shown in Table 5.13. There are total 250 queries from R2004. MW-NERQ can
recognize 42 named entity queries while MRW-NERQ can reaagh49 named entity
gueries. Note that, 42 and 149 queries are the number ofeguund as Wikipedia
article, and recognized as named entities. For exampleg #re actually 58 queries from
Robust2004 found as Wikipedia article, but only 42 aaened entityjueries.

Table 5.13: Number of queries using two different NER.

Type MW-NERQ MRW-NERQ
Named entity 42 149
Not named entity 208 101
Total 250 250

Named-entity queries recognized using two NER methodslarers in Table 5.14.
Each row represents different retrieval results of eaaferetl method, and two main col-
umn represents two different methods for NERQ. Differenieweal results are composed
of Mean Average Precision (MAP), R-precision and recall. Aersin Table 5.14, our
proposed query expansion methods SQE-PRF and SWQE-PRF petfettar than the
baselines PM, RQ and PRF in both MAP and recall for MW-NERQ. Harethere is
only SWQE-PRF outperforming the baselines in R-precisiono Alste that, SQE-PRF
has better recall than SWQE-PRF, while the opposite seemddddrqrecision. In the
case of MRW-NERQ, our proposed query expansion methods leallg worse perfor-
mance than in the case of MW-NERQ due to the accuracy of thgniaan method.

Query Expansion using Time-dependent Synonyms

The baseline of our experiments is to search using a temgoeay (TQ), i.e., a keyword
w, and timet,. Our propose method is to expand an original query with symswith
respect to time, and search (TSQ). Experimental results of P@10, P@20 anddP@3
20 of temporal query topics are shown in Table 5.15. The reshltsv that our query
expansion using time-dependent synonyms TSQ performedisantly better than tem-
poral searches without expansion TQ. Our observation tsTiQaretrieved zero to a few
relevant documents (less than 10) for most of temporal geewhile TSQ could retrieve
more relevant documents as a result of expanding tempoeaieguwith time-dependent
synonyms.
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Table 5.14: Performance comparisons using MAP, R-pregisind recall for named en-

tity queries, * indicates statistically improvement oviee baselines using t-test with sig-
nificant atp < 0.05.

Method MW-NERQ MRW-NERQ

MAP R-precision Recall MAP R-precision Recall
PM 0.2889 0.3309 0.6185 0.2455 0.2904 0.5629
RQ 0.2951 0.3266 0.6294 0.2531 0.2912 0.5749
PRF 0.3469 0.3711 0.6944 0.3002 0.3227 0.6761
SQE 0.3046  0.3360 0.6574 0.2123 0.2499 0.5385
SWQE 0.3054 0.3399 0.6475 0.2399 0.2820 0.5735
SQE-PRF 0.3608* 0.3652 0.7405% 0.2507 0.2665 0.5932
SWQE-PRF 0.3653 0.386% 0.7388* 0.2885 0.3080 0.6504

Table 5.15: Performance comparisons using P@10, P@20 aBa R@iemporal queries

* indicates statistically improvement over the baselinegs-test with significant ap <
0.05.

Method P@10 P@20 P@30

TQ 0.1000 0.0500 0.0333
TSQ 0.520G6 0.380G 0.2800

5.8 News Archives Search System Prototype

In this section, we present a system prototype for searcts meehives that takes into
account terminology changes over time. Our system consfigtgo parts: 1) the offline
module for extracting time-based synonyms by using ourg@segd approach, as depicted
in Figure 5.3, and 2) the online module for searching newkiaecas illustrated in Fig-
ure 5.4. With a web-based interface, the system can takgpas @named entity query.
It automatically determines time-based synonyms for arghamed entity, and ranks the
synonyms by their time-based scores. Then, a user can expamdémed entity with the
synonyms in order to improve the retrieval effectiveness.

Consider an example of search as also illustrated in Figdte®sstudent studying the
history of the Roman Catholic Church wants to know about the Bepedict XVI during
the years before he became the Pope (i.e. before 2005). Uthenstsearches using the
gueryPope Benedict XVI and the publication dates 1987/01 and 2005/04. The system
retrieves documents for the quePppe Benedict XVI, and also determines synonyms
for the query with respect to time criteria. The student thelects the synonyms “Car-
dinal Joseph Ratzinger” to expand the query. The new quergrbesPope Benedict
XVI OR Cardinal Joseph Ratzinger. He performs search again, and the system re-

trieves documents which are relevant to both “Pope Beneditt Xnd “Cardinal Joseph
Ratzinger”.
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For every Wikipedia
snapshot Wtk

|

Partition
Wikipedia into
shapshots

+ all pages
+ all revisions

Recognize named
entity pages in
Wikipedia
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—>| for named entity
pages

Entity-synonym
relationship
of all snapshots

Figure 5.3: System architecture of the module for extrgctime-based synonyms.
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Enter query: *
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e.g. Pope Benedict XVI, Barack Obama, or Hillary
Rodham Clinton
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Pope Benedict XVKOR Cardinal Joseph Ratzinger)
e.g. Pope Benedict XVT, F Mary
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There ks a page named "Pope Benedict XVI" on Wikipedia

Found 33 synonyms for "Pope Benedict XVI" during [198701,200504]
[ Show time periods

[ Show scores

O cardinal Ratzinger
Cardinal Joseph Ratzinger
[ Benedictus xvi

@ Rodham Clinton

Mar 02, 2005 - World Briefing | Europe: Italy: Pope Can Speak, Cardinal Says
"alert" and even able to converse in ltalian and German. Cardinal Joseph Ratzinger
http:/iquery.nytimes . .htmI?res=9F0DE3DD133DF931A35750C0A8639C8B63

Oct 03, 2003 - Austrian Cardinal Describes Pope as 'Dying’
a German magazine published an article that quoted Cardinal Joseph Ratzinger
http:/iquery.nytimes.com/gst/fullpage.html?res=9E0DE6DT173CF930A35753C1A9659C8B63

Jun 27, 1992 - VATICAN PREPARES A NEW CATECHISM
Pope John Paul |l approved the catechism’s text on Thursday, Joseph Cardinal Ratzinger
http:fiquery.nytimes. htmi? EFD71338F934A15755C0A964958260

gstifullpag

Figure 5.4: User interface of the news archives searchmygtetotype.
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5.9 Conclusions

In this chapter, we have described how to use Wikipedia tocodier time-dependent and
time-independent synonyms. These classified synonymsecamployed in a number of
application areas, and in this chapter we have describeddperform query expansion
using the time-based synonyms. The usefulness of this appriotas been demonstrated
through an extensive evaluation, which have showed sigmifi;icrease in retrieval ef-
fectiveness. Finally, we presented a system prototypeciarching news archives taking
into account terminology changes over time.



92

Section 5.9. Conclusions




Chapter 6

Time-based Query Performance
Predictors

Query performance prediction is aimed at predicting theewl effectiveness that a
qguery will achieve with respect to a particular ranking nmode this chapter, we study
guery performance prediction for temporal queries whertithe dimension is explicitly
modeled into ranking. This chapter addresses the reseaestignhow to predict the
retrieval effectiveness of temporal queries?

6.1 Motivation

Retrieval effectiveness can be increased by employssyido-relevance feedba@kRF),
which can be done in two steps. First, the initial search rfop@med for a given query,
where a set of top-k retrieved documents are assumed tod&ant] Second, terms are
extracted from those top-k documents and the query is auicaiig expanded with ex-
tracted terms for performing the second search that dsliherfinal results. For temporal
searchfime-based pseudo-relevance feedb@eRRF) proposed in Chapter 4 can be em-
ployed, where the time of initial top-k retrieved documeats assumed to be relevant
and the query is automatically expanded with the relevam thefore the second search.
However, the performance of using PRF and T-PRF depends orugiigycpf the initial
results: with less relevant documents expanding the quaTyead to query drift and pos-
sibly lower retrieval effectiveness. In that case, thedeaystem should instead help the
user to manually reformulate the query by performegquery suggestionf termsand/or
timerelevant to the query, for example, giving a list of all valamountains and time
periods of major eruptions in Iceland for the query givenweho

In this chapter, we aim at improving retrieval effectivesniégr temporal search by
studyingtemporal query performance predictione., predicting the retrieval effective-
ness that temporal queries will achieve with respect to &iqoderr ranking model in
advance of, or during the retrieval stage in order that paldar actions can be taken to
improve the overall performance. In other words, querygrenfince prediction can be
useful in order to choose between alternative query enmagicetechniques described

93
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above, such as, query expansion and query suggestion. Teegtef our knowledge,
guery performance prediction for temporal search has riese&n done before.

Contributions
The main contributions of this chapter are:

e We perform the first study and analysis of performance ptedienethods for tem-
poral queries.

e We propose different time-based predictors and technifpresnproving query
performance prediction by combining multiple predictors.

Organization

The organization of the rest of the chapter is as follows. éati®n 6.2, we give an
overview of related work. In Section 6.3, we first outline retsdfor time, queries and
documents. Then, we explain a temporal ranking method afiigedde problem of tem-
poral query performance prediction. In Section 6.4, we gmegxisting predictors pro-
posed in previous work. In Section 6.5, we propose diffetiem¢-based predictors and
explain methods for combining different predictors. In 88t 6.6, we describe how to
combine different prediction in order to improve predigtiperformance using two meth-
ods: linear regression and neural networks. In Sectionvée7gevaluate different single
predictors and the combined methods. Then, we discuss siutseand conclude our
findings. Finally, in Section 6.8, we summarize our work iis tthapter.

6.2 Related Work

The problem of query performance prediction has recentiyegha lot of attention [25,
31, 43, 41, 44, 45, 46, 107, 122, 142, 143]. Different appneado predicting query
performance can be categorized according to two aspects J3ime of predicting
(pre/post-retrieval) and 2) an objective of task (diffigutjuery rank, effectiveness). Pre-
retrieval based approaches predict query performanceéamttently from a ranking method
and the ranked list of results. Typically, pre-retrievab&a@ methods are preferred to
post-retrieval based methods because they are based solglery terms, the collection
statistics and possibly external sources, e.g., WordN&Viarpedia. On the contrary,
post-retrieval based approaches are dependent on thedrbstkef results. Pre-retrieval
predictors can be classified into four different categdogsed on the predictor taxonomy
defined by Hauff et al. [41]: 1) specificity, 2) ambiguity, &nking sensitivity, and 4) term
relatedness.

The first group of pre-retrieval predictors estimates tHeatieness of a query by
measuring the specificity of query terms and assumes thanhdine specific a query, the
better it will perform. In order to determine the specificitfferent heuristics are pro-
posed, for example, the averaged length of a g@&®QL [88], the averaged inverse docu-
ment frequencyvIDF [25] and the averaged inverse collection term frequeéndZ TF[45].
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The summed collection query similarisgumSCQ142] employs both term frequencies
and inverse document frequencies. In addition, the sireglifpre-retrieval) version of
Clarity Score [45] (denoteBCS. SCSmeasures the maximum likelihood of query terms
to determine the specificity. Note that, the Clarity Score mst-retrieval method and
originally proposed in [25].

An ambiguity-based predictor is for example a set cohereaoee [46] measuring
the ambiguity of a query by calculating the similarity beémeall documents that contain
the query term. Unfortunately, this predictor is computadlly expensive although it
is suggested in [46] that a subset of documents used for camgpcan be randomly
selected. Although pre-retrieval predictors do not perfa@rctual retrieval, we can still
predict query performance by examinitegm weightof queries (e.g. tf-idf) that will be
used for ranking documents. This will help in estimating leasy/hard it is for a retrieval
system to rank documents containing query terms. An exawiptanking-sensitivity
based methods is the sum of query weight deviaBamVAR142].

The predictors presented previously igntaen relatednesamong query terms. Con-
sider the queriewright brothers andright brothers, we can expect that the first one is
the easiest query becausaght andbrothers have a stronger relationship thaght and
brothers. To measure the relationship between two terms, pointwigiahinformation
(PMI) can be computed [41]. PMI measures the relationshipld®erving co-occurrence
statistics of terms in a document collection. Two PMI-bagestlictors are including the
averaged PMI value of all query term pa&sPMI [41] and the maximum PMI value of
all query term pairdMaxPMI [41]. We will refer to the predictors presented above as
keyword-basegredictors.

A number of ranking models exploiting temporal informatiwave been proposed for
example [12, 31]. In [31], Diaz and Jones measure the digtab of creation dates of
retrieved documents to create the temporal profile of a gaexyuse the profile to predict
precision. Note that, we have temporal information neeqdi@iy provided, so we do
not need to estimate a temporal profile. Berberich et al. [iZgrated temporal expres-
sions into query-likelihood language modeling, which édess uncertainty inherent to
temporal expressions in a query and documents, i.e., teahg@quressions can refer to the
same time interval even they are not exactly equal.

6.3 Problem Definition

We describe the models for queries, documents and time., Tiepresent the problem
of temporal query performance prediction.

6.3.1 Models for Documents and Queries

We define a temporal queryas composed of two parts: keyworgs,: and a temporal
expressiongme. A documentd consists of a textual patkey (an unordered list of terms)
and a temporal patkine composed of the publication date and a set of temporal esipres
{t1,...tx}. The publication date of can be obtained from the functidPubTiméd).
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Both the publication date and temporal expressions will peasented based on the time
model of Berberich et al. [12] presented in Section 2.2.2.

6.3.2 Temporal Query Performance Prediction

Let ¢ be a temporal query) be a document collectiofi; be a set of all temporal expres-
sionsinD. Np is the total number of documentsihand N is the number of all distinct
temporal expressions iR. Temporal query performance prediction is aimed at prewdjct
the retrieval effectiveness fqr Becausey is strongly time-dependent, both the statistics
of the document collectio® and the set of temporal expressidfisnust be taken into
account. Temporal query performance prediction is defised@a D, T') — [0, 1], where

f is a prediction function (so-called a predictor) giving agicted score that can indicate
the effectiveness af. We are only interested in pre-retrieval predictors beedhsy pre-
dict query performance independently from a ranking metsdpposed to post-retrieval
predictors.

Ultimately, we aim at findingf that can best predict the effectiveness;pi.e., pre-
dicted scores arkighly correlatedwith actual effectiveness scores. In genefatan be
modeled using simple linear regression, which models tla¢ioaship between the effec-
tivenesg, with a single predictor variable GivenN queries, simple linear regression fits
a straight line through the set &f points of effectiveness scores versus predicted scores.
Such that, the sum of squared residuals of the model (orce¢distances between the
points of the data set and the fitted line) is as small as pessib

6.4 Pre-retrieval Predictors

In the following, we will describe existingeyword-baseg@redictors proposed in previous
work. The first predictor is the averaged number of charadtea queryAvQL [88]. A
key idea is that the higher the averaged length of a querymiie specific it is. For
instanceWorld Cup soccer South Africa is more specific thamvorld Cup.

Because of the simplicity AAvQL, they do not take into account the term statistics in
a document collection, which can yield inaccurate predictiThe term statistics that is
commonly used for measuring the specificity of query is theudwent frequencyf and
term frequencytf. The document-frequency based predidsIDF [25] determines the
specificity of gext by measuring the inverse document frequeldifyfor each query term
and then calculating the averaged value for all query terms.

1
AVIDF = oo > log ——— (6.1)

where |qex| IS the number of query terms constitutingy. Np is the total number of
documents in the collectionif (w) is a document frequency of a query team In addi-
tion, the maximum valuélaxIDF among all terms will also be used as a predictor. The
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term-frequency based predictor measures the averagedéenvellection term frequency
or AVICTF[45], which is computed as:

AVICTF=

> og e (6.2
wWEtex

where Ny, is the total number of term occurrences in the collectiofi(w) is a term
frequency of a query ternw in the collection. While the predictors mentioned above use
either term frequencies or document frequencies, the suhooliection query similarity
SumSC142] exploits both term frequencies and document fregiesnby combing
them together defined as follows:

’ Qtext’

Np
SumSCQ= w%; t(1 + Intf(w)) xIn(1 + F5) (6.3)

Intuitively, SumSCQs aimed at capturing the similarity between a query and the
collection by summing over all query terms. The Clarity Sdera post-retrieval method
and originally proposed in [25], and the simplified (preriestal) version of Clarity Score
proposed in [45] can be computed as:

w
sCs= Y P(wlgiex) ) x log ZLldtex)

WEtext P(’U}) 6 4
.S Ly o
— ‘Qtext‘ ‘Qtext| tf(w)

where P(w|gex) IS the maximum likelihood of a query termin geyx. Next, the sum of
guery weight deviatiorBumVARS originally proposed in [142]. A term weight can be
any weighting function and we use the Lucene ranking fundtahis chapterSumVAR
is given as:

SUmVAR= )~
WEgtext | D d€Dy
whereD,, is a set of documents containing a query tesrand the size oD,,, or |D,,|,
is equal todf (w). Besides, the averaged value of the equation above is alsbassa
predictor:

(tfidf(w, d) — tidf(w))? (6.5)

AVWVAR=

x SUMVAR (6.6)

|Qtext’
While the predictors described previously ignore the retethip among query terms,
AvPMlis the averaged value of pointwise mutual information (PMid it represents the
relationship among all terms in a queBMI can be computed using the statistics of term
co-occurrences as follows:

P iy Wy
PMI(w;, w;) = log — (i, wi)

(wy) - Plw) (©6.7)
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where P(w;, w;) is the joint probability ofw; andw; or the probability the two terms
co-occur in the same documeift(w) is a probability of a query termy occurring in the
collection. The highePMI score, the more significant the co-occurrence of two terms is
than by chance. Note tha&M!I will be computed for every query term pdip;, w,), and
then averaged in order to obtakvPMI.

A query can have high effectiveness even if the averaged BN, but there is at
least one pair of query terms with a high PMI. Thus, we wilbalse the maximum PMI
scoredMaxPMlI of all query term pairs as a predictor. The limitation of timethod is that
PMI cannot be determined for a single term query. Thus, a sieghe will be assigned
the score 0.

6.5 Time-based Predictors

In this section, we propose 10 time-based pre-retrievadiptas: T-AvQL, T-AvIDF,
T-MaxIDF, T-AVICTE, T-SumSCQT-SCST-SumVART-AVWAR T-AvPMlandT-MaxPML
The first time-based predictor is the averaged time span oésygorT-AvQL Intuitively,
the shorter the time span, the better a query will perfofrvQL s the averaged time
span of all temporal expressionsgg. and computed as follows:

1 _ _
T-AVOL— (th, — tey) + (tby — tey,)
’(Itime‘ 2

tEgtime

(6.8)

where|gime| is the number of temporal expressionsgir.. For example, the quenyac

0s X [24 march 2001] is more specific thamichael jackson [1982]. As shown in
Figure 6.1, the first query has smalleAvQLscore and hence it performs better than the
latter query.

In addition to the averaged time span of a query, the spdgifadia query can be
measured by th@wverse document frequenoy idf of a temporal expressionwhich
indicating the general importanceoivith respect to the document collectiéh A time-
based predictor employingf denoted a3-AvIDF is the averaged INQUERWIf value
over all temporal expressions dgne and computed as follows:

1 log(Np + 0.5)/df(¢)

T-AvIDF =
log(ND + 1)

(6.9)

|q“me| tEqtime

where N, is the total number of documents in anddf(¢) is the number of documents
containing a temporal expressionThe highefT-AvIDF score, the better a query should
perform as illustrated in Figure 6.2.

Besides, the maximum valuBMaxIDF among all temporal expressions gfhe IS
also considered. Alternatively, we can determine the $ipégiof ¢ by measuring the
averagednverse collection time frequendgnotedl-AviICTFthat is computed as:

Nr

T-AVICTF= log —
‘Qtime| tezqt%e tf(t)

(6.10)
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michael jackson [1982] ——
mac 0s x [24 march 2001]

Ll

T-AvQL P5 MAP

Score

Figure 6.1: Predicted scofieAvQLand the retrieval effectiveness (P5, P10, MAP) of the
guery:mac os x [24 march 2001] vs. michael jackson [1982].

pink floyd [march 1973] ——
roentgen [1895] =

deJd

T-AvIDF P5 MAP

Figure 6.2: Predicted scofieAvIDF and the retrieval effectiveness (P5, P10, MAP) of the
guery:roentgen [1895] vs. pink floyd [march 1973].

george bush [18 january 2001] ——
voyager [5 september 1977]

Ll

T-AVICTF P5

Figure 6.3: Predicted scofeAvICTFand the retrieval effectiveness (P5, P10, MAP) of
the query:voyager [5 september 1977] vs. george bush [18 january 2001].
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siemens [19th century] ——
monica lewinsky [1990s] =

fﬁJJd

-0.5

T-AvPMI  P5 P10 MAP

Figure 6.4: Predicted scofeAvPMI and the retrieval effectiveness (P5, P10, MAP) of
the query:monica lewinsky [1990s] vs. siemens [19th century].

wheretf (¢) is the total number of occurrencestdh 7'. Basically, T-AvICTFis similar to
T-AVIDF, buttf is used instead alf. As depicted in Figure 6.3, a query with the higher
score ofT-AvICTFgains the better effectiveness.

Similar toSumSCQ142], we combine both théme frequencynd theinverse docu-
ment frequencygenotedl-SumSCQwhich results in the following:

T-SUMSCQ= Y (1+Intf(t)) x In(1 + %) (6.11)

tEqgtime

In [25], query clarityis defined as the speciality/ambiguity of a query, and thetgla
score is proposed to measure the coherence of the language insdocuments, whose
models are likely to generate the query. Neverthelessahmgpatation of the clarity score
time-consuming because it depends on the ranked list oftsestihus, the simplified
version of Clarity Score is proposed in [45], whepeery clarityis only computed with
respect to the query itself without the actual retrieval. iWerporate time into the sim-
plified Clarity Score, which is denoted asSCSand computed as follows:

P(ﬂ‘]time)
Pt)

1 ‘1 1 N
0 .
& lqumel (1)

T-SCS= Z P(t|gime) X log

tEqgtime

(6.12)

tEqgtime ‘ Qtime|

Notice that, whenyime is provided with onlyonetemporal expressiom-SCSwill be
actually equivalent t-AvICTFand temporal Kullback-Leibler divergendeihporalKL)
proposed by Jones and Diaz [52]. Given a query with only ongpteal expression
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provided,temporalKLcan be derived as follows:

P(t|gi
temporalKL= Z P(t|gime) X log %
teT
Pt]gime) P(t|gtime)
= Z P(t|qtime) x logm + Z P(t|qtime) X logm
t#qtime t=qtime
1.0
=0.04+1.0 x log ==
P(t|T)
—log T
& () .
6.13
0 ift ime,
P(ﬂ%ime) {1 i ¢ ?_é Zt?me (614)
— Ytime-

The next time-based predictor SSumVARwhich is similar to the sum of query
weight deviation [142] wherd-SumVARestimates how difficult it is for the retrieval
model to rank documents containing query terms by examit@ngporal weightsnstead
of term weightghat can be performed using any temporal similarity functid®Ve use
TSU(cf. Chapter 4) to measutemporal weightsFinally, T-SumVARvhen incorporating
temporal weightean be computed as follows:

T-SUMVAR= ) x > (TSUt, PubTiméd)) — TSUt))? (6.15)

tEqtime ’ | deDy

where D, are documents containirtgand | D,| is the size ofD;, or df(t). The averaged
valueT-AvVARof the sum of queryemporal weightleviation is also considered.

While the time-based predictors described previously igtloe relationship between
guery terms and time. Consideronica lewinsky [1990s] andsiemens [19th century]
in Figure 6.4, the first query should perform better than #teet query because the term
monica lewinsky and the temporal expressi@890sco-occur in a collection more often
than by chance, whilsiemens and the temporal expressid®th centuryrarely occur
together. To determine the relationship, the pointwiseuauinformation (PMI) value
between every query term € gy and timet € ¢ime Can be computed as done in [41].
T-AvPMlis the averaged value of the PMI score of a temporal expnessid all query
terms, which is computed as:

T-AvPMI =

> log 55— ) @) (6.16)

’C_Inme‘ tEqtime WEGtext

The maximum PMI denotet-MaxPMlis also considered in a case that the averaged PMI
value is low, but at least one pair of query term and time hagta®MI score.
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6.6 Combination of Predictors

Using a single predictor alone might limit the predictingfpemance. Thus, the combi-
nation of multiple predictors can be performed as descrilyedbnes and Diaz [52] using
two different models:

1. linear regression

2. neural networks

Linear regression. A linear regression model [40] assumes that the regressius f
tion E(Y'|.X) is linear in the input predictors\, .. ., X,,. Given a vector of input predic-
tors:

X" =(Xy,...,X,) (6.17)

An output valueY (i.e., the retrieval effectiveness) will be predicted. Timear re-
gression model is defined as:

F(X) =B+ X;B (6.18)

where theg;’s are unknown parameters or coefficients. This model asguimear
relationships among predictors and aimed at predidimgar changes in the retrieval
effectiveness.

A linear regression model and its parameters can be estirbgigsing a set of training
data{(z1,v1),...,(zn,yn)} Of N sampled queries and each = (1, 249, . .. ,xip)T
is a vector of feature scores of thié predictor. An approach to estimating the linear
regression model ieast squareshat the coefficients = (5, A1, . . . ,ﬁp)T is chosen to
minimize the residual sum of squares (RSS), or the sum of eduarors of prediction
given as:

N
RS$6) = ) (v — f(a:))’ (6.19)
=1

Intuitively, least square$ind the best linear fit to the training data.

Neural networks. It is possible that the underlying relationships among iplgt
predictors arenon-linear. In this case, multiple predictors are combined using rleura
networks, which model non-linear relationships from sobinations of predictors rep-
resented using hidden layers. A neural network is a twoestagression or classification
model [40]. For regression, there is only one output for tloeleh, while for classifica-
tion, there can be multiple output units (i.e. differensslas). In our case, neural networks
are applied to regression. The important units in the middlligne network (see Figure
11.2 in [40]) are the features,,, calledhidden units The values of7,, are not directly
observed, but they can be derived from transforming ther@ignput predictorsX.
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Derived features/,, are created from linear combinations of the input predscior
and then a target outpi, i.e., the retrieval effectiveness, is modeled as a funabib
linear combinations of,,, as follows.

T =0(aom +alX),m=1,....M

Y = o+ 877, (6.20)
f(X) =g(Y)
Z =(Z,...,Zny). o(v) is the activation function that is usually chosen to be thensiid

o(v) = 1/(1 + ) and sometimes Gaussian radial basic functions [40Y}) is the
transformation function giving the final outpit. For regression, typically the identity
functiong(Y) = Y is selected.

6.7 Evaluation

In this section, we evaluate different single predictord #re combined methods. We
first will describe the setting for evaluation and then déscthe results of evaluation.

6.7.1 Setting

Document collection. We used the New York Times Annotated Corpus as a temporal
document collection. Temporal expressions were extrdntethnotating documents with
TimeML using the TARSQI Toolkit [118]. To index documentsetBpache Lucene [5]
search engine version 2.9.3 was used.

Temporal queries. We used the same dataset of queries and relevance assesament
the work by Berberich et al [12]. The set contains 40 tempaualigs obtained using the
Amazon Mechanical Turk. Queries were created with 5 diffetemporal granularities:
day, month year, decadeandcentury Due to the small number of queries for each gran-
ularity, we divided queries into 2 main categories basedheir temporal granularities.
The queries witlday, monthor year were grouped into the category “short period” de-
notedSP, and queries witllecadeor centuryas “long period” queries denotédP. Note
that, yearwas considered a short period because we found that itscpeedcores were
more correlated withday, montl) than decadecentury).

Retrieval model. Our goal of query prediction methods is to predict the resie
effectiveness of a query, i.e. mean average precision (M#®R)puted with respect to
a particular temporal ranking model. Temporal ranking wagggmed using two re-
trieval modes as defined by Berberich et al [12]: idglusive and 2)exclusive For
inclusive both query terms and a temporal expression comprise thedtdypart of a
query gext. FOrexclusive only query terms constitutes the keyword part of a qugky
and a temporal expression is excluded frgg. We denote a retrieval mode asnode.
Any temporal ranking method can be employed to retrieve oh@sus. However, in this
chapter, documents are retrieved and ranked using the th&®id (cf. Chapter 4) with
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r-mode3nclusiveonly. Similarly, the predicted scores were computed in twades:
inclusiveand exclusive We denote a mode of prediction asnode.

Parameter setting.We represented the textual similarity in Eq. 4.1 using thedne
tf-idf similarity function with default parameters. Therpaneters used for the temporal
ranking method'SUwere: DecayRate = 0.5, A = 0.5, andp = 6 months. We used the
mixture parameter = 0.6, which gave the best results. Most of the predictors expthin
in Section 6.5 were parameter-free, except the sum of quenporal weightdeviation
T-SumVARhat employs the temporal rankiiggU The Weka implementation [130] was
used for modeling simple linear regression, linear regoesand neural networks, and we
used the recommended values [52] for the parameters. earliegression, the selection
method was M5 and the ridge parameter was a default (1.0EeB)neural networks, a
learning rate was 0.3 and a momentum rate for the back praépagdgorithm was 0.2.
The network was trained using 500 training epochs. All prgain models were trained
using cross-validation of 5 folds with 10 repetitions.

Metrics. Correlation coefficient and root mean squared error (RMSEgwerasured
as the evaluation of predicting performance. Correlatiogffament [130] measures the
statistical correlation between the predicted scores hedMAP scores, which ranges
from 1 for perfectly correlated results, through 0 whenehemo correlation, to -1 when
the results are perfectly correlated negatively. RMSE eugis how far the predicted
scores deviate on average from the MAP scores, as done irrg¢li®ps work [41, 52].
GivenY be the predicted scores atidbe the MAP scores of queries:

1 p
RMSE = | =3 (v = i) (6.21)

=1

The lower the RMSE value, the better a predictor.

6.7.2 Results

The performance of single predictors are shown in Table Bot.each predictor, the re-
sults are reported for two prediction modes, pemode=nclusiveandp-mode=exclusive

For eachp-mode, the results for “short period” and “long period” argpdayed. The per-
formance of each predictor is statistically tested withwioest performed predictor using
paired t-test with significant at < 0.05. Because each query in the dataset is provided
with only one temporal expression, we omit the results fons@redictors. For example,
we do not show the results @GiMaxIDF because they are exactly the same as those of
T-AvIDF. Note that, a negative value of correlation coefficient dossalways imply that

a predictor performs worst, but it means that the predicdighly correlated negatively
(closer to -1) when the absolute value is sufficiently high.

The results in Table 6.1 show that the correlation coefficedrkeyword-based pre-
dictors differs between two prediction modes. This is beeatlne predicted scores of
keyword-based predictors inclusivemode differs from those iexclusivemode, while
only the results of two time-based predictofsAvPMIlandT-MaxPM]|) are changed with
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a prediction mode. Generally, predictors perform betteh wimode=exclusive that is,
when a temporal expression is excluded fragg.

In addition, predicting performance varies according rteetigranularities. For “short
period” in bothp-modes, the best performing keyword-based predictor&apd, MaxPMI
andAvPMI, while the best performing timed-based predictorslafeICTF, T-AvIDF and
T-AvPML For “long period”, among keyword-based predict@smSCQs the best per-
forming predictor withp-mode=exclusivewhile MaxIDF is the best performing predictor
with p-modeanclusive In addition, T-SumSCQ@utperforms all other predictors signifi-
cantly for “long period” in both modes. Generally, most oégictors perform slightly
better with p-mode=exclusive For “short period”, the predicting performance of the
keyword-based predictokvQL and the time-based predictdrAvICTFis quite similar,
whereasSumSC@ndT-SumSCQ@erform quite differently for “long period”.

Table 6.1 shows the predicting performance of single ptedianeasured in RMSE.
The results indicate that the high values of correlatiorffament do not always imply the
low values of RMSE. Similar to the results of correlation diméfnt, AvQLandT-AvICTF
are among the best performing predictors for “short periddiitice that,T-AvIDF is the
worst predictor for “long period” and its RMSE value is too hig-0.65). We performed
an error analysis and found that the predicted scordsAfIDF of queries in the class
“long period” are very small, which yields high differencettveen the predicted scores
and the actual MAP scores.

Table 6.2 shows the performance of the combined methodg lisgar regression
and neural networks. The results of the combined predictors are statisticabyetd with
those of the best performing single predictors, i.8&yQ@LT-SumSCQand (T-ICTFT-
MaxPMI) as measured by correlation coefficient and RMSE respegtivel Table 6.2,
the predicting performance of the best single predictoesgaren in parentheses. Each
time-based predictor is combined with its correspondinguad-based predictor. For
instanceT-AvQL} denotes the combination 3tAvQLandAvQL using linear regression.
The combination of all predictors is denot&dL. The results of combined methods with
respect to correlation coefficient are as follows. For “speriod” andp-mode=nclusive
the methodd-AvQL} T-AvQLF, ALLt and T-MaxPMl outperform the best single pre-
dictor significantly. For “short period” ang-mode=exclusive only T-AvQLF performs
significantly better than the best single method.

In general, for “long period’ we do not gain any improvememtthe combined meth-
ods since the correlation coefficient of the best perfornpireglictorT-SCQis relatively
high (though it is negative). Notice that, combinifigsumSCQvith SumSCQesults in
worse correlation coefficient (=-0.37) when trained usiegnal network. Consider the
performance measured using RMSE. For “short period”, thebtoed method3-AvQLy
andT-MaxPMl are significantly better tha#wQL For “long period”, all combined meth-
ods do not gain better performance compared to th&tMdaxPML Our conclusions are:

1. Predictors perform better withmode=exclusivethat is, when temporal expression
are excluded fromext.

2. Time-based single predictors are good for predictingpgréormance of “short pe-
riod” queries.
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Table 6.1: Performance of single predictors measured usinglation coefficient and
root mean squared error (RMSE); in bold indicates statiidéferent from the baseline
predictor (as underlined) using t-test with significanp at 0.05.

Correlation coefficient RMSE
Predictor inclusive exclusive inclusive exclusive
SP |[LP |SP |LP |SP |LP |SP |LP

AVQL[88] | 0.36] 0.27] 0.39]-0.02][0.28]0.23] 0.29] 0.25
AVIDF [25] || -0.26| 0.04| -0.20| 0.12 0.30| 0.24| 0.29| 0.24
MaxIDF [45] | 0.04|-0.27| -0.16| -0.27 | 0.29| 0.25| 0.30| 0.25
AVICTF[45] || -0.13| 0.19| -0.18| 0.24| 0.30| 0.22| 0.29| 0.23
SCS45] || -0.14| 0.21] -0.14| 0.24| 0.30| 0.22|| 0.29| 0.23
SumSC@142] | -0.09| -0.05|| 0.16|-0.45| 0.29| 0.24 | 0.29| 0.24
SumVAR142] | -0.20| 0.07| -0.31| 0.19| 0.30| 0.22| 0.31| 0.22
AVWAR[142] | -0.20| 0.23|| -0.35| 0.00| 0.30| 0.23|| 0.30| 0.23
AVPMI[41] | 0.29|-0.05| 0.28| 0.02| 0.30| 0.24 | 0.28/| 0.24
MaxPMI[41] | 0.32|-0.06| 0.35|-0.04| 0.28| 0.24| 0.28/| 0.24
T-AVQL|| 0.19] 0.05| 0.19] 0.05] 0.28] 0.24| 0.28] 0.24
T-AVIDF | 0.27|-0.05| 0.27|-0.05| 0.29| 0.65| 0.29| 0.65
T-AVICTF| 0.35| 0.08| 0.35| 0.08| 0.27| 0.25| 0.27| 0.25
T-SumSCqQ -0.02 | -0.59 | -0.02| -0.59| 0.29| 0.32| 0.29| 0.32
T-SumVAR| 0.21|-0.07| 0.21|-0.07| 0.28| 0.24| 0.28| 0.24
T-AvPMI | 0.15| 0.23| 0.28| 0.20| 0.30| 0.22| 0.27| 0.23
T-MaxPMI | 0.02| 0.08| 0.13| 0.08] 0.29| 0.21| 0.27| 0.21

3. Some combination methods can improve the predictingppadnce. However, it
is not clear if our proposed time-based predictors and thebamation methods are
good for predicting the performance of “long period” querie

6.8 Conclusions

In this chapter, we have studied the problem of predictirgrgperformance for temporal
search. We have exploited both textual and temporal infoomao predict query perfor-
mance more accurately, and proposed time-based predadcasalogous to keyword-
based predictors. In order to improve the predicting penéorce of single predictors,
we have employed two approaches for combining multiple iptexs; linear regression
and neural networks. The proposed predictors and the catitainmethods have been
evaluated, and the experimental results showed that oerltimsed predictors are among
the best performing single predictors. In addition, the boration methods significantly
improve the performance of the best single predictors.
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Table 6.2: Performance of combined predictors measuretdyusirrelation coefficient
and root mean squared error (RMSE); in bold indicates statlit different from the
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performance of best single predictors (as provided in gheses) using t-test with sig-
nificant atp < 0.05.

Correlation coefficient RMSE

Predictor inclusive exclusive inclusive exclusive

SP LP SP LP SP LP SP LP
(0.36) | (-0.59)|| (0.39)| (-0.59) | (0.27)| (0.21) || (0.27)| (0.21)
T-AvQLy} 0.50| -0.07| 0.33| -0.10|| 0.26| 0.25| 0.28| 0.24
T-AvIDFt | -0.04 0.01| -0.06 0.02|| 0.29| 0.23| 0.29| 0.23
T-MaxIDF} || -0.10 0.01| -0.05 0.01| 0.30| 0.23| 0.30| 0.23
T-AvICTF | -0.02| -0.22| -0.02| -0.19| 0.30| 0.26| 0.29| 0.26
T-SC$ | -0.02| -0.16| -0.02| -0.19| 0.29, 0.25| 0.29| 0.26
T-SumSC@ | -0.04, -0.16| -0.04| -0.19| 0.29| 0.25|| 0.29| 0.32
T-SumVAR | -0.07| -0.08| -0.07| -0.08| 0.29| 0.23| 0.29| 0.23
T-AvWWAR | -0.06| -0.07| -0.04| -0.07| 0.30, 0.23| 0.29| 0.23
T-AvPMI || -0.10 0.03| 0.41 0.03|| 0.33| 0.24| 0.27| 0.23
T-MaxPMlf 0.36| -0.05| 0.30| -0.10|| 0.26| 0.23| 0.28| 0.23
ALLf} 0.43| -0.04| 0.29| -0.11| 0.34| 0.32|| 0.33] 0.26
T-AvQLF 0.47 0.13|| 0.50| -0.06| 0.30| 0.27| 0.30| 0.26
T-AvIDFF 0.10| -0.32| 0.04| -0.26| 0.41| 0.29| 0.34| 0.34
T-MaxIDF= | -0.02| -0.29| -0.05| -0.29| 0.36| 0.27| 0.37| 0.27
T-AVICTEF 0.12| -0.17| 0.22 0.01| 0.33| 0.26| 0.30| 0.29
T-SCS 0.13| -0.09| 0.24| -0.07| 0.33| 0.26| 0.31| 0.30
T-SumSCg@ | -0.06| -0.09| -0.11| -0.37| 0.33| 0.26|| 0.34| 0.24
T-SumVAR || -0.09| -0.03| -0.14 0.03|| 0.35| 0.23| 0.37| 0.24
T-AWARF | -0.06| -0.05|| -0.02| -0.10| 0.34| 0.23| 0.35| 0.24
T-AvVPMIF 0.11 0.16| 0.41 0.16| 0.36| 0.27| 0.30| 0.25
T-MaxPMIF 0.32 0.18| 0.50 0.23|| 0.31| 0.23| 0.29| 0.23
ALLF 0.22| -0.09| 0.17 0.00|| 0.38| 0.45| 0.44| 0.42
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Chapter 7

Time-aware Ranking Prediction

Two time dimensions commonly exploited in time-aware ragkare 1)publication time
and 2)content timgtemporal expressions mentioned in documents’ conteAtshown
in the chapter, it makes a difference in retrieval effectess for temporal queries when
ranking using publication time or content time. By determgwvhether a temporal query
is sensitive to publication time or content time, the mostadle retrieval model can be
employed. In this chapter, we address the research quebktbento predict the suitable
time-aware ranking model for a temporal query?

7.1 Motivation

Several studies of real-world user query logs have showtrig¢hgporal queries comprises
a significant fraction of web search queries [86, 94, 140f.dxample, Zhang et al. [140]
showed that 13.8% of queries contain explicit time and 17df%ueries have tempo-
ral intent implicitly provided. An example of a query withrte explicitly provided is
U.S. Presidential election 2008, while Germany FIFA World Cup is a query without
temporal criteria provided. However, for the latter exam user’'s temporal intent is
implicitly provided, i.e., referring to the world cup event in 2006. A&s bbeen shown in
previous work [12], incorporating the time dimension inte ranking models can signif-
icantly improve query effectiveness in the case of tempqualies.

Two time dimensions that are commonly exploited in time4@wanking are 1jpub-
lication time and 2)content timgtemporal expressions mentioned in documents’ con-
tents). We denote a time-aware ranking model that explaitdigation time a$T-Rank
and a time-aware ranking model that exploits content timé&&ank As we will show
in more detail later in this chapter, which ranking modelg$e thas high impact on retrieval
effectiveness for temporal queries. As an example, configefour queries in Table 7.1.
We find that the querieisaq 2001 andmac os x 24 march 2001 perform better using
PT-Rankwhile the queriesound of music 1960s andmichael jackson 1982 perform
best usingCT-Rank Therefore, it is important to determine whether a tempquary is
sensitive to publication time, or content time, so that we claoose the suitable ranking
model that gives the best results for the query.

109
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Table 7.1: Retrieval effectiveness of queries with respeBflt RankandCT-Rank

MAP
Query
PT-Rank CT-Rank
iraq 2001 0.60 0.40
sound of music 1960s 0.11 0.29
mac 0s X 24 march 2001 0.79 0.36
michael jackson 1982 0.56 0.65

In this chapter, we propose an approach to predicting thaldaitime-aware rank-
ing model using machine learning techniques. We learn aigired model using three
classes of features obtained from analyzing top-k retdel@cuments, i.e., an analysis of
documents’ contents, time distribution and retrieval ssor

Contributions
Our main contributions in this chapter are:

e We perform the first study on the impact on retrieval effestess of ranking models
using the two time dimensions for temporal queries.

e We propose an approach to predicting the suitable timeeveaking model based
on machine learning techniques, using three classes airésat

Organization

The organization of the rest of the chapter is as follows. éct®n 7.2, we give an
overview of related work. In Section 7.3, we discuss clasaion of queries, documents
and query models, and present the time-aware ranking mosketsin the subsequent parts
of the chapter. In Section 7.4, we present our proposedrissatised to learn a ranking
prediction model. In Section 7.5, we evaluate our approagnedicting a ranking model
by conducting extensive experiments. Finally, in Sectid) We conclude the chapter.

7.2 Related Work

A number of ranking models exploiting temporal informatiave been proposed, includ-
ing [7,12, 33,53, 73, 86]. In [73], Li and Croft incorporatéahé into language models,
called time-based language models, by assigning a docymnentusing an exponential
decay function of the publication time of document, i.eg tineation date. They did not
have temporal information needs explicitly provided, Inaytfocused on recency queries.
The work by Baeza-Yates [7] proposed to extract temporalesgions from news, index
news articles together with temporal expressions, ancevettemporal information (in
this case, future-related events) by using a probabilisiicel. A document score is
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given by multiplying akeywordsimilarity and a time confidence, i.e., a probability that
the document’s events will actually happen.

In [53], Kalczynski and Chou proposed a temporal retrievatleidor news archives.
In their work, temporal expressions in a query and documeste explicitly modeled
in ranking. A query is defined as a set of precise temporakrin&ion needs, i.e., the
finest time chronon, or a day. Thus, they assumed that thertamdg applied only to
temporal references in documents, and it was representetliagy set function. Metzler
et al. [86] considered implicit temporal information needsey proposed mining query
logs and analyze query frequencies over time in order totiigestrongly time-related
gueries. They presented a ranking model concerning inipéanporal needs, and the
experimental results showed the improvement of the retrieffectiveness of temporal
gueries for web search.

Berberich et al. [12] integrated temporal expressions interygtlikelihood language
modeling, which considers uncertainty inherent to temipexaressions in a query and
documents. That is, temporal expressions can refer to the siane interval even they
are not exactly equal. The work by Berberich et al. requirgaiex temporal informa-
tion needs as a part of query. The most relevant work for usasatork by Jones and
Diaz [52]. They proposed features for classifying quenms three temporal classes, i.e.,
atemporal, temporally unambiguous (recency or histond)t@mporally ambiguous (pe-
riodic). They analyzed document collections and proposed features for classifying
gueries: temporal KL-divergence, autocorrelation, stias of the rank order and burst
model. As opposed to our work, we want to classify a tempawatybased the two time
dimensions, rather than usitgmporal patterngs done by Jones and Diaz [52].

7.3 Preliminaries

In the following, we present a classification of queries bdasethe two time dimensions.
Finally, we describe the models for documents and queries oatline the time-aware
ranking models used in this chapter.

7.3.1 Classification of Queries

A query can be categorized into two main classesiporalandnon-temporal Temporal
gueries are those that relevant documents are stronglyxdepeon time, e.g\WWorld Se-
ries 2004 andNFL Draft. On the contrary, non-temporal queries are those thataetev
documents are not dependent on time, exgiffin recipes andHawaiian dance. Then,
we further classify temporal queries into the two subclesgeiblication-time sensitive
(denotedPT-sensitive and content-time sensitive (denot€d-sensitivie Our intuition
is to leverage the two most useful time dimensions for relegaanking. PT-sensitive
gueries are those sensitive to the publication time of d&nis) andCT-sensitivejueries
are those sensitive to temporal expressions in documentsiots.

For example, given the quedapan quake 869 AD, relevant documents are pos-
sibly documents that contains the temporal expres8&th AD, not those dated t869
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AD. When searching for a current event (breaking news, or popapés), temporal ex-

pressions might not be necessary because the publicatienai documents are highly
correlated with the event. Note that, whether to considetigation time or content time

is also dependent on the time span of a document collectmminktance, when the New
York Times Annotated Corpus [95] with the time span (1987706 used, a query that
its time is not overlapped with the collection time span muestanked with respect to
temporal expressions instead of publication time.

7.3.2 Models for Documents, Queries, and Ranking

A documentd consists of a textual padi. (an unordered list of terms) and a temporal part
drime cOmposed of the publication date and a set of temporal esipre&t,, .. .t;}. The
publication date ofi can be obtained from the functid?ubTiméd). Temporal expres-
sions mentioned in the contents@®tan be obtained from the functi@@ontentTiméd).

A temporal queryy is composed of two parts: keywordg,; and a temporal expression
Gtime-

The ranking model used fdPT-Rankand CT-Rankis based on a mixture model,
which linearly combines textual similarity and temporahgarity for all ranking meth-
ods. Given atemporal quegya documend will be ranked according to a score computed
as follows:

S(Qa d) = (1 - a) : S/(Qtexta dtext) +a- S”(Qtimea dtime) (7-1)

where the mixture parameterindicates the importance of textual similarf$( giext, diext)
and temporal similarity5” (gime, dime). BOth similarity scores must be normalized, e.g.,
divided by the maximum scores, in order to the final sc&{e d). S’(giexs, diext) CaN be
measured using any of existing text-based weighting fonsti S” (gime, dime) Measure
temporal similarity by assuming that a temporal expressjoa gime IS generated inde-
pendently from each other, and a two-step generative moaeused [12]:

S QIlmea dtlme = H Pt ’dtlme

tqEqtime
(7.2)
= Pt t
¢ 1_[ <| diime| Z (falt )
q€qtime tqEdtime

Linear interpolation smoothing will be applied to give thelpability P(¢,|t,) for an
unseen query temporal expressignn d. The probability P(t,|t;) will be computed
differently for two time-aware ranking methods, i.€T-RankandPT-Rank

In this chapter, we use thevitU ranking function [12] for computing’(t,|t4) for
CT-Rank LmtU is a time-aware language modeling approach, which corssitie con-
tent time of documents and time uncertainty. PGFRank we employ the TSU ranking
function (cf. Chapter 4) to computB(t,|t;). TSU is based on the publication time of
documents and it is computed using an exponential decayidumio capture time uncer-
tainty.
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Figure 7.1: Distribution over two time dimensions of topdD@locuments for the queries
iraq 2001 andqueen victoria 19th century.

7.4 Ranking Prediction

As mentioned earlier, it does make a difference in retrieffctiveness when ranking
using two time dimension (as we will show through experiraentmore detail). Given a

temporal query, we want to predict the right time-aware nagnknodel that gives the best
results for the query. We use different machine learningrgpies to learn a ranking pre-
diction model. In particular, we propose three classesaifies obtained from analyzing
top-k retrieved documents, i.e., an analysis of time digtion, documents’ contents, and
retrieval scores.

7.4.1 Temporal KL-divergence

Temporal KL-divergence [52] was proposed to determine taalpclasses of queries,
which is measured as the difference between the distribatier time of top-k retrieved
documents of; and the document collection. We extend this method by usiagdn-
tent timeof top-k documents for measuring temporal KL-divergenoeaddition to just
considering publication time as done by Jones and Diaz [B8]shown in Figure 7.1,
we observe a difference of the distribution of top-k rete@wdocuments over two time
dimensions. Thus, it is necessary to consider both time msines.
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We denote to the temporal KL-divergence of the publicatioretaskKL - and the
temporal KL-divergence of the content timekls.r. KL pr can be computed as:

KLp7(Dy||C,q) = > P(tlg) - log Pitlg)

= P(t|Tp)
Plqld) (7.3)
Pltla) = dGZDth’d Zd’qu P(q|d’)

whereT’ is the set of all publication dates in the document collectidote that we use
al-daygranularity for each publication dat@(¢|7») is the probability of a publication
datet in the collection.P(t|q) is the probability of generating a publication daggvengq
andD, is top-k documents retrieved with respecijtoP(t|q) is defined usingelevance
language modeling72], that is, the top-k retrieved documents, are considered and
weighed according to the document’s probability of rel@en.e,P(q|d). In other word,
P(q|d) is a retrieval score aof for a particular ranking model.

P(t]d) = 0 !f PubT!megd) #t, (7.4)
1 if PubTiméd) =t

The temporal KL-divergence of the content time of top-kiested document&L -, can

be computed as follows.

KLer(Dl|C q) = ZPt|q -log Pltlo)

P(ITe)
Pqld) (7.5)
Pl = 2 PO 2 Pt

whereT¢ is a set of all temporal expressions in the document cotlactP(¢|7¢) is the
probability of a temporal expressianin the collection. P(t|d) of KLor is computed
differently from that ofKLp, because a documedtcan contain with more than one
temporal expression. So, the probabiliyt|d) of KLor can be computed as:

c(t,d)
2veac(t'sd)
wherec(t, d) is the number of occurrence of temporal expressiona documentl, and
> veq ¢(t',d) is the total number of occurrence of all temporal expressiod. For both

KLp7 andKLc7, a smoothing technique [138] will be applied &jt|q) in order to avoid
a problem of zero-probability.

P(t|d) = (7.6)

7.4.2 Content Clarity

It has been suggested in [52] that temporal features alamd oot achieve high accuracy
for query classification. Thus, we also employ a feature dbasean analysis of the
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contents of top-k retrieved documents, such as, the codiianitly [25]. A query’s content
clarity, which is widely used in a query performance pradicttask [20]. Intuitively,
the content clarity can be used for determining the spetyifaf a query. Generally,
the more specific a query, the better it will perform. The eontclarity is measured
by the Kullback-Leibler (KL) divergence between the distition of terms of retrieved
documents and the background collection. More precidedycontent clarity is the KL-
divergence between the query language model and the ¢olidahguage model and it
can be computed as follows:

- P(wlq)

Clarity = ) ~ P(wlq) - log BlwlC) (7.7)
weV

wherew is a term in a vocabulary, i.e., the set of all distinct terms in the collection,
P(w|q) is the probability of generating given ¢ and P(w|C) is the probability ofw
in the document collection. More detail of the calculatidrthe content clarity can be
referred to [25]. The higher clarity score indicates that gjuery is less ambiguous and
the better it will perform.

7.4.3 Retrieval Scores

Features presented above are based on an analysis of timieutiien, and contents of
top-k retrieved documents. An alternative method for gy a ranking model is to
analyze the retrieval scores of top-k retrieved documed$ [The idea is to measure
the divergence of retrieval scores from the base rankimg, @.non time-aware ranking
model, is to determine the extent that a ranking model attezsscores of the initial
ranking. In this chapter, we employ the Jensen-Shannomg#inee (JS) for measuring
the divergence of scores obtained from two ranking modeispalticular, our features
based on the analysis of retrieval scores are composed afietaged scores of the base
ranking, 2) averaged scoresPt-Rank 3) averaged scores GfT-Rankand 4) divergence
from the base ranking model. The base ranking model is themaifunction used in the
initial retrieval.

k
> S(g,dy) (7.8)
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The Jensen-Shannon divergence (JS) of scores obtainedvioranking models can
be computed as.
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wheresS,(d;, q) is the retrieval score of a documehivhen ranked using the base ranking
Sy, and Sy, (d;, q) is the retrieval score of a documenhtvhen ranked using a candidate
time-aware ranking,,, i.e.,PT-Rankor CT-Rank

All of features explained above correspond to the two tinvera ranking models.
Thus, there are five different features in total for rankingdel prediction, i.e.AVG,ase
AVGPT—Rank AVGCT—Rank JSJT-RankandJSCT-Rank

7.5 Evaluation

In this section, we evaluate our proposed approach by coimdusvo experiments. We
first evaluate the ranking prediction model as a classiboatsk, and then we show how
the ranking prediction help improving the retrieval effeeness. In the following, we de-
scribe the setting of experimental evaluation, as well gtagx the results of experiments.

7.5.1 Setting

Document collection. We used the New York Times Annotated Corpus as a temporal
document collection. Temporal expressions were extrdptemhnotating documents with
TimeML using the TARSQI Toolkit [118] search engine versio8.2 was used. We used
40 temporal queries and relevance assessments [12] aibizsireg crowdsourcing.

Retrieval models. The retrieval of explicit temporal queries were performethg
two retrieval modes as defined in [12]: ibclusiveand 2)exclusive Forinclusive both
guery terms and a temporal expression comprise the keywantdopa querygex. For
exclusive only query terms constitutes the keyword part of a quggy and a temporal
expression is excluded from.y. For the classification experiment, queries were labeled
with two classes, i.e PT-sensitiveor CT-sensitiveby assuming the ranking model that
gives the best MAP score as a query label as shown in Fig. 708 tHat, we excluded
the queries that have a small difference of MAP for the twdiragnmodels.

Parameter settings.We used the Lucene tf-idf similarity function [5] for commg
the textual similarity in Eq. 7.1. The parameters used feriBU ranking function were:
DecayRate = 0.5, A = 0.5, andyu = 6 months. For the kU ranking function, we used
the recommended valwe75 for the smoothing parameter[12]. The mixture parameter
a in Eqg. 7.1 were empirically determined by studying the dantsi of o and MAP as
shown in Fig. 7.3. Foinclusivemode, we selected the best performing values: 0.5
for PT-Rankanda = 0.6 for CT-Rank while for exclusivemode, we used = 0.5 for
PT-Rankanda = 0.1 for CT-Rank

The smoothing parametarfor temporal KL divergence was setto 0.1. The Weka im-
plementation [130] was used for training query classifieid models for ranking predic-
tion. We experimented with several classification algongh decision tree (J48), Naive
Bayes (NB), neural network (NN) and SVM. We used the defauliesfor the parame-
ters of classifiers. Both classification and retrieval experits were trained using cross-
validation of 10 folds with 10 repetitions. A majority clésr was a baseline for the
classification experiment.
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(b) exclusive

Figure 7.2: Queries are labeled using the ranking modelgivat the best MAP score
when retrieved using (afclusivemode and (agxclusivemode.

Metrics. We reported the performance of classification using acgurHue retrieval
experiment was reported using precision at 1, 5 and 10 (P@B8, _Rnd P@10 respec-
tively), and Mean Average Precision (MAP). Note that, we pated the average per-
formance over 10 folds to measure the overall performararehdth classification and
retrieval experiments.

7.5.2 Results

Classification resultsWe performed query classification by using several clasdifin
algorithms: decision tree (J48), Naive Bayes (NB), neuravaogk (NN) and SVM. The
results of query classification shown in Table 7.2 are cotetlwith respect to two re-
trieval modeséxclusiveandinclusive. For each retrieval mode, we varied the number of
top-k retrieved documents in order to study how a k-valuedcfthe classification perfor-
mance. For each case, the performance of single features embination of different
features are shown. The baseline method for query claggifida the majority classifier.
The accuracy of the baseline is 0.54 é&xclusiveand 0.60 folinclusive

For exclusive the results of using a small number of top-k documents agem
eral better than a large number of top-k documents. For @R-1S1.rank Modeled
using SVM outperforms the baseline classifier and all otkeatures significantly (ac-
curacy=0.72). For top-500, all single features performsgatompared to the baseline
classifier. However, the combination of featur@d I, Clarity+KLpt+KLct, andClar-
ity+JSp1rankt IS T.Rany) ShOws the best performance among other methods, and improv
the baseline classifier significantly (accuracy=0.65). dominately, the classification re-
sults when using k=1000 are not good compared to the basgdissifier.

Forinclusive the results are similar to those etclusivethat is, the performance of
top-100 is the best among the other k’s values. For top-1@0bést performing feature
is the combination oClarity, JSet.rankand IS 1.rank Which gains the accuracy of 0.75.
JSt.RrankOUtperforms the baseline classifier significantly when nedieising J48, NN
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Figure 7.3: Sensitivity oft and MAP forPT-RankandCT-Rank

and SVM with the accuracy of 0.74, 0.74 and 0.68 respectivety top-500,JS1-rank
performs best among others with the accuracy of 0.71. FefLl@f) no method performs
significantly better than the baseline classifier.

To conclude, it is obvious that using a small number of topskuodments achieves
better performance than other k’s values. An explanationbeathat the larger number
of top-k documents, the more irrelevant documents aredntred into the analysis. The
performance among different feature classes shows thaetheval-score feature, i.e.,
JS1-rank Performs well in most case, while other feature classesdas Clarity and time
distribution do not perform very well. Thus, our plans fotute work include a method
for selecting onlyimportantdocuments from top-k retrieved documents, and conducting
a score analysis @ T-Rankand other temporal features.

Retrieval results.As described earlier, we aim at improving the retrieval effes-
ness by predicting the suitable ranking model. For eachyguwee perform retrieval
using the predicted ranking model. More precisely, the iraplrediction models are:
1) JStrank(Modeled using top-100 and SVM) for retrieval exclusive and 2)Clar-
ity+JSo1.Rankt IS T-Rank (Modeled using top-100 and J48) for retrievalimelusive The
retrieval results shown in Table 7.3 are the effectivendsdifterent ranking models.
Rank-Predictionis the ranking model based on the ranking prediction moddl&X is
the maximum (or optimal) effectiveness that can be achietred is, when a prediction
model performs accurately 100%. The retrieval results arepared with the baseline
method, i.e.CT-Rank The results show that our prediction-based ranking mdelahk-
Prediction) outperforms the baseline significantly in P@1 and MAP. Hevewe note
that it is difficult for Rank-Predictiorto achieve the optimal effectiveness because of the
prediction accuracy as explained previously.
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Table 7.2: Results of classification measured using accutangicates statistically dif-
ferent from the baseline majority classifier using t-teghvgignificant ap < 0.05.

Top-k Feature exclusive inclusive
J48 \ NB \ NN \ SVM | J48 \ NB \ NN \ SVM
Clarity 0.53 | 0.34| 0.44| 0.51 || 0.59 | 0.45| 0.57 | 0.60
KLpt 0.53 [ 0.40| 0.41| 0.53 | 0.60 | 0.59| 0.47 | 0.60
KLct 0.53 [ 0.49| 0.51| 0.53 | 0.60 | 0.54| 0.54 | 0.60
AVGaase 0.40 | 0.55| 0.61| 0.53 | 0.63 | 0.58| 0.61 | 0.60

AVGpr1.Rank 0.53 | 0.47] 0.43| 0.53 || 0.60 | 0.58| 0.54 | 0.60
AVGcr.Rrank 0.48 | 0.50| 0.64| 0.53 || 0.60 | 0.50| 0.49 | 0.60

100 | 5 0.50 | 0.60| 0.57| 0.72+ || 0.74f | 0.64| 0.74 | 0.68
JST-Rank 0.55 | 0.45| 0.45| 0.38 || 0.60 | 0.58| 0.55 | 0.54
ety KLor KLy 0.54 | 0.38| 0.46| 0.54 || 0.61 | 0.36| 0.43 | 0.61
Sty samedsersan | 0.50 | 0.38| 0.46| 0.42 | 0.75t | 0.46| 0.61 | 0.64
ALL 0.42 | 0.36| 0.30| 0.50 || 0.58 | 0.40| 0.37 | 0.63
Clarity 0.51 | 0.36| 0.44] 0.53 || 0.60 | 0.40| 0.59 | 0.60
KLpr 0.53 | 0.44| 0.46| 0.53 || 0.59 | 0.58| 0.49 | 0.60
KLcr 0.53 | 0.49| 0.44| 0.53 || 0.60 | 0.53| 0.59 | 0.60
AVGaase 0.53 | 0.53| 0.49| 0.53 || 0.56 | 0.59| 0.62 | 0.60

AVGo1.Rank 0.53 | 0.59| 0.47| 0.53 || 0.60 | 0.55| 0.55 | 0.60
500 AVGcr.Rrank 0.53 | 0.50| 0.48| 0.53 || 0.59 | 0.50| 0.49 | 0.60

JSTRank 0.50 | 0.50| 0.51| 0.42 | 0.64 | 0.66| 0.71 | 0.57
J&T-Rank 0.53 | 0.44| 0.44| 042 | 0.60 | 0.56| 0.54 | 0.57
Clarity+KLpr+KLcT 0.63 | 0.55| 0.63| 0.65; | 0.61 | 0.46| 0.46 | 0.61
ClarityIrradrrane || 0.65f | 0.55| 0.60| 0.65f | 0.61 | 0.46| 0.43 | 0.61
ALL 0.64 | 0.59| 0.47| 0.65f || 0.52 | 0.45| 0.41 | 0.60
Clarity 0.53 | 0.36| 0.46| 0.53 || 0.60 | 0.42| 0.60 | 0.60
KLpr 0.53 | 0.43| 0.46| 0.53 || 0.60 | 0.54| 0.58 | 0.60
KLer 0.50 | 0.49| 0.52| 0.53 || 0.60 | 0.48| 0.58 | 0.60
AVGgase 0.53 | 0.52] 0.51| 0.53 | 0.56 | 0.61| 0.64 | 0.60

AVGor.Rank 0.53 | 0.62| 0.54| 0.53 | 0.60 | 0.53| 0.56 | 0.60
1000 AVGer.Rrank 0.53 | 0.50| 0.44| 0.53 || 0.60 | 0.58| 0.57 | 0.60

JSTRank 0.50 | 0.52| 0.47| 0.49 | 0.64 | 0.67| 0.69 | 0.53
JSTRank 0.51 | 0.57| 0.48| 0.46 || 0.59 | 0.55| 0.60 | 0.60
Clarity+KLpr+KLr 0.54 | 042] 042|054 | 0.61 | 0.50| 0.46 | 0.61

ClarityJSrraderran || 0.98 | 0.42| 0.46| 0.54 | 0.61 | 0.54| 0.57 | 0.61
ALL 0.51 | 0.37] 0.26| 0.53 || 0.57 | 0.48| 0.30 | 0.60
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Table 7.3: Retrieval effectiveness of different ranking moeis measured using P@1,
P@5, P@10 and MAP; * indicates statistically different fr@0-Rankusing t-test with
significant app < 0.05.

Method

exclusive inclusive
P@l\ P@S\ P@lo\ MAP P@l\ P@S\ P@lo\ MAP
CT-Rank 0.55 | 0.50 | 0.48 | 0.53 || 0.58 | 0.55 | 0.53 | 0.56
PT-Rank 0.6 | 053 | 050 | 055 || 0.63 | 0.58 | 0.55 | 0.61
Rank-Prediction| 0.68 | 0.53 | 0.50 | 0.59* | 0.70° | 0.58 | 0.59 0.64
MAX 0.8 | 0.6 | 0.52 | 0.64 | 0.78 | 0.62 | 0.59 | 0.67

7.6 Conclusions

In this chapter, we studied and compared time-aware rankiogels based on two time
dimensions: publication time and content time. We demaiestrthat temporal queries
can benefit from different ranking models, that is, the estl effectiveness differs among
ranking models. According to this, we categorized querigsed on two time dimen-
sions, and we proposed to predict the suitable ranking magle supervised machine
learning. In order to evaluate our approach, we conductézheive experiments using
temporal queries and relevance judgment using crowdswrdihe results show that our
prediction-based ranking model outperforms the baseigréfecantly.

It is obvious that when comparing with the optimal case thestill room for further
improvements. In future work we plan to increase the acquofcanking prediction by
studying additional features.
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Chapter 8

Comparison of Time-aware Ranking
Methods

In general, a time-aware ranking method ranks documentsathaextually and tempo-
rally similar to a query and ranks retrieved documents watspect to both similarities.
Previous work has followed one of two main approaches: 1)xure model linearly
combining textual similarity and temporal similarity, oy & probabilistic model gener-
ating a query from the textual and temporal part of a docurmetgpendently. In this
chapter, we address the research questimw to explicitly model the time dimension
into retrieval and ranking?by performing an empirical study and evaluation of différe
time-aware ranking methods using the same dataset.

8.1 Motivation

The previous time-aware ranking methods [12, 31, 53, 73Joased on two main ap-
proaches: 1) a mixture model linearly combining textual tardporal similarity, or 2) a
probabilistic model generating a query from the textual eamdporal part of a document
independently. It is shown that time-aware ranking perfohbuatter than keyword-based
ranking, e.g., tf-idf and language modeling. To the bestwflmowledge, an empirical
comparison of different time-aware ranking methods usimgdame dataset has never
been done before.

Contributions
Our main contributions in this chapter are as follows.

o We perform the first study and analysis of different time-a@vanking methods.

e By conducting extensive experiments, we compare the pedioca of different
time-aware ranking methods using the same dataset.

123
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Organization

The organization of the rest of the chapter is as follows. éati®n 8.2, we give an
overview of related work. In Section 8.3, we first outline thedels for documents and
gueries, and we present a mixture model of time-aware rgnKim Section 8.4, we de-
scribe different time-aware ranking methods, and we condxiensive experiments in
order to evaluate different time-aware ranking methodseatign 8.5. Finally, in Sec-
tion 8.6, we conclude the chapter.

8.2 Related Work

In this section, we give an overview of ranking methods thabrporate temporal infor-
mation, and point out their underlying aspects includingexplicit or implicit temporal
information needs, 2) uncertainty-concern or uncertaigitypre, and 3) using timestamps
or temporal expressions.

A number of ranking models exploiting temporal informatioave been proposed,
including [3, 7, 31, 53, 73, 86]. In [73], Li and Croft incorated time into language
models, called time-based language models, by assigningunent prior using an ex-
ponential decay function of the publication time of documea., the creation date. They
did not have temporal information needs explicitly prowddeut they focused on recency
gueries. The time uncertainty is captured by the exponeaidzay function, such that the
more recent documents obtain the higher probabilitiesletamce.

In [31], Diaz and Jones measure the distribution of creadiates of retrieved docu-
ments to create the temporal profile of a query. The tempoofilpwas presented due to
no explicit temporal information needs. Hence, they neddextimate the time relevant
to a query by analyzing the distribution of creation datekeif results showed that the
temporal profile together with the contents of retrieveduioents can improve averaged
precision for the query by using a set of different featu@sdiscriminating between
temporal profiles.

In [53], Kalczynski and Chou proposed a temporal retrievatieddor news archives.
In their work, temporal expressions in a query and documaats explicitly modeled in
ranking. A query is defined as a set of precise temporal indtion needs, i.e., the finest
time chronon, or a day. Thus, they assumed that the uncgrigiplied only to temporal
references in documents, and it was represented as a fuzZzynsgon.

The work by Baeza-Yates [7] proposed to extract temporalesgions from news,
index news articles together with temporal expressiorgyaimieve temporal information
(in this case, future-related events) by using a probaicilileodel. A document score is
given by multiplying &keywordsimilarity and a time confidence, i.e., a probability that th
document’s events will actually happen. We can view the demite as the uncertainty of
time. Besides, this work allowed a user to explicitly spet#gnporal information needs,
but only on a year-level granularity.

Metzler et al. [86] considered implicit temporal infornatineeds. They proposed
mining query logs and analyze query frequencies over tinwder to identify strongly
time-related queries. They did not directly extract tenapexpressions from queries and
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documents. In addition, they presented a ranking modelarointy implicit temporal
needs, and the experimental results showed the improveshthd retrieval effectiveness
of temporal queries for web search.

In more recent work, Berberich et al. [12] integrated tempexaressions into query-
likelihood language modeling, which considers unceryainherent to temporal expres-
sions in a query and documents. That is, temporal expressamrefer to the same time
interval even they are not exactly equal. The work by Berlbegical. required explicit
temporal information needs as a part of query.

We will later detail different time-aware ranking methodsuT [12], LmTU [12],
TS(cf. Chapter 4), TSU(cf. Chapter 4), and FuzzySet [53] thdedine different aspects
of time and uncertainty in Section 8.4.

8.3 Models for Documents and Queries

A temporal queryg is composed of keywordge, and temporal expressiongne. A
documentd consists of the textual patt.,, i.e., a bag of words, and the temporal part
diime cCOMposed of the publication d&ReibTiméd), and temporal expressiofis,, . . . , ¢}
mentioned in the document’s conter@sntentTimél). Both the publication date and
temporal expressions will be represented using the timeeinaidBerberich et al. [12]
presented in Section 2.2.2.

8.4 Time-aware Ranking Methods

We study different time-aware ranking methods proposeddasure temporal similarity
between a query and a document includingtTL12], LmtU [12], TS (cf. Chapter 4),
TSU (cf. Chapter 4), and FuzzySet [53]. Although they are shttve good performance
in the retrieval of temporal needs, those methods have rim@&mn compared using the
same dataset and relevance judgments. In the following,eseribe in detail each time-
aware ranking method. The summarization of charactesisti¢he time-aware ranking
methods with respect to two aspects is shown in Table 8.1.

Table 8.1: Characteristics of different time-aware rankimagels.

Time Uncertainty
Method Publication| Content|| Ignore | Concern
LmT X V V X
LmtU X V X V
TS V X Vv X
TSU X Vv X V
FuzzySet Vv X X Vv

To be comparable, we apply a mixture model to linearly combéxtual similarity
and temporal similarity for all ranking methods. Given a pamal queryy, a documend
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will be ranked according to a score computed as follows:

S(q7 d) = (1 - 04) : S/(Qtexta dtext) +a- Sl/(qtime; dtime) (8-1)

where the mixture parameterindicates the importance of textual similarf¥( giext, diext)
and temporal similarity5” (gime, dime). BOth similarity scores must be normalized, e.g.,
divided by the maximum scores, in order to the final sc®f@ d). S’(qext, diext) CaN be
measured using any of existing text-based weighting fonsti S” (gtime, dime) Measure
temporal similarity by assuming that a temporal expressjo8 gime IS generated inde-
pendently from each other, and a two-step generative maaeused [12]:

S//(Qtimey dtime) = H P(tq’dtime)

tq€qtime
1 8.2)
Lq€qtime time ta€diime

Linear interpolation smoothing will be applied to give thelpability P(¢,|t,) for an
unseen query temporal expressigrin d. In the next section, we will explain how to
estimateP(¢,|t,) for different time-aware ranking methods.

The temporal ranking methodssL and LvwtU are based on a generative model ap-
proach. Similar to a query-likelihood approach, the tek#mal temporal part of the query
q are generated independently from the corresponding pitfte aocument! as:

P (Q|d) =P (Qtext|dtext) x P (Qtime’dtime) (8.3)

The textual similarity parP(qiex|diext) Can be determined by an existing text-based query-
likelihood approach, e.g., the original Ponte and Croft nh{iiz0].

A temporal expressiogime are assumed to be generated independently from each
other. To generate each temporal expressjoim gime from d, a two-step generative
model was used. First, a document temporal expregsisdrawn at uniform random
from document temporal expressiafige. Second, a query temporal expressipm gime
is generated from a temporal expressigm d.

P(Qtime‘dtime) = H P(tq’dtime)

tqE€qtime
. (8.4)
=11 <|d_ ’ > P(tq\td)>
Lq€qtime time ta€diime

The probability of generating, from ¢, or P(t,|t;) can be calculated using two differ-
ent methods: 4T and LwtU. The first method ignores the uncertainty, i.e., only terapo
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expressions are exactly equal will be considered. TRg,|t,;) under LuT can be com-
puted as:

0 if t, # tq,
p(tqnd)uﬂ:{l o tj (8.5)
.= ta.

Contrary to v T, the ranking method lrU takes the uncertainty into account, i.e, it
assumes equal likelihood for each time interyahatt, can refer to. More precisely, a set
of time intervalst, = {|t, € t,} that the user may have had in mind when issuing the
query are assumed equally likely. Recall that the numbemnué tntervals irnt,, denoted
It,|, can be very hugeP(t,|t,) under lLutU can be calculated as:

P(tylta) s = o Z P(t[ta) (8.6)
ety
1 o ift ¢t
Pl = {0 E 8.7)
[tal if ¢ € tq.

Finally, the simplified calculation aP(¢,|t,) is given as follows.

t, Nt

P(tglta) ymy = el Jtal (8.8)

As explained in [12], |t| can be computed efficiently for anptent time or temporal
expressiort in two cases as:
(1) if tb, < te; then |t| can simply be computed as:

|t| = (tbu — tbl + 1) : (teu — tel + 1)

(2) if tb, > te; then |t| can be computed as:

tby

It =) (te, — max(th,te) + 1)

tb=tb,
= (tel — tbl + 1) . (teu — tel + 1)
+ (tby, — tey) - (te, —te; +1) — 0.5 - (tb, — tey) - (th, — te; + 1)

Note that,P(t,|ts) for both LmT and LwtU methods is prone to the zero-probability
problem. Thus, Jelinek-Mercer smoothing is applied, arddstimated valué?(tq|td)
becomes:

Pt = (1=2) g 3 Pl +h- g 3 Pl (89

t4€Ctime tq€diime

where the smoothing parameter e [0, 1], andC' is the whole document collection.
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In Chapter 4, we proposed to measure the temporal similasityguTS and TSU.
Instead of using a language modeling approach as in [12] myaed a mixture model
approach to combining the time similarity with the textuatigarity. The mixture model-
based approach is given as:

S(Qa d) = (1 - 05) : SI(Qtexta dtext) +a- S”(Qtimea dtime) (810)

whereq is a parameter underlining the importance of both simyastores: textual sim-
ilarity S’(grext, diext) @nd temporal similaritys’ (giime, diime). The textual similarity can be
implemented using an existing text-based weighting modefs tf-idf. The value of
textual similarity must be normalized using the maximumvkesd score among all doc-
uments as:

S’ (Qtexb dtext)
max S /(Qtexta dtext)

Sr,mrm(Qtext, dtext) = (8. 11)

S"(qtime, dime) OF the temporal similarity part is defined using two metho@S: and
TSU. Both methods ignore temporal expressions in documgasis, they represented
d using the creation date only, adgh, is referred tdPubTiméd).

The probability of generatingimefrom diime, Or S”(gtime, dime) &N be computed as:

S/,(Qtimea dtime) = P(C]time|dtime)
1
- - Z P(tq‘dtime> (812)
|Qtime|

tqEqtime

wheregime is a set of query temporal expressions. Hem®@yime|dime) IS averaged over
the probability of generating each temporal expressiapqig or P(t,|dtime)-

Similar to LT and LvtU, the probability of generating a time intervglgiven dime
(i.e., PubTiméd)) can be calculated in two ways: 1) ignoring uncertainty, ahthking
uncertainty into account. By ignoring uncertain(t,|dime) is defined as:

0 if PubTiméd) ¢ t,,

8.13
1 if PubTiméd) € ¢,. 8.13)

P(tq’dtime)Ts: {
In this case, the probability of generating a query tempexaression is equal tbonly
if the publication date ofl is in a range of,, or it is equald otherwise. In the case where
uncertainty is concerned(t,|dime) is defined using an exponential decay function:

P(tq|dime)rsy = DecayRate? ta=tdl (8.14)

[tb] — tbf| + |tbd — tb2| + |te] — tefl| + |ted — tel]

|tq_td| = 4

(8.15)

wheret, = PubTiméd), DecayRate and \ are constant) < DecayRate < 1 and
A > 0, andy is a unit of time distance. Intuitively, this function givagprobability that
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decreases proportional to the difference between a tinegvialtt, and the publication
date ofd. A document with its creation date closerttowill receive a higher probability
than a document with its creation date farther frgm Note that, lwtU concerns the
uncertainty by exploitingll possible time intervainherent in a temporal expression into
the calculation, whereas TSU ignore this assumption but €&terns the uncertainty
by taking account o& time distancdi.e., measuring by a decay function) between two
time intervals.

The normalization o6}, ,(¢time, dtime) CAN be computed in two ways:

1. uncertainty-ignorant using(t,|dime);s defined in Equation 8.13

2. uncertainty-aware using(t,|dime);5, defined in Equation 8.14

Finally, the normalized value &}, (¢time diime) Will be substitutedS” (giime, diime) IN
Equation 8.10 yielding the normalized score of a docunaegitven a temporal query
with determined timeyme as follows:

Snorm(% d) = (1 - a) : Sr/mrm(%ext’ dtext) +a- Sr/{orm(Qtime’ dtime) (8-16)

Kalczynski and Chou [53] measured the temporal similarityMeen a query and a
document using a fuzzy membership function wittifferent shapes, so-calléezoidal.
Rather than assuming all time intervals inherent in a temigaression, they propose
to capture the uncertainty of time using the fuzzy member&imction. In this work, we
only consider th&-zoidal fuzzy membership function illustrated in Figuré.8.

The figure depicts a query temporal expressipe- [t,, t,] with the beginning point
t, and the ending point, equivalent to the pointa, andas respectively. The time of
documentd;ne can be any point on a timeline. The temporal similarity betmgandd
will be computed based on the graphical function in this #gun addition, this method
also ignores temporal expressions in documents, i.e.réprgsented using the creation
date only, andie is referred tdPubTiméd). Thus,FuzzySets defined as:

;

0 if tg < aq,
filta) ftg>ar Ntg < ag,
FuzzySet < 1 if tg>as Aty < as, (8.17)
fg(td) if tg > a3 Ntg < ay,
\0 if tg > ay.
a-ta)" g
fita) = ()" Hortan (8.18)
1 if a1 = ao.
aute )" jf
folta) = <—) as # aa, (8.19)
1 if as = Q4.

wheret, is equal tadime. The parameters,, as, n, m will be determined empirically.
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Figure 8.1: The 6-zoidal membership function from [53].

Finally, we will conclude the similarity/dissimilarity oflifferent temporal ranking
methods we presents. In other words, we want to remark tiierelifce among them
using the following metrics: uncertainty-ignorance or eainty-concern, and whether
exploiting temporal expressions in either a query or a dantnor both.

8.5 Evaluation

We first describe the settings of experiments. Then, we ataldifferent time-aware
ranking methods, and discuss the results.

8.5.1 Setting

Temporal document collection. We used the New York Times Annotated Corpus as a
temporal document collection. Note that, the proposedingnik not limited this partic-
ular collection, but it can be applied to other temporaledtibns as well. The Apache
Lucene search engine version 2.9.3 was used for indextngii@g documents.

Queries and relevance assessmentt this work, a standard query and relevance
judgment benchmark, such as, TREC, is not useful becauseegqusg not time-related,
and the judgment is not targeted towards temporal infoonatieeds. For this reason,
we used the same set of queries and relevance assessmdrgsaasik by Berberich et
al [12]. They obtained 40 temporal queries and 6,255 quecyithent judgments using 5
assessors from the Amazon Mechanical Turk (AMT).

Document annotation. To extract features from the New York Times Annotated
Corpus, a series of language processing tools were used @#ededsin [84], including
OpenNLP [96] (for tokenization, sentence splitting andedrspeech tagging, and shal-
low parsing), the SuperSense tagger [113] (for named ergdggnition) and TARSQI
Toolkit [118] (for annotating documents with TimeML and edting temporal expres-
sions). The result of this analysis were: 1) entity inforioat e.g., all of persons, loca-
tions and organizations, 2) temporal expressions, elgf alent dates, and 3) sentence
information, e.g., all sentences, entities and event datesrs in each sentence, as well
as position information.



Chapter 8. Comparison of Time-aware Ranking Methods 131

Parameter setting. The smoothing parameter was set to 0.1. Parameters for TSU
were: DecayRate = 0.5, A = 0.5, andy = 6 months. Parameters for FuzzySet were
n=2m=2,a =ay— (025 % (a3 — az)), anday = az + (0.50 x (az — as)).

Evaluating an individual ranking method. To compare different methods, we used
a mixture model, where the Lucene’s default weighting fiomctvas used to capture the
textual similarity for all ranking methods. In this way, thesults of each temporal rank-
ing can be comparable. The mixture parametevas varied in the experiments. Each
retrieved document is ranked with respecttq, d) in Equation 8.16, whers’ (qgiext, drext)
was a score obtained from the Lucene’s default weightingtfan, andS” (gime, diime)
was obtained from different time-aware ranking method<idesd in Section 8.4. The
baseline was the textual similari/(qgex:, diext), 1.€., the Lucene’s default weighting func-
tion, usinginclusivemode denoted TFIDF-IN. These two retrieval modes were agpb
each temporal ranking method, and the results will be repatcordingly.

Metrics. The retrieval effectiveness of temporal ranking was messby the pre-
cision at 1, 3, 5 and 10 documents (P@1, P@3, P@5 and P@1Ctresiy?, Mean
Reciprocal Rank (MRR), and Mean Average Precision (MAP). Follehened ranking
method, the average performance over the five folds was osedasure the overall per-
formance of each ranking model.

8.5.2 Results

First, we study the sensitivity of each temporal rankinghodtto the mixture parame-
tera. The effectiveness (P@5, P@10, and MAP) of each temporkingmethod when
varyinga. Forinclusive modgthe sensitivity of each temporal ranking method is shown
in Figure 8.2. Forexclusive modethe sensitivity of each temporal ranking method is
shown in Figure 8.2. Note that, suffixes IN and EX refeimusiveandexclusivemode
respectively. Next, we will compare different ranking nedk using the best performed
results with respect to this sensitivity.

The effectiveness of the baseline (i.e., the Lucene’s dteferighting function) and
different temporal ranking methods are displayed in Tak?e & general, the exclusive
mode performed better than the inclusive mode for bath Bnd L«U, and LwrU-EX
gained the best performance over the other baselines.

Table 8.2 shows the best performing results of each metimagereral, all time-aware
ranking methods outperform the baseline significantlyepk¢mT. For each time-aware
ranking, the effectiveness when retrieved usaxglusiveis better thannclusive TSU
performs best among all methods in batkclusiveand exclusivemodes, and it outper-
forms all other methods significantly for P@1, MAP and MRR.

8.6 Conclusions

Time-aware ranking methods show better performance cadpar methods based on
keywords only. When the time-uncertainty is taken into actothe effectiveness is im-
proved significantly. Even though TSU gains the best peréorte among other methods,
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Figure 8.2: Sensitivity of P@5, P@10 and MAP to the mixtureapeetera for inclusive
mode.

the usefulness of TSU is still limited for a document colilectwvith no time metadata, i.e.,
the publication time of documents is not available. On thet@y, LmvT and LutU can
be applied to any document collection without time metadawaextraction of temporal
expressions is needed.
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Figure 8.3: Sensitivity of P@5, P@10 and MAP to the mixtureapgetera for exclusive

mode.

Table 8.2: Effectiveness of different time-aware rankingtimods (suffixes IN and EX
refer toinclusiveandexclusivemode respectively), * indicates statistically improvernen
over the baselines using t-test with significanp at 0.05.

Methods P@l1 P@3 P@5 P@10 MAP MRR
TFIDF-IN .38 .45 43 41 49 .56
LMT-IN 43 43 41 41 48 57
LMTU-IN 48 49 A7 .45 .52 .68
TS-IN 45 A48 .49 48 .54 .61
TSU-IN .65 .56 51 49 B8 76
FuzzySet-IN .45 .48 .49 .48 .53 .61
LMT-EX .38 46 A2 .48 .52 .55
LMTU-EX .48 .52 A48 .50 .55 .68
TS-EX .48 .56 .52 .53 .58 .63
TSU-EX .68 .58 .54 54 61 T

FuzzySet-EX

48 .55 .53 .54 .59 .64




134 Section 8.6. Conclusions




Chapter 9

Ranking Related News Predictions

In the previous chapter, we presented different rankingefsothat retrieve documents
with respect to textual and temporal similarity. In this ptea, we also want to investi-
gate whether exploiting other features together with tiane lzelp improving the retrieval
effectiveness in searching temporal document collecti@pecifically, we set up a new
task calledranking related news predictionsvhich is aimed at retrieving and ranking
sentences that contain mentions to future events. Theroésgaestion addressed in this
chapter is:how to combine different features with time in order to impereglevance
ranking?

9.1 Motivation

Predicting the future has long been the Holy Grail in the faianwvorld. The leaders of
large organizations need to analyze information relatatiédfuture in order to identify
the key challenges that can directly affect their orgarorst This information can be
useful for strategies planning to avoid/minimize disraps, risks, and threats, or to max-
imize new opportunities [19]. For example, a business campaually concerns about
clients’ interests in global competition, innovation andffis, and a government’s chal-
lenges are in areas of education, energy, security anchhesie. However, it is not just
businesses that care about the future - all people havegatian and curiosity about the
future. Canton [19] describes the future trends that cananfia our lives, our jobs, our
businesses, and even our world. These include the enegly, thie global financial crisis,
politics, health care, science, securities, globalirgtidimate changes, and technologies.
When people read news stories on any of these topics whetiseanitarticle about war
in the Middle East or the latest health care plan, they anerally curious about potential
future events. How long will the war last? How much will it ¢@swWhat happens if we
do nothing at all? This obsession with the future is also ce&dl in the news articles
themselves - our analysis of one year worth of news from o@6rsburces indicates that
nearly one third of news articles contain at least one stat¢made about a future date.
Accessing this information in an intuitive way would grgainprove how people
read and understand news. In this chapter, we define a newtaskll ranking related

135
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news predictionshat directly addresses this problem by finding all predittirelated to

a news story in a news archive and ranking them accordingeiorglevance to the news
story. This task is motivated by the desire of news sites ¢oeiise user engagement by
providing content that directly addresses the informatieeds of users. By providing
links to relevant content, new sites can keep users on theitanger thus increasing
the likelihood that users will click on revenue generatimi$ and also improving user
satisfaction. For a wide range of news events from natusastiers to political unrest in
the Middle East, the information need - the question mostempfe’'s minds - is what is
going to happen next. This new task is a first step toward hglpeople answer this very
guestion by finding and linking to predictions that are ralevo the user.

Our query is extracted from a news article currently read hyser, and is com-
posed of a bag oéntitiesor terms Using an automatically-generated query, predic-
tions are retrieved, ranked over the time dimension, ansemted to the user. Note that
there are a number of future-related information analyraugs includingRecorded Fu-
ture [101], andTime Explorer[84]. Recorded Futur@xtracts predictions from different
sources (news publications, blogs, trade publicationgeigonent web sites, and finan-
cial databases). A user creates a query by selecting a tbpitecest (e.g. a topic about
“Financial Markets”), and then specifying an entity (pemgmompanies, or organizations)
from a set of “predefined” entities. The system will thenisste predictions related to
the selected topic and entity. A major difference with owstsyn is thaRecorded Future
requires a query specified in advance, while our system aitoatly creates a query for
the user based on the news article being read and it is naetino “predefined” entities.
Besides,Recorded Futurdacks of the ranking of predictions whereas we rank predic-
tions before presenting them to the us&me Exploreris a search engine that allows
users to see how topics have evolved over time and how theytmamtinue to evolve in
the future. The system extracts predictions from documelhtations and allows users
to search for them using ad-hoc queries. However, neffree Exploremor Recorded
Future provide details of how predictions are ranked nor do theyuata performance
in a formal setting as we do here. However, there is no ran&ingredictions inTime
Exploreras we will do in this work.

In this chapter, we will propose a ranking model of futureomfation using machine
learning techniques. To learn the ranking model, we definagkes of features to mea-
sure different similarities, namely, term similarity, s@mtic similarity, topic similarity,
and temporal similarity. These features are aimed at ciaygtuhe similarity between
an information need and predictions of future-related &szetn addition, we explicitly
exploit temporal information of a query and documents (itemporal expressions) in
ranking. The challenges of owanking related news predictiortask are related to var-
ious aspects of IR problems: sentence retrieval, entitkingn temporal ranking, and
domain-specific predictions.

Contributions
The main contributions of this chapter are as follows.

e We propose the first formalization of tin@nking related news predictioniask.
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e We propose a learned ranking model incorporating four eeéfeatures including
term similarity, entity-based similarity, topic similyj and temporal similarity.

Organization

The organization of the rest of the chapter is as follows. éct®n 9.2, we give an
overview of related work. In Section 9.3, we explain our systarchitecture, and outline
the models for annotated documents, predictions as weluaeses. In Section 9.4, we
propose four classes of features used for learning a rankimdel. In Section 9.5, we
describe our ranking model. In Section 9.6, we evaluate tbpgsed ranking model.
Finally, in Section 9.7, we conclude our work in this chapter

9.2 Related Work

Our related work includes sentence retrieval, entity nagkiemporal ranking, and domain-
specific predictions.

Sentence retrieval is the task of retrieving a relevanteserd related to a query. Dif-
ferent application areas of sentence retrieval are megdiamthe book of Murdock [89]
and references therein, including, for example, questismwaring [114], text summariza-
tion, and novelty detection. Surdeanu et al. [114] appligzksvised learning to rank a set
of short answers (sentences) matched a given questionyjdueusing different classes
features. Li and Croft [74] proposed to detect novelty topiggnalyzing sentence-level
information (sentence lengths, named entities, and opipaiterns). Generally, because
sentences are much smaller than documents and thus hatedlioointent compared to
documents, the effectiveness of the retrieval of senteiscgignificantly worse. To ad-
dress this problem, Blanco and Zaragoza [15] proposed tcheseontext of sentences in
order to improve the effectiveness of sentence retrieval.

There have been a number shared tasks with the goal of fumghexsearch in the
area of entity ranking. For instance, the TREC 2008 Entexgdreck was created with
the objective to find experts (or people) related to a giveuctof interest. The INEX
Entity Ranking track [30] was launched with the task of findalist of relevant entities
(represented by Wikipedia articles) for a given topic. Régethe TREC 2009 Entity
track was introduced, and the task is to find related enfjtegzresented by homepages)
given a topic (called a source entity). The difference betwthe TREC 2009 Entity
and the previous tracks is that it allows a relation and eetaggtity type to be explicitly
specified. There are various approaches to ranking ertjiesing language models [9],
voting models [80], and entity-based graph models [136].

Many ranking models exploiting temporal information haeeb proposed, including
[12, 31, 73, 86]. Li and Croft [73] experimented with time-bddanguage models by
assigning a document prior using an exponential decayifumof its creation date, such
that the more recent documents obtain the higher probabildf relevance. Diaz and
Jones [31] build a temporal profile of a query from the disttitin of document publica-
tion dates. They use time dependent features derived fresetprofiles that improve the
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ranking of temporal queries. In [39], Gwadera and Crestapgsed a method for mining
and ranking news stories using cross-stream sequenttatpsind content similarity.

Berberich et al. [12] integrated temporal expressions intergtlikelihood language
modeling, which considers uncertainty inherent to temipexaressions in a query and
in documents, i.e., two temporal expressions can referdostime time interval even
when they are not exactly equal. Metzler et al. [86] minedrglmgs to identify implicit
temporal information needs and presented a time-depemdeking model for certain
types of queries. Elsas and Dumais [33] also take time inteeval. They demonstrate
that the relevance of a document is strongly correlated igtbontent change frequency.

There is much research in domain-specific predictions saatark market predic-
tions [108, 131] and recommender systems [71, 97]. The fins$ at predicting stock
price movements by analyzing financial news, while the tapplies collaborative filter-
ing algorithms for recommending books, videos, movie, bésed on users’ interests.

The future retrieval problem was first presented by BaezasYft]. He proposed
to extract temporal expressions from news, index newslestiwgether with temporal
expressions, and retrieve future information (composeedand future dates) by using a
probabilistic model. A document score is given as a muttgilon of akeywordsimilarity
and a time confidence, i.e., a probability that the docureseavents will actually happen.
The limitation of this original work is that it is evaluateding a small data set and only a
year granularity is used.

The more recent work on the future-related informationiee#d is presented by Ja-
towt et al. [49]. In contrast to our work, they do not focus atevance and ranking
future-related information retrieval. They presented aiical tool for extracting, sum-
marizing and aggregating future-related events from newisivges, but did not perform
an extensive evaluation, only calculating averaged pi@tisn a small set of generated
results.

9.3 Problem Definition

In this section, we outline the system architecture, and tiie formalization of the mod-
els for annotated documents, predictions, and queries.

9.3.1 System Architecture

Figure 9.1 depicts our system which retrieves a set of ptiedE (sentences containing
future dates) related to a given news article. Predicti@arslmze extracted from a tem-
poral document collection — any collection that containsetamped documents, e.g.,
personal emails, news archives, company websites and.blogthis work, we auto-
matically extract predictions from news archives usindetdént annotation tools. Our
document annotation procesludes tokenization, sentence extraction, part-okspe
tagging, named entity recognition, and temporal expressuraction. The result of this
process is a set of sentences annotated with named entitietemporal expressions,
which will be indexed apredictionsfor further processing or retrieval.
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Figure 9.1: Prediction retrieval system architecture.

A key component of the annotation process is the extracti@@mporal expressions
using a time and event recognition algorithm. The algoritixtracts temporal expres-
sions mentioned in a document and normalizes them to datdsegacan be anchored
on a timeline. Instead of having an explicit information ageovided, we automatically
generate a query. In this case, we assume that the usersation needs lie ithe news
article being readby the user, and a query will be extracted from this newslargfarther
details are given in Section 9.3.4). For a given news artigkeretrieve predictions that
are relevant to the news article, that is, relevant sengenostaining future dates with
respect to the publication date of the news article beind.rea

Retrieved predictions are ranked by the degree of relevamicere a prediction is
“relevant” if it is future information abouthe topics of the news articlé&ote that we do
not give any specific instructions about how the dates iralare related to relevance.
Nevertheless, we hypothesize that predictions extracted more recent documents are
more relevant. In this chapter, we use a machine learningpapp [76] for learning the
ranking model of predictions. This involves identifyindgfdrent classes of features (see
Section 9.4) to measure the relevance of a prediction wi#peet to the news article.

9.3.2 Annotated Document Model

Our document collection contains a number of news articdfisdd as” = {dy, ..., d,}.
We treat each news article as a bag-of-words (an unordesedflterms, or features),
d ={wy,...,w,}. timed) is a function given the creation or publication date/oSome
of our proposed features are extracted from annotated demisinwhich are defined as
follows. Each document, has an associated annotated docurdemthich will consist
of three setsd., d;, d,: a set of named entitied. = {e,...,e,}, Where each entity
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Table 9.1: Example of a prediction with field/value pairs.

Field Value
ID 1136243 1
PARENT_ID 1136243
TITLE Gore Pledges A Health Plan For Every Child
TEXT Vice PresidenAl Gore proposed today to guar-

antee access to affordable health insurance for
all children by 2005 expanding on a program
enacted two years ago that he conceded had
had limited success so far.

CONTEXT Mr. Gore acknowledged that the number of
Americans without health coverage had in-
creased steadily since he and President Clinton

took office.
ENTITY Al Gore
FUTURE _DATE 2005
PUB_DATE 1999/09/08

e; € £ and¢ is the complete set of entities (typed as person, locatioth caganization)
in the collgction; a set of annotated temporal expressipns {ti,...,t¢,} and a set of
sentenced, = {sy,...,$.}

9.3.3 Prediction Model

A predictionp can be viewed as a sentence containing field/value pairsnaftation in-
formation and we definé” as theparentdocument where is extracted from. We define
several fields for a prediction including, PARENT_ID, TITLE, ENTITY, FUTURE_DATE,
PUB_DATE, TEXT, andCONTEXT. The fieldID specifies a prediction’s unique number,
PARENTID andTITLE represent a unique number and the titlelfbfespectivelyENTITY
contains a set of annotated entitj@iy C d., FUTURE_DATE consists of “future” tem-
poral expressiongqwre annotated irp, PUB_DATE is the publication date of thparent
documentd? and TEXT is a prediction’s texipy or the sentence gf. Note that each
prediction must contain at least one “future” temporal esgion, that isprre 7 0. In
addition, we explicitly model the context of the predictiog, represented by the field
CONTEXT and defined as surrounding sentences of the main senterjcérIhur work,
we define the contexiy, as the sentence immediately before and the one immediately
afterpy. Table 9.1 contains an example of a prediction with its figltife pairs.

9.3.4 Query Model

As mentioned earlier, a quenyis automatically generated from a news article being read
d?; q is composed of two parts: keyworgs,;, and the time of queryime. The keywords
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Grext Are extracted from? in three ways resulting in three different types of queries.
The first type of query is called “entity query”, and it is defthas follows.

Definition 12 (Entity Query) An entity query is represented by a bag of entities denoted
Qr. The keyword partyex of Qg is composed of top-m entities ranked by frequency,
where the entities are extracted fraih

Intuitively, we want to know whether using onkgyentities frequently mentioned in
the news article can retrieve relevant predictions withhhpgecision or not. For example,
given an actual document about “President Bush and the Ira wa extract) g with
qext = (George Bushraq, Americg. At retrieval time,gex Will be matched with the
ENTITY field of the predictions. Note that, the frequency of erditrall be considered
only for selecting théop-mentities but it will not be used for retrieval.

The second query is called “term query” and it is defined asahawing.

Definition 13 (Term Query) A term query is represented by a bag of terms dengted
The keyword partey Of Q7 is composed of top-n terms ranked by term weighting, i.e.,
TF-IDF, where the terms are extracted fraih

Qr is considered a bag térmsimportant to bothi? (locally) and the whole collection
(globally). We also ignore the weight of terms (i.e., TF-)D#hat is, all terms are equally
weighted at retrieval time. In contrast to the previous gugpe, )+ aims at retrieving
predictions related to the topics of news article, which banrepresented as set of
informative termsAs an example, thé, with g = (poll, bush war, iraq) is extracted
from the same document used in thg example above. In this casg.y: will be matched
with the TEXT field of the predictions.

The last type is called “combined query” and it is defined dis\is.

Definition 14 (Combined Query)A combined denote@. is a combination of an entity
guery and a term query. The keyword part@f; of ) is composed of both top-m entities
and top-n terms formed by concatenati@g and Q.

In this work, we combine by using the “AND” operator. The ideahat a prediction
should be related to botkey entitiesandimportant termsextracted from{?. An exam-
ple of Q¢ can begex = (George Bushirag, America AND (poll, bushwar, iraq). We
discuss how we selettp-mandtop-nin Section 9.6.

The last component of the query is ttemporal criteriaor ¢;me Used for retrieving
predictions on the time dimensiofime is composed of two different time constraints. The
first constraint is specified in order to retrieve only prédis that arduture relative to
the publication date of query’s parent articletione(d?). The second constraint indicates
that those predictions must belong to news articles puddisieforetime(d?).

Definition 15 (Temporal Criteria) Temporal criteriagime IS composed of two different
time constraints and both time constraints can be represkunsing a time interval as:

(i) (ime(d?), tmay



142 Section 9.4. Features

(i) [tmin, time(d?)]

where(time(d?), tmay = [tiMe(d?), tmay — {time(d?)}, andtmaxandimin are the maximum
time in the future and the minimum time in the past respelgtivat retrieval time, the
first constraint will be matched with the fiekUTURE_DATE of predictions, whereas the
second constraint will be matched with the fields_DATE of predictions.

9.4 Features

In this section, we present features used for learning aimgnkodel for related news
predictions. The model will be described in Section 9.5. Wappse several classes
of features to capture the similarity between a news argokery ¢ and a predictiorp,
i.e., term similarity, entity-based similarity, topic dlarity, and temporal similarity. The
detailed description of each class will be given next.

9.4.1 Term Similarity

Since a prediction is defined with multiple fields, we employg fielded searching pro-
vided with Apache Lucene search engine. The first term siityilleatureretScores the
default similarity scoring function of Lucene [5], whichasvariation of the tf-idf weight-
ing scheme. The featuretScorewill be computed with respect to a search figldvhich

is different for each query type. Note thdtis equivalent to the fieldNTITY for Q, and
the fieldTEXT for Q. ForQc, retScorewill be computed separately for each sub-query,
and combine them into a final scoretScoreis given as follows.

retScoréq, p, f) = coord(q, p) -gnorm(q) - Z tf(w;, p) -idf(w;)? - boostw;) - norm(w;, p) (9.1)

w;€q

tf(wi, p) = v/freq(w;, p) (9.2)

idf(w;) = 1+ log — (9.3)

gnorm(q) — L (9.4)
\/boos(q)2 -3 ey idf(w;) - boostw,))?

norm(w;, p) = boostp) - lenNorn{ f) - boost f) (9.5)

wheretf(w;, p) is term frequency, anfteq(w;, p) is a raw frequency ofv; in the field f

of p. idf(w;) is an inverse prediction frequendyy is the total number of predictions and
n., IS the number of prediction containing. boostw;) is the Lucene’s term boosting
parameter fotw; in g. coordq, p) is a score factor based on how many of the query terms



Chapter 9. Ranking Related News Predictions 143

are found in the specified predictiogmormq) is a normalizing factor used to make scores
between queries comparable. Calculating at indexing timoem(w;, p) encapsulates a
document boost, a field boost, and a length factors or theal@ation value for a fieldf
given the total number of terms containedfinFinally, retScoréq, p) must be normalized
to have a value between 0 and 1 by dividingrhyxp, retScoreq, p) whereP, is a set of

all retrieved predictions.

A disadvantage aketScords that it will not retrieve any predictions that do not match
the query terms. This issue is exacerbated in sentencevathy the fact that we have
to retrieve short fragments of text which might refer to theexy terms using anaphora
or other linguistic phenomena. One technique to overconseptioblem is to use query
expansion/reformulation using synonyms or different vgondth very similar meanings.
It has also been shown that extending a sentence structutedwroundingontextsen-
tences and weighting them using a field aware ranking fundtk® bm25f consistently
improves sentence retrieval [15]. Therefore, rather tledormulating a query, we will
retrieve a prediction by looking at trONTEXT andTITLE fields, in addition to the@EXT
field. Thus, even if theexT field does not match exactly with a query teptan receive
a score if either theoNTEXT or TITLE field match the query term.

In our case, instead of weighting differently keyword main the title or body of a
Web page, we assign a different importance to matches iretitersce itself or its context.
The second term similarity featuben25fcan be computed as follows.

weightw;, p)
+ weightw;, p)

bmzm%pr::EZkl - idf(w;) (9.6)
wi;Eq

freq(w;, f) - boost f)

weightw;,p) = Y l (9.7)
feF (1_bf)+bf'an|f
. Np — ny, +0.
mw:mfzi&% (9.8)

wherel; is the field lengthavl; is the average length for a field b, is a constant related
to the field lengthk;, is a free parameter armbost f) is the boost factor applied to a field
f. Np is the total number of predictions amg, is the number of prediction containing
w;, andF' = {TEXT, CONTEXT, TITLE }. We discuss parameter settings in Section 9.6.1.

9.4.2 Entity-based Similarity

As mentioned earlier, term matching prevents us to retjegdictions semantically sim-
ilar to a query but using different terms. For example, a gti@eorge W. Bush” will not
be able to match the following prediction because it doescoatain exactly the query
term, but “Mr. Bush”.

Mr. Bushis plan calls for an immediate start to all personal income tats
now scheduled for 2004 and 2006, with the greatest gains goitige most
well-off Americans.
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Thus, we exploit a named entity recognition method with sstally tagging [22]
used during the document annotation process (cf. Sect®h)9.

This feature class is aimed at measuring the similarity betw andp by measuring
the similarity of the entities they each contain. Note thhis class is only applicable
for a query consisting of entities, that i3 and@¢, and it is ignored fo). The first
featureentitySimcompares a string similarity between the entitieg ahdpeniyy Using the
Jaccard coefficient, which can be computed as follows.

. . N i
entitySintq, p) = % (9.9)
entity

wherepenity is a set of entitieslg N peniry| aNd|g U peniiyy| are the size of intersection and
union of entities of; andp.

Thus, the higher the overlap between the entities of a piiediand the query, the
higher the prediction will be ranked for the query. We alsoima rank predictions by
using features that are commonly employed ineatity rankingtask. For example, an
entity is relevant if it appears in the title of a documentjta@lways occurs as a subject
of sentence. We will emplogntity rankingfeatures by assuming that the more relevant
entities a prediction contains, the more relevant it is. &h#ty-based features will be
extracted and computed relative to the parent document oédigtion ¢”) or on the
prediction itself ).

Features extracted from documents atle, titleSim senPos senLen cntSenSub)j
cntEvent cntFuture cntEventSubjcntFutureSubj timeDistEvent timeDistFutureand
tagSim Features extracted from predictions &8ubjandtimeDist The value of all
features is normalized to range from O to 1, unless otherstated. First, the featutgle
indicates whether an entityis in the title ofd”.

title(e, d?) = isInTitle(e, dP) (9.10)

A value is 1 ife appears in the title af?, or O if otherwise. titleSimis a string similarity
betweere and the title.

. e ntitle(d?)|
tlt|eSIn‘(e, dp) = m (911)

senPogyives the position of the*d.sentence whereoccurs ind?.

len(d?) — pogfirstSerge))

senPoge, d¥) = len(dr)

(9.12)

wherelen(d?) gives the length off” in words. poqs, ) is the position of a sentencg in
dP. senLemgives the length of the first sentencedahat containg.

len(firstSerte))

senlLeffe, dP) =
fe, &) max,, eq» l€N(s,)

(9.13)
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cntSenSulig the number of sentences wheres a subject. We run a dependency parser
over the sentences in order to determine whether an entitgudbject of not.

cntSenSulgg, d) > " isSubje, s,) (9.14)

5yESe

\3!

whereS, is a set of all sentences eofin d”. isSubje, s,) is 1 if e is a subject ofs,,.
cntEvents the number of event sentences (or sentences annotatedats) ot.

cntEvente, d) = ’gp‘ Z Z isEqual’s., s,) (9.15)

32657’ 5yESe

where&} is a set of all event sentencesdh isEquals., s,) returns 1 ifs, equals tos,.
cntFutureis the number of sentences with a mention of a future datid=ventSubis the
number of event sentences tlhas a subject.

cntEventSulsg, d”) |€p| > isSubje, s.) (9.16)

s. €€

Similarly, cntFutureSubjs the number of future sentences thas a subject.timeDis-
tEventis a measure of the distance betweeand all dates .

timeDistEven(te, d) = ]61’ ‘ Z avg(normiste, s,)) (9.17)
“ls.ece
normDiste, s,) = ! maxDists.) - distle, &) (9.18)
s maxDist s, )
tp€Ts,
dist(w;, w;) = |pogw;) — pogw;)| — 1 (9.19)

whereé, is a set of all event sentences«fand7;, is a set of all temporal expressions
in s,. dist{w;, w;) is a distance in words between termas andw,;. maxDists,) is a
maximum distance between termsdn timeDistFuturée, d”) is a distance ot and
all future dates in?? computed similarly tdimeDistEvent tagSimis a string similarity
betweere and an entity tagged .

le N eyl
eﬂeN le U ey

tagSinte, d”) = (9.20)
where N7 is a set of all entities tagged iff. tagSimis only applicable for a collection
provided with manually assigned tags (e.g., the New YorkeBmAnnotated Corpus).

isSubje, p) is 1 if e is a subject with respect to a predictipnandtimeDiste, p) is a
distance ok and all future dates ip computed similarly taimeDistEvent All features
in this class are parameter-free.
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9.4.3 Topic Similarity

This class of features is aimed to compare the similaritwbehg andp on a higher level
by representing them using topics. Examples of topics agalth care reform”, “finan-
cial crisis”, and “global warming”. Several works [16, 1274ve proposed to model a
document with a low dimensionality, or to use topics rathantterms. We will use latent
Dirichlet allocation (LDA) [16] to model a set of topics. LD& based on a generative
probabilistic model that models documents as mixtures ameunderlying set of topic
distributions. In general, topic modeling consists of twaimsteps. The first step is to
learn topic models from training data. The output from theépss the probabilistic dis-
tribution over each topic. LDA requires the parametgror the number of topics to be
specified. After a model is trained, the next step is to ind@ids from the learned topic
model outputting a topic distribution for the prediction.

Wei and Croft [127] incorporated topic modeling for ad-hatieval, and showed that
linearly combining LDA with the query likelihood model ogormed non-topic models
like the unigram model. We incorporate LDA into the retriepeocess differently from
Wei and Croft in two ways. First, instead of combining LDA seewith the original
retrieval score, we represeqtandp as vectors of topic distributions and compute the
topic-based similarity using a cosine similarity betwe&n vectors. Second, we explic-
itly take the time dimension into modeling topics becaugectdistributions can evolve
over time. Intuitively, topics keep changing over time acduog to different trends.

We apply topic modeling to future retrieval in three mairpste

1. learning a topic model
2. inferring topic models
3. measuring topic similarity

Learning a topic model. We take into account the time dimension for learning topic
models. As shown in Figure 9.2, we create training data btitering the document
collection D into sub-collections (or document snapshots) with resjoetiine. In other
words, we group documents by year of publication, and ramgleglect documents as
training data, called a training data snapsbgti,, at timet,. Note that, we can also
use more sophisticated approaches for modeling topicstmmeras presented in [124].
However, we will leave this study for future work.

Topic model inference.Using learned models from the previous step, we determine
the topics forqg andp from their contents. This process is call@gic inferencewhich
represents a query and a prediction by a distribution ottofprobabilities). For exam-
ple, given a topic modep, a predictionp can be represented as = p(z1),...,p(zn),
wherep(z) gives a probability of a topie obtained fromp. Because our topic models
are learned from different time periods, a question is winedel snapshot we use for
inference. Note that; andp must be inferred from the same model snapshot in order
to be comparable. We select a topic model for inferring in tmays. First, we select
a topic model from a time snapshiine(d?) which corresponds to the publication date
of the news article parent @f Second, a topic model is selected from a time snapshot
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t which corresponds to the publication date of the news artithking predictiorp, or
thetime(d?). Moreover, a predictiop will be inferred in three different ways depending
on the contents used: 1) only texk;, 2) both textpy,: and contexip.y, and 3) the par-
ent document’”. For a queryy, the contents of its parent documefitwill be used for
inference.

In addition to using allV, topics for inference, we will also select only tégopics
ranked by the importance. The idea is that measuring the samiilarity using too many
topics may not be as accurate as using only the most impddpias. We us&overage
andvariation proposed in [111] for ranking topics. A topic covergge) assumes that
topics that cover a significant portion of the corpus conseatmore important than those
covering little content, while a topic variation(z) considers topics that appear in all
the documents to be too generic to be interesting, althdugyhhiave significant content
coverageu(z) ando(z) are computed using a mean and a standard deviation over topic
distributions, and the final score for ranking topic is a fplytof x(z) ando(z). The
calculationu(z) ando(z) for a topicz at timet,, is given as:

1 AlE
7() = \| e S len(d:) - (i(2) — () 922

> len(d;) =

whereNp, is the number of documents in a training set at ttmer | Dyain.t, |- pi(z) gives
a probability of a topic: in a documentl; andlen(d;) is the document length af;. A
final score for ranking a topie can be computed as:

rank(z) = p(2)™ - o(2)™ (9.23)

where the parameters and )\, indicate the importance ¢f(z) ando(z). If A\; = 1 and
A2 = 0, the ranking is determined purely by topic coverage. On trerary, if \; = 0
and)\, = 1, the ranking emphasizes topic variance.

Measuring topic similarity. Given a topic moded, the topic similarity can be cal-
culated using a cosine similarity between a topic distidsubf queryg, and a topic
distribution of predictiorp, as follows.

o dy " Do
topicSinig, p) = 2P0 __
lasl] - [Ipsll
ZZEZ qd’z ' p‘z’z (924)

\/ZZEZ qéz ) \/ZzGZ pgﬁz

We denote a topical feature usibB®A, ; ., wherei is one of the two different methods
for selecting model snapshot: = 1 for selecting a topic model from a time snapshot
time(d?), andi = 2 for selecting from a time snapshtitne(d?); j is one of the three
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Figure 9.2: LDA topic snapshots based on time.

different ways of using the contents for inferenggg, pcx, Or d¥. Finally, k refers to
whether we usall of only top+ of topics for inference. Thus, this results in 12 (=3*2*2)
LDA-based features in total.

9.4.4 Temporal Similarity

As mentioned earlier, we explicitly exploit temporal exgs®ns in ranking. To mea-
sure the temporal similarity between a query and a predictiee employ two features
proposed in previous workiSU (cf. Chapter 4) ané#S[53].

We will represent our model of time using a time interjtak| having a begin poink
and the end point. The actual value of any time point, e.ggr e in [b, €], is represented
using the time model of Berberich et al. [12] presented iniSe@.2.2.

The first featurd SUis defined as the probability of generating the time of qugy
from the document creation daieme(d). TSUcan be computed as follows.

A lgtime—time(d) |

TSU= DecayRate " (9.25)

where DecayRate and A are constants) < DecayRate < 1 andX > 0. p is a unit
of time distance. Intuitively, the probability obtaineain this function decreases pro-
portional to the distance betweef,. andtime(d), that is, a document with its creation
date closer tayme Will receive a higher probability than a document with iteation date
farther fromgime.

We applyTSUfor measuring the temporal similarity betwegandp based on two as-
sumptions. First, we assume thet more likely to be relevant if its parent tintiene(d?)
is closer to the time of query artictame(d?). Our first temporal feature, denot@&U,,
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will be calculated similarly to Equation 9.25 resulting flolowing function.

 Jtime(d9) —time(dP)|

TSU(q,p) = DecayRate™ m (9.26)
The second assumption, denofésl,, is that a prediction is more likely to be relevant
if its future datexwre are closer to the publication date of query artinbee(d?). If there

are more than one future dates associated #final score will be averaged over scores
of all future dategx ,re. The temporal distance a@iSU, of ¢ andp is defined as follows.

1 [time(d9)—t (|
TSQ(q,p):F Z DecayRate™ ™ = ! (9.27)

f t f Eptuture

wheret is a future date ipnwe and Ny is the number of all future dates.

In addition toTSU, andTSU,, we can measure the temporal similarity betweeamd
p using a fuzzy membership function, which is originally pospd by Kalczynski and
Chou [53].

We adapt the original fuzzy set function in [53] by using itsgnt timetime(d?) and
the time of query articléime(d?). We denote this feature &S;, and it can be computed
as follows.

0 if time(d?) < ay Vv time(d?) > time(d?),
FSi(¢,p) = § fi(timedP)) if timegdP) > a; Atime(dP) < time(d?), (9.28)
1 if timg(d?) = time(d?).

(tmei=es)” if time(d?)  time{),

(9.29)
1 if timg(dP) = time(d?).

fi(time(d”)) = {
We define the second temporal feature based on a fuzzy setrgyths prediction’s
future dateg,wre and the publication date of query arti¢leng(d?). Similarly, if a pre-

diction p has more than one future date, a final score will be averagedswores of all
datesprure. The second temporal featurs, is defined as follows.

) 0 if ty <time(dq)th > (g,
FSi(g.p) =5 D (! if £, = time(d?), (9.30)
Ttsemue | fo(ty) if t; > time(d?) Aty < ao.
ag—t mo .
f2<tf) — <a2—time{d‘1)> if tf 7& tlme(dq)7 (931)
1 if ¢; = time(d).

whereN; is the number of all future dates iR,e, andt; is a future date, i.et; € prture.

n andm are constantsy; anda, are the minimum and maximum time of reference with
respect tayime. a1 IS calculated by subtracting the time offsgf, from from ¢jme , and

i is calculated by adding the offs&fax tO giime.
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9.5 Ranking Model

Given a queryy, we will rank a predictiorp using a ranking model obtained by train-
ing over a set of labeled query/prediction pairs using aniegralgorithm. An unseen
query/prediction paifg, p) will be ranked according to a weighted sum of feature scores:

N
scordq, p) = Zwi X T (9.32)
i=1

wherezx; are the different features extracted frgnandg, NV is the number of features,
andw; are the weighting coefficients. The goal of the algorithmoigetarn the weights
w; using a training set of queries and predictions, in orderitomze a given loss func-
tion. Learning to rank algorithms can be categorized inted¢happroaches: pointwise,
pairwise, and listwise approaches [76]. The pointwise @@ assumes that retrieved
documents are independent, so it predicts a relevance pmigior each document and
ignores the positions of documents in a ranked list. Thenpsérapproach considers a pair
of documents, and relevance prediction is given as theivelatder between them (i.e.,
pairwise preference). The listwise approach considersaendet of retrieved documents,
and predicts the relevance degrees among documents. Faealetailed description of
each approach, please refer to [76].

We employ the listwise learning algorithm SWKf [135]. The algorithm trains a
classifier using support vector machines (SVM), and it aeiees the order of retrieved
documents in order to directly optimize Mean Average PrecigMAP). In addition,
we also experimented with other learned ranking algorithiRankSVM [51], SGD-
SVM [141], PegasosSVM [109], and PA-Perceptron [23]. Hosvethese algorithms
do not perform as well as SV in our experiments. Thus, we will only discuss the
results obtained from SVNF® in the next section.

9.6 Evaluation

In this section, we evaluate the retrieval effectivenessioproposed ranking model using
three different query formats. We will first describe the exmental settings followed by
an explanation of the results and a detailed discussion.

9.6.1 Setting

Document collection.We used the New York Times Annotated Corpus for our document
collection. In order to extract predictions and featureseaes of language processing
tools, including OpenNLP [96] (for tokenization, sentersgitting and part-of-speech
tagging, and shallow parsing), the SuperSense tagger (fdk3jamed entity recognition)
and TARSQI Toolkit [118] (for extracting temporal expresgsdrom documents). Given
the importance of time to our system, we note that the tenhpapmession extraction of
TARSQI has a reported performance of 0.81 F1 on the Time Egare&ecognition and
Normalization task [120].
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Table 9.2: Examples of future-related topics.

PoLiTICS ENVIRONMENT | SPACE
president election global warming | Mars

Iraq war energy efficiency| Moon
SCIENCE PHYSICS HEALTH
earthquake particle Physics || bird flu
tsunami Big Bang influenza
BUSINESS SPORT TECHNOLOGY
subprime Olympics Internet
financial crisis World cup search engine

We employed the Apache Lucene search engine for both ingexid retrieving pre-
dictions. The statistics of extracted data are as followser& are 44,335,519 sentences
and 548,491 are predictions. There are 939,455 future ,damtesan average future date
per prediction is 1.7 and the standard deviation is 0.92. Agnb.8 million documents,
more than 25% of all documents contain at least one predigtie., a reference to the
future). In order to determine this percentage over a bnocdee of news sources, we
performed the same analysis on 2.5 million documents froen ®00 news sources from
Yahoo! News for the one year period from July 2009 to July 28d@ found over 32% of
the documents contained at least one prediction.

Future-related queries. There is no gold standard available to evaluate the task of
ranking related news prediction. We manually selected 42ygoews articles from the
New York Times that cover the future-related topics showTable 9.2. The actual
queries Qg, Qr and@Q¢) used for retrieving predictions are extracted from thesgm
articles.

Relevance assessment$duman assessors were asked to evaluate query/prediction
pairs (e.g., relevant or non-relevant) using 5 levels oévahce: 4 forexcellent(very
relevant prediction), 3 fogood (relevant prediction), 2 fofair (related prediction), 1 for
bad (non-relevant prediction), and O faon prediction(incorrect tagged date). The last
option was presented because there are predictions ictgraanotated with time (this is
an error produced by the annotation tools). More precis@l\gssessor was asked to give
a relevance scor@rade(q, p,t) where(q, p, t) is a triple of a query;, a predictiorp, and
a future date in p. Consider the following prediction about the topic “globanwming”
and the publication date of the news article is 2007/02/21.

Formal ratification of the pact — which commits the union toueel emissions

of “greenhouse gases” by 8 percent of 1990 levels during tleeyear period
from2008through2012— now goes to the European Council of heads of state
and government, which could act as early as this month at ti@wsummit

in Barcelona.

The prediction contains two future dates (as highlightelald). Hence, an assessor
has to give judges to two triples corresponding;t@ andboth future dates. A triple
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(q,p,t) is consideredelevant if Grade(q,p,t) > 3, and it is considered non-relevant if
1 < Grade(q, p,t) < 2. Relevance level 0 is not included in the evaluatiorhese judg-
ments are normalized by a query/prediction gaitp) since we are interested in present-
ing a prediction for all future dates, regardless of thember. That is, a query/prediction
pair (¢, p) is relevant if and only if there is at least one relevant &1, p, t), and a pre-
diction isnon-relevantif all triples are non-relevant. Our assumption is that prohs
extracted from more recent documents are more relevant.

In total, assessors judged 52 queries and for each one ofwleeratrieved up to 100
sentences that contained predictions. On average 94 sestetith future mentions were
retrieved, with an average of 1.2 future dates per predictionally, assessors evaluated
4,888 query/prediction pairs (approximately 6,032 ofl&s).

Our machine learning ranking models operate in a supervisather, and as such,
they need training data for learning. We created training daing cross validation by
randomly partitioned query articles int¥y folds. We usedVr — 1 query/prediction
from other folds for training a ranking mode and the remajniold for testing. We
removed queries with zero relevant results, and we obtaiied= 3,4,5 for Qg, Qc,
Qr respectively.

Parameter setting. The boost factors are set on independent experiments,shat i
boostTEXT) = 5.0, boostcCONTEXT) = 1.0, andboostTITLE) = 2.0. We use the rec-
ommended values [103] for the constahts= 0.75 for all fields, andk; = 1.2. For
LDA-based features, we trained a yearly model snapshot legtsey 4% of all docu-
ments in each year. For each document, we filtered out termwgring in less than 15
documents and the 100 most common terms. We learn a topicl ieosdsmch document
snapshot by employing Stanford Topic Modeling Toolbox [[12hd the number of topics
for training LDA N, is fixed to 500 and the number of topics for inferericis 200. A
learning algorithm we use is the collapsed variational Bamsoximation to the LDA
objective (CVBOLDA) [6]. All other parameters are defaultwes$ of the topic modeling.
Using CVBOLDA required high CPU and memory, but needed feweatiiens and had
faster convergence rates than a collapsed Gibbs samplenf88h requires less memory
during training.

For both7'SU;, andT'SU,, DecayRate = 0.5, A = 0.5 andu = 2y are used wherg
the number of years. For bofiS; and F'Sy, n = 2, m = 2, Smin = 4y andsmax = 2y are
used. Sog; = timg(d?) — 4y anda, = time(d?) + 2y.

Methods for comparison. We experiment with the three different ways of construct-
ing the queryQg, Qr, andQc. The baseline for retrieval is Lucene’s default ranking
function and our queries incorporate two time constraistexplained in Section 9.3.4.
We re-rank the baseline results using S yielding ReQz, ReQr andRe Q. For
the application of ranking related news predictions, wegsr®p-precision retrieval per-
formance metrics over recall-based metrics: a user wilypeeally interested in a few top
predictions even though there are many predictions rettieConsequently, we envision
a user interface that contains little space for displayeigted predictions. Thus, we will
measure the retrieval effectiveness by the precision aahd3l0 (P@1, P@3, and P@10

We are interested in assessing the performance of the ranking algorithmotthe annotation
tools. However, we note the overall system will be impacted by the annotatians e
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Figure 9.3: P@10 and MAP performance®@f; (left) when varying top+: entities, and
Q¢ (right) when varying topz terms.

respectively), Mean Reciprocal Rank (MRR), and Mean Averageistoa (MAP). We
report the average performance ovér folds to measure the overall performance, for
each query type.

9.6.2 Results

The three types of querie§)¢,Qr, and(Qc) are composed of eithéop-m entities or
top-nterms, or both. We first establish which are geadandn values for each one of
the types. Instead of varying andn in re-ranking, we select the: andn that give a
reasonable improvement in a hold-out set (where we randdiviged queries into two
folds). Therefore, we will use only one fixed versioniafandn for the rest of our
experiments. We select the valuesmefandn by performing a preliminary analysis as
follows. First, by looking at P@10 and MAP, we select the eatd m that yields the
best performance using onfyy to retrieve predictions for each varyimg. As shown in
Figure 9.3 (left),9 < m < 12 give almost no difference in terms of P@10. In spite of
that, we choose the number of entities= 11 because it is slightly better than the other
values. Next, we find the optimal value ofby observing the performance @f- when

m is fixed to 11 and the value of is varied. As depicted in Figure 9.3(right), there is
very slight difference in P@10 far < n < 11; We choose the number of terms= 10
because it obtains the best in MAP among them.

The retrieval effectiveness of simple methods and thenesponding re-ranking meth-
ods are displayed in Table 9.3. These results are averagedjogries retrieving at least
one relevant prediction. In generd), gains the highest effectiveness in all measure-
ments followed by~ and@r and the feature-based re-ranking approach improves the
effectiveness for all query types. In additidRe ) has the highest effectiveness over
other re-ranking methods for P@1 and P@3, wRiés) gains the highest effectiveness
for the rest of all metrics.

Qr and Q¢ pose a problem in not retrieving any relevant result of odggd pool
among the first 100 for a large number of queries, which makesgossible for the
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Table 9.3: Effectiveness of each method when using all gagrri+ indicates statistical
improvement over the corresponding simple methods usiagttwith significant ap <
0.1,p < 0.05 respectively.

Method P@1 P@3 P@10 MRR MAP

Qp 0.300 0.333 0.290 0.473 0.219
Qr 0643 0579 0455 0.760 0.385
Qc 0.500 0.561 0427 0.656 0.231

Re@r 0500 0499 0.360 0.629 0.266
Re@r 0.73& 0.619 0.462 0.831 0.387
Re@Qc 0.773r 0.682F 0.455 0.84F% 0.271

machine learning model to improve the ranking. However, tllevgant to compare the
performance between the different variations of the quéry, (Qc, Q). Therefore, we
use a subset of queries that contaila¢teastone relevant result among all the different
methods. The results are shown in Table 9.4 where we compatber methods against
@ because we have observed that performs worst among them. As seen from the
results of each re-ranking method, our proposed featurpsove the effectiveness for
all corresponding simple methods. In particular, the rékirag methodRe ()~ outper-
forms the simple metho@ g significantly. HoweverRe Qg did not provide a significant
improvement over)r. The results show that, for the same set of queries, usintesnt
alone are limited while terms alone are able to retrieve rabstlevant predictions.

Interestingly, when looking at the same sub-set of queriés nglevant predictions,
the re-ranking approacRe (. outperforms every other method, even if the plain re-
trieval Qr is superior toQ¢. This is an indicator that entity-based features are able to
produce higher quality results but only for a certain typéopics. We performed an er-
ror analysis to determine whi 5 is unable to retrieve relevant predictions. In general,
Q. fails for a topic that cannot be represented using only pedptations, or organiza-
tions. For example, for the topic about “the Europeans agee¢ of gas emissions”, the
top-5 Qg is (European UnionBrusselsFinland, GermanyHungary) and the tops Q1 is
(europeanemissiontarget climate brussel$. In this case()r is unable to represent the
keyterms “emission” and “climate”, and thus fails to retrievamy relevant predictions
that match those terms.

Similarly, for the query topic about “Clinton health careaeh”, () is represented
using the named enti@linton (the terms “health care” and “reform” are not annotated as
entities). When matching, all predictions containing theteiClinton are matched which
will return many documents that are not related to “healtie’cand “reform”.

9.6.3 Feature Analysis

We analyzed feature weights obtained from the learningrilgo SVMMAP in order to
understand better what is the importance of the differeatutes,. Note that, in order
to compare the weights among different queries, we perfdmuemalization by diving
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Table 9.4: Effectiveness of each method when using a subsgteoies;t,F,~ indicates
statistical improvement over the meth@g; using t-test with significant at < 0.1, p <
0.05, p < 0.01 respectively.

Method P@1 P@3 P@10 MRR MAP

Qp 0.300 0.333 0.290 0.473 0.219
Qr 0.500 0.533 0430 0.638 0.219
Qc 0.600 0.53% 0.360 0.727 0.163

Re@r 0500 0.499 0.360 0.629 0.266
Re@r 0.700 0.600 0410 0.762 0.236
Re@c 1.000F 0.714F 0.443 1.000 0.308

with the maximum value of all weights for each query. Columrin Table 9.5 displays
the top5 features with highest and lowest weights for each query.type

At least two topic-based features of all query types are enttp5 features with
highest weight, and therefore topic-based features playpartant role in the re-ranking
model. AlthoughretScoreand bm25f measure the similarity on a term level, they help
to re-rank predictions when incorporated into the machéaeriing model. as seen in the
top-5 features forQr and Q. The feature that received the highest importance value
for the Q . type istagSim which measures the similarity between entities in a pteutic
and manually tagged entities. This indicates that taggétde=nin a query document can
precisely represent user information needs. The tempeatlifedS, andFS, also play
an important role fo) .

Features in top-features with lowest weights are those from the entity-tadass.
Recall that these features are extracted in order to measergnportance of entities
annotated in a prediction with respect to their respectaremt documents. However, the
results show that these features are not good enough faimdisating between relevant
and non-relevant predictions.

In order to observe the performance of different classesaftufe, we conducted
two additional experiments for all query types. First, wairted a ranking model with
SVMMAP using onlyretScoreand selected a class of features at each time to observe how
the selected class contributes to the ranking model. Fdr gaery type, a baseline is
the model trained usingetScoreonly. We compare the effectiveness using P@3 and
MRR. Besides, we also show the percentage of improvement ceshparthe baseline.
The results are depicted in Table 9.6. KE®E, the classeserm, entity and prediction
improve the baseline slightly or not at aé&mporalandtopic better the effectiveness, but
not significantly. ForQ,, adding the classntity decreases the effectiveness as well as
all other classes show the improvement to a small degreeertt®lessierm performs
better than the baseline significantly in P@3. Bgr, all feature classes do not improve
the baseline significantly excefupic that outperforms the baseline significantly up to
24% in MRR. In addition to single classes, combining all feasuyield the improvement
significantly in both P@3 and MRR.

The second experiment is training a ranking model usingitrgidata that are con-



156 9.7. Conclusions

Table 9.5: Top-5 features with highest weights and lowesgkis for each query type.

Qp Qr Qc
Feature W, Feature W, Feature W;
tagSim 1.00 bm25f 1.00 LDA; parentk 1.00
FS 0.97 retScore 0.60 retScore 0.99
TSU, 0.88 LDA parentk: 0.55 LDA parentall 0.96
LDA ixt & 0.87 LDA; parentk 0.51 bm25f 0.93
LDAl,txt,aIl 0.82 LDAl,parentalI 0.49 |SSUbJ 0.87
cntSenSubj  0.01 timeDistEvent -0.03 cntEventSen -0.02
cntEventSubj 0.01 timeDistFuture -0.11 querySim -0.05
isInTitle 0.00 cnteventSen -0.12 cntFutureSen -0.10
cntEventSen 0.00 cntFutureSen -0.12 timeDistFuture -0.14
guerySim -0.01 senLen -0.16 senLen -0.18

sisted ofall features, but except one class at each time to see how thmgamkdel is
depended on that class. We also use P@3 and MRR to comparéeittevehess, and we
report how much the effectiveness is decreased (%) compare baseline. Fof) g,

all other classes result in decreasing the effectivenessnwiopped, while the effective-
ness is slightly increase wheéemporalis removed. However, we cannot conclude that
temporalhas an negative effect 1@, because addinggemporalalone can improve the
baseline. For), dropping each single feature class alters the effectsgenéthe base-
line slightly, whereas dropping a combination of all clasdecreases the effectiveness up
to %20 in MRR. Similarly, forQ., dropping each single feature class changes the effec-
tiveness of the baseline to some degree. However, a coniratall classes decreases
the effectiveness significantly in both P@3 and MRR when dedpp

9.7 Conclusions

In this chapter, we demonstrated that future related inébion is abundant in news stories
and defined the task o&nking related future predictiond’ he main goal of this task is to
improve user access to this information by selecting thdiptiens from a news archive
that are most relevant to a given news article. We createdalnaion dataset with over
6000 relevance judgments and addressed this task usingnanig#o rank methodology
incorporating four classes of features including term kinty, entity-based similarity,
topic similarity, and temporal similarity that outperfosma strong baseline system. Fi-
nally, we performed an in-depth analysis of feature impuréa
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Table 9.6: Effectiveness of different classes of featur@sgicates statistically improve-
ment over the baselines using t-test with significant at0.05.

Type Method Add Drop
P@3 (%) MRR (%) P@3 (%) MRR (%)
baseline .33 - 47 - .50 - .63 -
term 37 4 .50 3 .43 7 .58 5
Qr  entity .33 0 .49 2 .43 7 .63 0
prediction .33 0 .b2 5 .40 10 .58 5
temporal .40 7 .55 8 .53 -3 .72 -9
topic 43 10 .63 16 .40 10 .60 3
all .50 13 .63 16 .33 17 .47 16
baseline .58 - .76 - .62 - .83 -
term .65* 7 .79 3 .63 -1 .83 0
Qr  entity .56 -2 .74 -2 .63 -1 .83 0
prediction .58 0 .78 2 .63 -1 .85 -2
temporal .60 2 .80 4 .63 -1 .84 -1
topic .61 3 .80 4 .60 2 .78 5
all .62 4 .83 7 .58 4 .63 20
baseline .56 - .64 - .68 - .83 -
term .59 3 .67 3 .63 5 .86 -3
Qc  entity .56 0 .66 2 .67 1 .88 -5
prediction .60 4 75 11 .67 1 .88 -5
temporal .60 4 .70 6 .65 3 .85 -2
topic .62 6 .88* 24 .60 8 .72 11
all .68* 12 .83* 19 .56* 12 .64* 19
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Chapter 10

Conclusions

This thesis addresses research problems in searchingt@ndpcument collections. We
have proposed different approaches to solving the addressearch questions. In sum-
mary, our contributions to this thesis are:

e We proposed different techniques for improving temporablsage models used
for determining the creation time of non-timestamped dosut®s The proposed
approaches included different semantic-based prepriogesk addition, we im-
proved the quality of document dating by incorporatingiiné and external knowl-
edge into the temporal language models. By conducting exteagperiments, we
showed the evaluation of our proposed approach and the vaprent over the
baseline of our proposed approaches. Finally, we presansgdtem prototype for
dating documents using the proposed extension approaches.

e We performed the first study on how to determine the tempardlles of queries
without temporal criteria provided, and we proposed teghas for determining the
time of implicit temporal queries. We proposed an approactetranking search
results by incorporating the determined time of queries. Bgducting exten-
sive experiments, we evaluated our approaches for detergniemporal profiles
of queries, as well as of re-ranking search results usingaeah profiles of queries.

e We formally modeled Wikipedia viewed as a temporal resodoceclassification
of time-based synonyms. We proposed an approach to disoguane-based syn-
onyms using Wikipedia and improving the time of synonymsadidition, we pro-
posed query expansion techniques that exploit time-bagsohgms. We exten-
sively evaluated our proposed approaches to extractingngmebving time of syn-
onyms, and query expansion using time-based synonymslly-iaaews archive
search prototype considering terminology changes ovex tias presented.

e We performed the first study and analysis of performanceigiied methods for
temporal queries. We proposed different time-based pi@diand techniques for
improving query performance prediction by combining npi#ipredictors. Exten-
sive experiments were conducted for evaluating singleigi@d and the combined
methods.
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e We conducted the first study of query classification usingttme dimensions, and
presented a novel taxonomy of queries based on two time dimrenwas formally
defined. We proposed an approach to automatically clasgifgiquery into two
main classes as well as retrieval models for both time dimandn addition, an
approach to predicting an appropriate ranking model foetsansitive queries was
presented. By performing extensive experiments, we evaduair proposed query
classification and time-aware ranking model prediction.

e We performed the first study and analysis of time-aware rapkiethods. By con-
ducting extensive experiments, we compared the perforenandifferent time-
aware ranking methods using the same dataset.

e We proposed the first study of the ranking related news piiedc task. We pro-
posed a learned ranking model incorporating four classtsatidires including term
similarity, entity-based similarity, topic similaritynd temporal similarity. We eval-
uated our proposed approach using queries selected frdmoed future trends
and predictions extracted from the New York Times Annot&edpus. Finally, we
performed an in-depth analysis of feature selection toaytudther research in the
ranking related news predictions task.

In the rest of this chapter, we will outline our plans for figuvork, and discuss
possible research topics beyond what have been addrestedtiresis.

Future Work

Our plans for future work are as follows. In order to overcdheelimitation of temporal
language models, there are several issues we intend toasyahyt of the future research
on document/query dating-irst, our word interpolation method is an interestingaide
improving the language model. However, not every word sthdel interpolated in the
same manner, thus we could apply a weighting scheme to warddsterpolate only sig-
nificant words. In addition, we intend to further improve thaing task based on external
knowledge from sources such as Wikipedia. Finally, thendgttask is analogous to a clas-
sification problem where a document is classified into a timerval. A possible future
work is to employ different classification methods in detiing time of a document.

Future work onterminology changes over timaclude combining time-dependent
synonyms and temporal language models in order to proviapdeal search using a
named entity without having to provide explicitly the timrethe query. We will also in-
tegrate our approach for time-dependent synonym discaveehyinformation extraction
techniques that can find additional information in Wikipge¢for example names of pres-
idents at particular points in time). Finally, we want to Bipthe detected relationships
together with temporal dynamics of document contents [88fder to improve relevance
ranking.

Our planned future work ouery performance predictiors multifold. First, we
want to find new time-based prediction methods that are maphisticated than those
we have proposed. For example, we can also consider timetaimtg as an indicator
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for query performance. Second, we want to apply time-basst-netrieval prediction
for temporal search. This is because post-retrieval ptiedicdetermines a ranked list
of retrieved documents, so in general post-retrieval ptexh performs better than pre-
retrieval prediction. In addition, we plan to increase toenber of temporal queries used
for analysis and also apply different temporal ranking radth The most important next
step is when a query is predicted to perform poorly, we warmpioly time-based query
expansion in order to improve the overall effectivenesstehaporal search system.

Outlook

The research problems we have addressed are among sewbtehms of searching tem-
poral document collections. Beyond the scope of this thésése are still a lot of op-
portunities for further investigation. In the following,enoutline two promising topics
for future research: 1) mining user-generated conteni$,2arspatio-temporal ranking
models.

Mining user-generated contents. In recent years, social network services, e.g., Twit-
ter, blogs, and discussion forums, have gained increasiegeists. The contents gener-
ated from social networks (called user-generated corjtbiaige increased dramatically,
and challenges when dealing with such data include rea-{stream) data, noisy texts
(unedited language), and dynamic topics/events. An igtieig research direction is to
employ our time-aware approachesmining user-generated content®ne example of
possible applications is Online Reputation Managementishareated to monitor social
medias, such as Twitter, in order to detect contents or opgiabout an products, people
and organizations [4]. In addition to an opinion mining apgiion, we can also mining
news articles together with user-generated contents ierdadpredict future events, as
been discussed in Chapter 9.

Spatio-temporal ranking models. This thesis only focuses on temporal queries, that
is, those containing temporal information needs. In sonsegaqueries may contain
not only time, but also geographic information. For exampleiser may search for a
particular event by issuing a query, which is composed of laolocation and time. In
recent work [112], Strétgen et al. proposed to use tempaochigographic expressions
in documents’ contents to measure the similarity betweenmhents for a cross-language
retrieval task. Similarly, it is interesting to exploit t@ral and geographic information
in ranking. Thus, an interesting research direction is tmiporate both temporal and
geographic information into retrieval and ranking.
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