CHIP MULTIPROCESSORS

Power Dissipation Limits Practical Clock Frequency

Historical Processor Performance

Chip Multiprocessors (CMPs)

Outline

- Chip Multiprocessors (CMPs)
- CMP Resource Management
- Miss Bandwidth Management
 - Greedy Miss Bandwidth Management
 - Interference Measurement
 - Model-Based Miss Bandwidth Management
- Off-Chip Bandwidth Management
- Conclusion
Projected Number of Cores

Observation 1: Multiprogramming can provide near-term throughput improvement.

Processor Memory Gap

Observation 3: Latency hiding techniques are necessary.

Performance vs. Bandwidth

Observation 4: Bandwidth must be used efficiently.

Application Trends
- Multi-programming
- Software parallelism
- Latency hiding
- Bandwidth efficiency

Hardware Trends
- Concurrent applications share hardware
- Complex Memory Systems

Shared Resource Management

Why Manage Shared Resources?
- Provide predictable performance
- Support OS scheduler assumptions
- Cloud: Fulfill Service Level Agreement

CMP RESOURCE MANAGEMENT
Performance Variability Metrics

- **Fairness**
 - The performance reduction due to interference between processes is distributed across all processes in proportion to their priorities.
 - Equal priorities: Performance reduction from sharing affects all processes equally.

- **Quality of Service**
 - The performance of a process is never drops below a certain limit regardless of the behavior of co-scheduled processes.

Performance Variability (Fairness)

![Graph showing performance variability (fairness) across different workloads and network architectures.]

<table>
<thead>
<tr>
<th>Number of Workloads</th>
<th>Lowest Fairness Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>0.6</td>
</tr>
<tr>
<td>7</td>
<td>0.8</td>
</tr>
<tr>
<td>9</td>
<td>1.0</td>
</tr>
<tr>
<td>11</td>
<td>1.2</td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
</tr>
</tbody>
</table>

Resource Management Tasks

- **Measurement**
- **Allocation (Policy)**
- **Enforcement (Mechanism)**

Contributions

- Offline Interference Measurement
- Dynamic Miss Handling Architecture
- Greedy Miss Bandwidth Allocation
- Performance Model-Based Bandwidth Allocation
- Low-Cost Open Page Prefetching
- Opportunistic Prefetch Scheduling

Conventional Resource Allocation Implementation

- Measurement
- Allocation
- Enforcement

Miss Bandwidth Management

GREEDY MISS BANDWIDTH MANAGEMENT
Alternative Resource Allocation Implementation

Dynamic Miss Handling Architecture

A DMHA controls the number of concurrent shared memory system requests that are allowed for each processor.

Greedy Miss Bandwidth Management

- Idea: Reduce the number of MSHRs if a metric exceeds a certain threshold
- Metrics:
 - Paper A.II: Memory bus utilization
 - Paper A.III: Simple interference counters (Interference Points)
- Performance feedback avoids excessive performance degradations

Resource Allocation Baselines

Baseline = Interference-free configuration

Quantify performance impact from interference

Private Mode and Shared Mode

Interference Definition

\[I_i = \hat{L}_i - L_i \]

\[E_i = \hat{L}_i - \hat{L}_i \]
Offline Interference Measurement

Interference Penalty Frequency (IPF) counts the number of requests that experienced an interference latency of \(i \) cycles.

Interference Impact Factor (IIF) is the interference latency times the probability of it arising, i.e. \(IIF(i) = i \times P(i) \).

Aggregate Interference Impact

Resource Management Baselines

Baseline Weaknesses

Multiprogrammed Baseline
- Only accounts for interference in partitioned resources
- Static and equal division of DRAM bandwidth does not give equal latency
- Complex relationship between resource allocation and performance

Single Program Baseline
- Does not exist in shared mode

Online Interference Measurement

- Dynamic Interference Estimation Framework (DIEF)
- Estimates private mode average memory latency
- General, component-based framework

Shared Cache Interference

Miss

Eviction may not be interference

Eviction is interference

Interference latency cost = miss penalty
Bus Interference Requirements

- Out-of-order memory bus scheduling
- Shared mode only cache misses and cache hits
- Shared cache writebacks

Computing private latency based on shared mode queue contents is difficult

Emulate private scheduling in the shared mode

Model-Based Miss Bandwidth Allocation

DIEF provides accurate estimates of the average private mode memory latency

Can we use the estimates provided by DIEF to choose miss bandwidth allocations?

We need a model that relates average memory latency to performance

Performance Model

Observation: The memory latency performance impact depends on the parallelism of memory requests

Very similar in private and shared mode

Bandwidth Management Flow

Measurement

- Shared Mode Memory Latency
- Private Mode Memory Latency
- CPU Stall Time
- Committed Instructions
- Number of Memory Requests

Modeling

- Per-CPU Models
- Perf Metric Model

Allocation

Find MSHR allocation that maximizes the chosen performance metric

Set number of MSHRs for all last-level private caches
OFF-CHIP BANDWIDTH MANAGEMENT

Modern DRAM Interfaces
- Maximize bandwidth with 3D organization
- Repeated requests to the row buffer are very efficient

Low-Cost Open Page Prefetching
- Idea: Piggyback prefetches to open DRAM pages on demand reads
- Performance win if prefetcher accuracy is above ~40%

Opportunistic Prefetch Scheduling
- Idea: Issue prefetches when a page is closed
- Increased efficiency: 8 transfers for 3 activations

Conclusion
- Managing bandwidth allocations can improve CMP system performance
- Miss bandwidth management
 - Greedy allocations
 - Management guided by accurate measurements and performance models
- Off-chip bandwidth management with prefetching

CONCLUSION
Thank You

Visit our website:
http://research.idi.ntnu.no/multicore/

EXTRA SLIDES

Future Work

- Performance-directed management of shared caches and the memory bus
- Improving OS and system software with dynamic measurements
- Combining dynamic MHAs with prefetching to improve system performance
- Managing workloads of single-threaded and multi-threaded benchmarks

Example Chip Multiprocessor